CHAIN CONDITIONS AND PURE-EXACTNESS

MANGESH BHALCHANDRA REGE AND KALATHOOR VARADARAJAN
CHAIN CONDITIONS AND PURE-EXACTNESS

M. B. REGE AND K. VARADARAJAN

Let R be a ring and M any (right) R-module. For any set I let $M(I)$ and M^I denote the direct sum and respectively the direct product of copies of M indexed by the set I. For any cardinal number r, let \mathcal{C}_r denote the class of R-modules admitting a generating set of cardinality $\leq r$. In this paper we study the relationship between the pure-exactness of the sequence $0 \to M(I) \to M^I \to M^I/M(I) \to 0$ with respect to \mathcal{C}_r under the functor Hom_R and chain conditions on suitably defined families of R-modules. This study led us to the introduction of five properties $A_r, A_{(r)}, D_r, D_{(r)},$ and P_r for any R-module M. We also study the effect of base extension (both covariant and contravariant) of the ring R on modules having any (or some) of the above mentioned properties. Finally we obtain necessary and sufficient conditions for $0 \to \pi M_a \to \pi M_a \to \pi M_a/\bigoplus M_a \to 0$

Introduction. Let \mathcal{C} be any family of R-modules. An exact sequence $0 \to M' \to M \to M'' \to 0$ of R-modules is said to be pure-exact with respect to the family \mathcal{C} (for the functor $\text{Hom} = \text{Hom}_R$) if $\varepsilon_*: \text{Hom}(E, M) \to \text{Hom}(E, M'')$ is onto for all $E \in \mathcal{C}$. Given a module M and a set I let $M(I)$ and M^I denote respectively the direct sum and the direct product of copies of the same module M indexed by I. In his paper [6] H. Lenzing, among other things, studies equivalent conditions under which (1) will be pure-exact with respect to \mathcal{C}_k, where $\{M_a\}$ is any family of R-modules and k any integer ≥ 1.

Throughout this paper k will denote an integer ≥ 1. R will denote a ring with 1, R-mod and $\text{mod}-R$ will denote the categories of left resp. right unitary R-modules. Unless otherwise mentioned, by an R-module we mean an object of $\text{mod}-R$. All the concepts
used in this paper are right sided unless otherwise mentioned. When we talk of homomorphisms between rings we always assume that they preserve the identity elements. When R is a subring of S we assume $1_R = 1_S$ so that the inclusion map $j: R \rightarrow S$ is a ring homomorphism. For any set J, the cardinality of J will be denoted by $|J|$.

The results of Lenzing in [6] suggest the introduction and study of five properties A_r, $A_{(r)}$, D_r, $D_{(r)}$, and P_r for any $M \in \text{mod}-R$ and any cardinal number $r \neq 0$. Let J be any set with $|J| = r$. For any $x = \{x_j\}_{j \in J} \in M'$ and $\lambda = (\lambda_j)_{j \in J} \in R^{|J|}$ let $\langle x, \lambda \rangle = \sum_j x_j \lambda_j$. For any subset T of M' let $L_T = \{\lambda \in R^{(J)} | \langle x, \lambda \rangle = 0 \text{ for all } x \in T \}$. We write $\mathcal{F}_r(M)$ (resp. $\mathcal{F}_{(r)}(M)$) for the family $\{L_T | T \text{ subset of } M'\}$ (resp. $\{L_T | T \text{ subset of } M^{(J)}\}$). $M \in \text{mod}-R$ is said to have the property A_r (resp. $A_{(r)}$) if $\mathcal{F}_r(M)$ (resp. $\mathcal{F}_{(r)}(M)$) has the ascending chain condition. Similarly, M is said to have the property D_r (resp. $D_{(r)}$) if $\mathcal{F}_r(M)$ (resp. $\mathcal{F}_{(r)}(M)$) has the descending chain condition. When $r = k$, A_k and $A_{(k)}$ are equivalent by definition and we use the common notation A_k. Similarly D_k and $D_{(k)}$ are equivalent and we use the common notation D_k. It turns out A_r and $A_{(r)}$ are equivalent for any cardinal r. However, we use either notation depending on the context. M is said to have P_r if for any set I, $0 \rightarrow M^{(I)} \rightarrow M' \rightarrow M'/M^{(J)} \rightarrow 0$ is pure-exact with respect to \mathcal{E}_r. It also turns out that A_k and P_k are equivalent, whereas for an infinite cardinal r one has only the implication $A_r \Rightarrow P_r$. We show by means of an example that the implication $P_r \Rightarrow A_r$ is not true. It turns out that the properties A_r, D_r, and $D_{(r)}$ are hereditary, in the sense that if $M \in \text{mod}-R$ has any one of these properties and N is a submodule of M, then N also has the same property. Since A_k and P_k are equivalent, it follows that P_k is hereditary. We give an example to show that P_r is not hereditary for an infinite cardinal r.

Let R be a subring of S and $j: R \rightarrow S$ the inclusion. Using j we regard S (and also S/R) as an element of R-mod. Let $M \in \text{mod}-R$. If $M' = M \otimes_R S \in \text{mod}-S$ has property $A_{(r)}$ (resp. $D_{(r)}$) and if Tor$^k(R, S/R) = 0$, then we show that $M \in \text{mod}-R$ property $A_{(r)}$ (resp. $D_{(r)}$). We say that a ring R has a certain property if R considered as an element of $mod-R$ in the usual way has that property. An immediate consequence of the above result is that if S has $A_{(r)}$ (resp. $D_{(r)}$), then R has $A_{(r)}$ (resp. $D_{(r)}$). Also the above results yield an alternative proof of the following well-known result which can be found in Chap. I, § 3, n°5 of [2]: If R is a subring of a right noetherian (artinian) ring S and if S/R is left flat over R, then R is right noetherian (artinian). Also we prove that a regular ring R has property A_1 if and only if it is semisimple.

Next we consider the situation where there exists a ring homo-
morphism \(f: R \to S \). Let \(M \in \text{mod-} R \) and \(M' = \text{Hom}_R(S, M) \in \text{mod-} S \). We study conditions under which \(M' \) having property \(A_r \) (resp. \(D_r \)) implies \(M \) has the same property. We apply these results to derive conditions under which \(\Sigma \)-injectivity of \(M' \) implies \(\Sigma \)-injectivity of \(M \).

In [7] B. Sarath and K. Varadarajan obtain necessary and sufficient conditions for the direct sum \(\bigoplus M_a \) of a given family \(\{M_a\}_{a \in I} \) of modules to be injective. Finally we generalize results in [7] and furnish conditions under which the sequence

\[
0 \longrightarrow \bigoplus M_a \longrightarrow \Pi M_a \longrightarrow \Pi M_a / \bigoplus M_a \longrightarrow 0
\]

is pure-exact with respect to \(\mathcal{E}_k \), where \(\{M_a\}_{a \in I} \) is an arbitrary family in \(\text{mod-} R \).

1. Preliminaries. Let \(R \) be a ring, \(U \in \text{mod-} R \), \(W \in \text{mod-} R \) and \(M \) an abelian group. Let \(\theta: U \otimes_R W \to M \) be a given homomorphism of abelian groups. For any \((u, w) \in U \times W \) we write \(\langle u, w \rangle \) for the element \(\theta(u \otimes w) \). Given any subset \(X \) of \(U \) let \(L_X = \{w \in W | \langle u, w \rangle = 0 \text{ for all } u \in X \} \). Clearly, \(L_X \) is an additive subgroup of \(W \). Let \(\mathcal{F}_W(\theta) = \{L_X | X \text{ any subset of } U \} \). We remark that \(L_X \) has been called an annihilator with respect to \(\langle, \rangle \) in [1, § 24].

Proposition 1.1. With the above notation, the following conditions are equivalent.

(a) \(\mathcal{F}_W(\theta) \) satisfies the ascending chain condition.

(b) There do not exist any sequences \(\{u^{(n)}\}_{n \geq 1}, \{w^{(n)}\}_{n \geq 1} \) with \(u^{(m)} \in U, w^{(n)} \in W \) and satisfying

(i) \(\langle u^{(n)}, w^{(n)} \rangle \neq 0 \)

(ii) \(\langle u^{(m)}, w^{(n)} \rangle = 0 \) for all \(m > n \geq 1 \).

Proof. (a) \(\Rightarrow \) (b). Suppose there exist sequences \(u^{(n)} \) in \(U \), \(w^{(n)} \) in \(W \) satisfying (i) and (ii) of (b). Let \(X_n \) be the subset \(X_n = \{u^{(k)} | k \geq n \} \) of \(U \). Then \(L_{X_n} \subseteq L_{X_{n+1}} \). From \(\langle u^{(n)}, w^{(n)} \rangle \neq 0 \) and \(\langle u^{(m)}, w^{(n)} \rangle = 0 \) for \(m > n \) we see that \(w^{(n)} \in L_{X_{n+1}} - L_{X_n} \). Thus \(L_{X_n} \subseteq L_{X_{n+1}} \cdots \) is a strict ascending chain in \(\mathcal{F}_W(\theta) \) contradicting (a).

(b) \(\Rightarrow \) (a). Suppose \(L_1 \subseteq L_{d_2} \subseteq \cdots \) is a strictly increasing chain of objects in \(\mathcal{F}_W(\theta) \), where \(\Delta_i \) are subsets of \(U \). Let \(w^{(n)} \in L_{d_{n+1}} - L_{d_n} \). Then there exists a \(u^{(n)} \in \Delta_n \) with \(\langle u^{(n)}, w^{(n)} \rangle \neq 0 \). Since \(u^{(m)} \in \Delta_m \) and \(w^{(n)} \in L_{d_m} \) for all \(m > n \) we get \(\langle u^{(m)}, w^{(n)} \rangle = 0 \) for \(m > n \). This contradicts (b).

Proposition 1.2. With the same notation as in Proposition 1.1, the following are equivalent.

(a) \(\mathcal{F}_W(\theta) \) satisfies the descending chain condition.
(b) There do not exist sequences \(\{u^{(n)}\}_{n \geq 1}, \{w^{(n)}\}_{n \geq 1} \) with \(u^{(n)} \in U, w^{(n)} \in W \) and satisfying

(i) \(\langle u^{(m)}, w^{(n)} \rangle \neq 0 \) for all \(m > n \geq 1 \).

(ii) \(\langle u^{(n)}, w^{(m)} \rangle = 0 \)

The proof is similar to that of Proposition 1.1 and hence omitted.

For any subset \(Y \) of \(W \) let \(L_Y = \{ u \in U | \langle u, y \rangle = 0 \text{ for all } y \in Y \} \). Then \(L_Y \) is a \(Z \)-submodule of \(U \). Let \(\mathcal{T}_w(\theta) = \{ L_Y | Y \text{ any subset of } W \} \). The following proposition is an immediate consequence of Propositions 1.1 and 1.2 (cf. Proposition 24.3 of [1]).

Proposition 1.3. The following are equivalent.

(a) \(\mathcal{T}_w(\theta) \) satisfies the ascending (resp. descending) chain condition.

(b) \(\mathcal{T}_v(\theta) \) satisfies the descending (resp. ascending) chain condition.

2. The five properties. Let \(M \in \text{mod}-R \) and \(J \) a nonempty set. We take \(U = M^J \) and \(W = R^{(J)} \). For any \(\underline{x} = (x_j)_{j \in J} \) in \(U \) and \(\underline{\lambda} = (\lambda_j)_{j \in J} \) in \(R^{(J)} \) let \(\phi: U \times W \rightarrow M \) be given by \(\phi(\underline{x}, \underline{\lambda}) = \Sigma x_j \lambda_j \). Notice that the sum \(\Sigma x_j \lambda_j \) is only a finite sum since \(\underline{\lambda} \in R^{(J)} \). The map \(\phi \) clearly induces a homomorphism \(\theta: M^J \otimes R^{(J)} \rightarrow M \). Also \(R^{(J)} \) is a left, right \(R \)-bimodule. Hence \(M^J \otimes_R R^{(J)} \) is in a natural way a right \(R \)-module. It is clear that \(\theta \) is an \(R \)-homomorphism. For any subset \(T \) of \(U \), \(L_T = \{ \underline{\lambda} \in W | \langle \underline{x}, \underline{\lambda} \rangle = 0 \text{ for all } \underline{x} \in T \} \) is an \(R \)-submodule of \(W = R^{(J)} \). In this case the family \(\mathcal{T}_w(\theta) \) introduced in \(\S 1 \) will be denoted by \(\mathcal{T}^{(J)}(M) \). If \(J \) and \(J' \) are any two sets with \(|J| = |J'| = r \neq 0 \), using a bijection of \(J \) with \(J' \) we can get a bijection of \(\mathcal{T}^{(J)}(M) \) with \(\mathcal{T}^{(J')}(M) \) preserving inclusions. Hence we write \(\mathcal{T}_r(M) \) for any \(\mathcal{T}^{(J)}(M) \) with \(|J| = r \).

We can respect the above considerations with \(U = M^{(J)}, W = R^{(J)} \), and \(\phi(\underline{x}, \underline{\lambda}) = \Sigma x_j \lambda_j \) for any \(\underline{x} = (x_j) \) in \(M^{(J)} \) and \(\underline{\lambda} = (\lambda_j) \) in \(R^{(J)} \). In this case we denote the family \(\mathcal{T}_w(\theta) \) by either \(\mathcal{T}^{(J)}(M) \) or \(\mathcal{T}^{(r)}(M) \).

Since \(R^{(d)} = 0 \), we do not consider the case \(r = 0 \) at all. Thus throughout this paper \(r \) denotes a cardinal \(\neq 0 \).

Definition 2.1. \(M \) is said to have the property \(A \) (resp. \(A_{(r)} \)) if \(\mathcal{T}_r(M) \) (resp. \(\mathcal{T}^{(r)}(M) \)) has the ascending chain condition.

Definition 2.2. \(M \) is said to have the property \(D \) (resp. \(D_{(r)} \)) if \(\mathcal{T}_r(M) \) (resp. \(\mathcal{T}^{(r)}(M) \)) has the descending chain condition.

Definition 2.3. \(M \) is said to have the property \(P_r \) if for every
set I, $0 \to M(I) \to M' \to M'/M(I) \to 0$ is pure-exact with respect to \mathcal{E}_r.

The following two lemmas are implicit in [5].

Lemma 2.4 (Fieldhouse). Let $B \subseteq A$, $N \subseteq M$ be R-modules, $\eta: A \to A/B$ and $\varepsilon: M \to M/N$ the canonical quotient maps. Suppose $\varepsilon^*_\circ: \text{Hom}(A/B, M) \to \text{Hom}(A/B, M/N)$ is onto. Then for any $f: A \to M$ satisfying $f(B) \subseteq N$, there exists a $g: A \to N$ such that $f/B = g/B$.

Lemma 2.5 (Fieldhouse). With the same notation as in Lemma 2.4, suppose $\varepsilon^*_\circ: \text{Hom}(A, M) \to \text{Hom}(A, M/N)$ is onto. Suppose for any $f: A \to M$ satisfying $f(B) \subseteq N$, there exists a $g: A \to N$ such that $g/B = f/B$. Then $\varepsilon^*_\circ: \text{Hom}(A/B, M) \to \text{Hom}(A/B, M/N)$ is onto.

The set of natural numbers will be denoted by N. For each cardinal number κ we denote the class of modules isomorphic to $R(J)/L$ with $|J| = \kappa$ and L countably generated submodule of $R(J)$ by \mathcal{E}_κ. In the statement of Propositions 2.6 and 2.7, M is a given object in $\text{mod-}R$, κ a given cardinal number and J a set with $|J| = \kappa$.

Proposition 2.6. Consider the following statements:

(a) M has property A_κ.

(a') M has property A_κ'.

(b) There do not exist any sequences $\{x^{(n)}\}_{n \geq 1}$, $\{\lambda^{(n)}\}_{n \geq 1}$ with $x^{(n)} \in M'$, $\lambda^{(n)} \in R(J)$ and satisfying

(i) $\langle x^{(n)}, \lambda^{(n)} \rangle \neq 0$ for $m > n \geq 1$.

(ii) $\langle x^{(m)}, \lambda^{(n)} \rangle = 0$ for $m > n \geq 1$.

(b') Same as (b) with $M(J)$ replacing M'.

(c) For any set I, any submodule L of $R(J)$ and any map $f: R(J) \to M'$ satisfying $f(L) \subseteq M(I)$ there exists a $g: R(J) \to M(I)$ such that $g/L = f/L$.

(d) For any set I, the sequence

$$0 \to M(I) \to M' \to M'/M(I) \to 0$$

is pure-exact with respect to \mathcal{E}_κ.

(e) The sequence $0 \to M(N) \to M^N \to M^N/M(N) \to 0$ is pure-exact with respect to \mathcal{E}_κ.

In general, we have (a) \iff (b) \iff (b') \iff (a') \iff (c) \iff (d) \iff (e). If κ is a finite cardinal all the statements (a) to (e) are equivalent.

Proof. The equivalences (a) \iff (b) and (a') \iff (b') follow from Proposition 1.1. (b) \iff (b') is trivial since $M(J) \subseteq M'$.

(b') => (b): For each \(n \geq 1 \) let \(J_n = \{ j \in J | \lambda_{(i)}^j \neq 0 \text{ for some } i \text{ in } 1 \leq i \leq n \} \). Since \(\lambda^{(i)} \in R^{(j)} \) we see that each \(J_n \) is a finite set. Let \(y^{(m)} \in M^{(j)} \) be defined by \(y^{(m)}_j = x^{(m)}_j \) for \(j \in J_n \) and \(y^{(m)}_j = 0 \) for \(j \in J - J_n \). Then clearly \(\langle y^{(m)}, \lambda^{(n)} \rangle = \langle x^{(m)}, \lambda^{(n)} \rangle \) for all \(m \geq n \geq 1 \). In particular, \(\langle y^{(m)}, \lambda^{(n)} \rangle = 0, \langle y^{(m)}, \lambda^{(n)} \rangle = 0 \) for \(m > n \geq 1 \).

(a) => (c): Let \(L \) be a submodule of \(R^{(j)} \) and \(f: R^{(j)} \to M' \) be a map satisfying \(f(L) \subseteq M^{(j)} \). Let \(\{ \theta^i \} \) denote the canonical basis of \(R^{(j)} \), namely, \(\theta^i = (u_{j^i})_{j \in J} \) with \(u_{j^i} = 0 \) for \(j^i \neq j \) and \(u_{j^i} = 1 \). Let \(f(\theta^i) = (x^i)_{j \in J} \) with \(x^i_j \in M \). For any \(i \in I \) define \(y^i \in M' \) by \(y^i_j = x^i_j \) \(\forall j \in J \). Let \(H(I) \) denote the set of finite subsets of \(I \). For any \(F \subseteq H(I) \) let \(K_F = \{ \lambda : \lambda \in R^{(i)} | \langle y^i, \lambda \rangle = 0 \text{ for } i \in I - F \} \). If \(F, F' \subseteq H(I) \) satisfy \(\lambda_F \subseteq \lambda_{F'} \) we have \(K_F \subseteq K_{F'} \). Each \(K_F \) is an element of \(\mathcal{F}_r(M) \). Since \(\mathcal{F}_r(M) \) satisfies the ascending chain condition, there exists an \(F_0 \in H(I) \) such that \(K_{F_0} \) is maximal in \(\{ K_F | F \subseteq H(I) \} \). For any \(F \subseteq H(I) \) we have \(K_F \subseteq K_{F \cup F_0} \supseteq K_{F_0} \). The maximality of \(K_{F_0} \) yields \(K_{F \cup F_0} = K_{F_0} \). Hence \(K_{F_0} \to K_F \) for all \(F \subseteq H(I) \).

Let \(\lambda = (\lambda_j)_{j \in J} \) be any element of \(L \). The \(i \) coordinate of \(f(\lambda) \) is \(\sum_j x^i_j \lambda_j \). Since \(f(\lambda) \in M^{(j)} \) we see that there exists an \(F \in H(I) \) (depending on \(\lambda \)) such that \(\sum_j x^i_j \lambda_j = 0 \) for \(i \in I - F \). Hence \(\langle y^i, \lambda \rangle = \sum_j y^i_j \lambda_j = \sum_j x^i_j \lambda_j = 0 \) for \(i \in I - F \). This proves that \(L \subseteq \bigcup_{F \subseteq H(I)} K_F \). Let \(\{ \theta^i \} \subseteq \mathcal{F}_r(M) \) be defined by \(\theta^i = \{ x^i_j \} \) for \(i \in F_0 \). \(\{ 0 \} \) for \(i \in I - F_0 \). The map \(g: R^{(j)} \to M^{(j)} \) carrying \(\theta^i \) to \(\theta^i \) is easily seen to fulfill the requirements of (c).

(c) => (d): Every \(E \in \mathcal{C}_r \) can be identified with \(R^{(j)}/L \) for some \(L \subseteq R^{(j)} \). If \(\varepsilon: M' \to M'/M^{(j)} \) denotes the canonical quotient map, then \(\varepsilon_\ast : \operatorname{Hom}(R^{(j)}, M') \to \operatorname{Hom}(R^{(j)}, M'/M^{(j)}) \) is onto since \(R^{(j)} \) is free. Lemma 2.5 now shows that \(\varepsilon_\ast : \operatorname{Hom}(E, M') \to \operatorname{Hom}(E, M'/M^{(j)}) \) is onto.

(d) => (e) is trivial.

To complete the proof of Proposition 2.6 we have only to show that (e) => (b) when \(r \) is a finite cardinal. If possible let \(x^{(n)} \in M', \lambda^{(n)} \in R^{(j)} \) satisfy (i) and (ii) of (b). Let \(x^{(n)} = (x^{(n)}_j) \), \(\lambda^{(n)} = (\lambda^{(n)}_j) \). Let \(y^i = (y^i_j)_{j \in J} \in M' \) be given by \(y^i = x^{(n)}_j \). Let \(f: R^{(j)} \to M' \) be the map carrying \(\theta^i \) onto \(y^i \). Let \(L \) be the submodule of \(R^{(j)} \) generated by \(\lambda^{(n)}, n \geq 1 \). Then \(R^{(j)}/L \in \mathcal{C}_r \). The \(m \)th coordinate of \(f(\lambda^{(n)}) \) is \(\sum_j y^i_j \lambda^{(n)}_j \). But \(\sum_j y^i_j \lambda^{(n)}_j = \sum_j x^{(n)}_j \lambda^{(n)}_j = \langle x^{(n)}, \lambda^{(n)} \rangle = 0 \) for \(m > n \), we get \(f(\lambda^{(n)}) \in M^{(n)} \). Hence \(f(L) \subseteq M^{(n)} \). Let \(\varepsilon: M' \to M'/M^{(n)} \) denote the quotient map. By (e) the map \(\varepsilon_\ast : \operatorname{Hom}(R^{(j)}/L, M'/M^{(n)}) \to \operatorname{Hom}(R^{(j)}/L, M'/M^{(n)}) \) is onto. Hence by Lemma 2.4 there exists a map \(g: R^{(j)} \to M^{(n)} \) satisfying \(g/L = f/L \). Now let \(g(\theta^i) = (u^i_j)_{n \geq 1} \). From \(f(\lambda^{(n)}) = g(\lambda^{(n)}) \) we immediately get \(\sum_j u^i_j \lambda^{(n)}_j = \sum_j y^i_j \lambda^{(n)}_j = \sum_j x^{(n)}_j \lambda^{(n)}_j = 0 \) by (i)
of (b). Hence for any \(n \geq 1 \), there exists at least one \(j \in J \) such that \(u^j_n \neq 0 \). Since \(J \) is a finite set and \(n \) varies over the infinite set \(\mathbb{N} \), it follows that there exists at least one \(j \in J \) with \(u^j_n \neq 0 \) for infinitely many \(n \). This contradicts the fact that \((u^j_n) \) is in \(M^{(N)} \).

This completes the proof of Proposition 2.6. Actually the proof is patterned after the proof of Lenzing [Proposition 1 of [6]]. It follows from this proposition that \(A_r \Rightarrow A_{(r)} \) for any cardinal \(r \). However, we will continue to use both the notations. Another consequence of the proposition is the equivalence of \(A_k \) and \(P_k \). In general, we only have \(A_r \Rightarrow P_r \).

Proposition 2.7. Consider the following conditions:

(a) \(M \) has property \(D_r \).

(b) There do not exist sequences \(\{x^{(n)}\} \) in \(M^J \) and \(\{\Lambda^{(n)}\} \) is \(R^{(J)} \) satisfying

\[
\begin{align*}
&\text{(i)} \quad \langle x^{(n)}, \Lambda^{(n)} \rangle \neq 0, \\
&\text{(ii)} \quad \langle x^{(m)}, \Lambda^{(m)} \rangle = 0, \\
\end{align*}
\]

(a') \(M \) has property \(D_{(r)} \).

(b') Same as (b) with \(M^{(J)} \) replacing \(M^J \).

Then we have \((a) \Leftrightarrow (b), (a') \Leftrightarrow (b') \) and \((b) \Rightarrow (b') \) (thus \((a) \Rightarrow (b') \)).

Proof. The equivalences \((a) \Leftrightarrow (b), (a') \Leftrightarrow (b') \) follow from Proposition 1.2. The implication \((b) \Rightarrow (b') \) is trivial since \(M^{(J)} \subset M^J \).

Corollary 2.8. Let \(G_r \) denote any one of the properties \(A_r \), \(D_r \), \(D_{(r)} \).

(i) Let \(N \) be a submodule of \(M \). If \(M \) has \(G_r \) so does \(N \).

(ii) If \(M_1, M_2 \) are any two modules having \(G_r \) so does \(M_1 \oplus M_2 \).

Example 2.9. In \(\text{mod-Z} \) the sequence \(0 \rightarrow Q^J \rightarrow Q^J \rightarrow Q^J / Q^{(I)} \rightarrow 0 \) is split exact and hence pure-exact with respect to any family of modules. In particular, \(Q \) has property \(P_r \) for every cardinal \(r \). However, we will show that \(Q \) does not have \(A_{\nu r} \). Let \(\lambda^{(k)} \in Q^N \), \(\lambda^{(k)} \in Z^{(N)} \) be defined by \(\lambda^{(k)} = (\lambda^{(k)}_n)_{n \geq 1} \) where

\[
\lambda^{(k)}_n = \begin{cases}
(-1)^{n+1}(n + 1) & \text{for } n \leq 2k, \\
0 & \text{for } n > 2k
\end{cases}
\]

for all \(k \geq 1 \); \(\lambda^{(1)} = (1/n + 3)_{n \geq 1} \) and \(\lambda^{(k)} = (a^{(k)}_n) \) where

\[
a^{(k)}_n = \begin{cases}
\frac{1}{n + 1} & \text{for } n \leq 2k - 2, \\
\frac{1}{n + 3} & \text{for } n \geq 2k - 1
\end{cases}
\]
for \(k \geq 2 \). Then \(\langle \mathbf{a}^{(l)}, \mathbf{b}^{(k)} \rangle = 0 \) for all \(l > k \geq 1 \) and \(\langle \mathbf{a}^{(k)}, \mathbf{b}^{(k)} \rangle \neq 0 \) for all \(k \geq 1 \). Hence by Proposition 2.6, \(Q \) does not have \(A_{r \geq 0} \).

Example 2.10. Since \(A_k = P_k \) it follows from Corollary 2.8 that \(P_k \) is a hereditary property. However, for an infinite cardinal \(r \), \(P_r \) is not hereditary. In mod-\(Z \), \(Q \) has \(P_r \) for all \(r \). But \(Z \) does not have \(P_{\geq r} \). Let \(p \) be any prime and \(u^{(k)} \in Z^n \) be defined by \(u^{(k)}_n = 0 \) if \(n \leq k - 1 \). Let \(\mathbf{v} : Z^n \to Z^n/\mathbb{Z}^{(N)} \) denote the quotient map. If \(v^{(k)}(\mathbf{u}^{(k)}) \) then \(pv^{(k+1)} = v^{(k)} \cdot f \) for all \(k \). Let \(\Gamma \) denote the subgroup of \(Q \) consisting of elements of the form \(m/p^r \) with \(m \in Z, r \geq 1 \). There exists a unique homomorphism \(f : \Gamma \to Z^n/\mathbb{Z}^{(N)} \) satisfying \(f(1) = v^{(1)}, f(1/p^k) = v^{(k+1)}. \) However, \(\text{Hom}(\Gamma, Z^n) = 0. \)

Remark 2.11. Suppose \(R \) is a commutative ring. Using Proposition 1.3, it is easily seen that any artinian (resp. noetherian) module \(M \) has property \(A_k \) (resp. \(D_k \)) for all \(k \geq 1 \). In particular, in mod-\(Z \), the modules \(M_n = Z/p^n Z \) have both \(A_k \) and \(D_k \). If \(M = \bigoplus_{n \geq 1} M_n, \) then \(pZ \supset p^2Z \supset \cdots \) is a strict descending chain in \(\mathscr{F}_1(M) \). Thus \(M \) does not have \(D_1. \)

Remark 2.12. Let \(R = \prod_{j \in J} K_j \) be the direct product of infinitely many fields. Then each \(K_j \) as an \(R \)-module has property \(A_k \) for all \(k \). However, \(M = \bigoplus_{j \in J} K_j, \) does not have property \(A_1. \)

Remarks 2.11 and 2.12 show that 2.8(ii) cannot be generalized to infinite direct sums (hence by 2.8(i) to infinite direct products of modules as well). The following result is essentially due to C. Faith [4].

Proposition 2.13. The following conditions on a ring \(R \) are equivalent.

(a) Every injective module has property \(A_1. \)
(b) Every module has property \(A_1. \)
(c) \(R \) is noetherian.
(d) Every module has property \(A_k \) for all \(k \geq 1. \)

Proof. (a) \(\Rightarrow \) (b) is immediate from 2.8(i), since every module is a submodule of an injective module.

(b) \(\Rightarrow \) (c): Let \(\mathcal{H} \) denote the family of all (right) ideals of \(R \) and \(M = \bigoplus_{L \in \mathcal{H}} R/L. \) Then \(\mathcal{F}_1(M) = \mathcal{H}. \)

(c) \(\Rightarrow \) (d): When \(R \) is noetherian, \(R^k \) is noetherian. Hence \(\mathcal{F}_k(M) \) has the a.c.c. for any \(M \in \text{mod}-R. \)

(d) \(\Rightarrow \) (a) is trivial.

Proposition 2.14. The following conditions on a ring \(R \) are
equivalent.

(a) Every injective module has property D_t.
(b) Every module has property D_x.
(c) R is artinian.
(d) Every module has property D_k for all $k \geq 1$.

The proof is similar to that of Proposition 2.13 and hence omitted.

REMARK 2.15. Let M be a module having the property A_x. Then by Faith's theorem [4], if M is injective, then it is Σ-injective (namely, $M(I)$ is injective for every set I). In particular, $M(I)$ is a direct summand of M' for any set I. However, this property does not characterize injective modules among modules having A_x. Let R be a left artinian ring which is not self-injective. Then by Proposition 3 of Lenzing [6] it follows that $R(I)$ is a direct summand of R' for all I. But R is not injective.

3. Behavior under base extension. Let R be a subring of S, $M \in \text{mod-}R$ and $M' = M \otimes_R S \in \text{mod-}S$. J denotes a set with $|J| = r$.

THEOREM 3.1. Suppose $\text{Tor}_r^S(M, S/R) = 0$. If M' has property $A_{(r)}$ (resp. $D_{(r)}$), then so does M.

Proof. We will prove this for $A_{(r)}$ (the proof for $D_{(r)}$ is similar and hence omitted). If M does not have $A_{(r)}$, there exist sequences $x^{(m)} \in M(J)$ and $\lambda^{(m)} \in R(J)$ such that $\langle x^{(m)}, \lambda^{(n)} \rangle \neq 0$ and $\langle x^{(m)}, \lambda^{(n)} \rangle = 0$ for $m > n \geq 1$. Let $y^{(n)} = x^{(m)} \otimes 1 \in M(J) \otimes S = M'(J)$. Regarding $\lambda^{(n)}$ as elements of $S(J)$ we have

$$\langle y^{(m)}, \lambda^{(n)} \rangle = \langle x^{(m)} \otimes 1, \lambda^{(n)} \rangle = \langle x^{(m)}, \lambda^{(n)} \rangle \otimes 1 \in M'.$$

When $\text{Tor}_r^S(M, S/R) = 0$, the map $u \mapsto u \otimes 1$ of M in M' is injective. Hence $\langle y^{(n)}, \lambda^{(n)} \rangle \neq 0$ and $\langle y^{(m)}, \lambda^{(n)} \rangle = 0$ for $m > n \geq 1$. This means M' does not have $A_{(r)}$.

REMARK 3.2. In general $M' \otimes S \neq (M \otimes S)'$. If S is finitely presented as a (left) R-module we can identify $M' \otimes S$ with $(M \otimes S)'$. In this case the analogue of Theorem 3.1 is valid for the property D_r as well.

PROPOSITION 3.3. Suppose R is a subring of a noetherian (resp. artinian) ring S. Then any $M \in \text{mod-}R$ with $\text{Tor}_r^S(M, S/R) = 0$ has property A_k (resp. D_k).

Proof. Immediate consequence of Propositions 2.13, 2.14 and
Theorem 3.1.

COROLLARY 3.4. Let R be a subring of a ring S and let S/R be flat as a left R-module (equivalently, let S be a faithfully flat left R-module). If S is right noetherian (artinian), then R is right noetherian (artinian).

This corollary is actually proved in § 3, No. 5, Chap. I, of [2] by different methods.

PROPOSITION 3.5. Let R be a von Neumann regular ring. Then R is semi-simple \iff R has A_1.

Proof. Immediate consequence of Proposition 2.6 and the well-known fact that a regular ring R is semi-simple \iff there does not exist an infinite family of orthogonal idempotents.

4. Behavior of $\text{Hom}_R(S, M)$. Unless otherwise mentioned we consider the following situation. R is a subring of S and $i: R \to S$ denotes the inclusion. We assume that there exists an augmentation $\epsilon: S \to R$ (namely, a ring homomorphism satisfying $\epsilon \circ i = \text{Id}_R$). Let $K = \ker \epsilon$ be the augmentation ideal in S. Then as an R-module we have $S = R \oplus K$. Moreover, $SK = K = KS$. In particular, $RK \subset K$. In what follows J denotes a set with $|J| = r$.

LEMMA 4.1. Let $\{u^{(n)}_j\}$ be any family of elements of $R^{(J)}$. Let N be the R-submodule of $R^{(J)}$ generated by $\{u^{(n)}_j\}$ and V the S-submodule of $S^{(J)}$ generated by $\{u^{(n)}_j\}$.

Then $V \cap R^{(J)} = N$.

Proof. Clearly $V \cap R^{(J)} \supset N$. Let $l = \sum u^{(n)}_j s_j \in V \cap R^{(J)}$ with $s_j \in S$ (and $s_j = 0$ for almost all j). Let $s_j = r_j + t_j$ with $r_j \in R$, $t_j \in K$. If $u^{(n)}_j = (u^{(n)}_j)_j \in J$ we have $u^{(n)}_j \cdot t_j = (u^{(n)}_j t_j)_j \in J$. Since $RK \subset K$, it follows that $u^{(n)}_j t_j \in K$ for each $j \in J$. Hence $u^{(n)}_j t_j \in K^{(J)}$. As an R-module we have $S^{(J)} = R^{(J)} \oplus K^{(J)}$ and the element l of $R^{(J)}$ has the representation $(\sum \mu u^{(n)}_j r_j) + (\sum \mu u^{(n)}_j t_j)$ with $\sum \mu u^{(n)}_j r_j \in R^{(J)}$ and $\sum \mu u^{(n)}_j t_j \in K^{(J)}$. It follows that $l = \sum \mu u^{(n)}_j r_j$. In other words, $l \in N$. Thus $V \cap R^{(J)} \subset N$.

Let Γ_r (resp. Γ'_r) dedote the class of R-submodules of $S^{(J)}$ of the form $R^{(J)} + V$ where V is an S-submodule of $S^{(J)}$ generated by finitely many (resp. countably many) element of $R^{(J)}$.

THEOREM 4.2. Suppose $M \in \text{mod-}R$ satisfies $\text{Ext}_R^1(S^{(J)}/L, M) = 0$ for any $L \notin \Gamma_r$ (resp. Γ'_r). Let $M' = \text{Hom}_R(S, M)$. If M' has A_n
Proof. We prove the theorem only for A_r. The proof for D_r is similar and hence omitted. Suppose M does not have A_r. Then there exist $x^{(n)} \in M^J$, $\lambda^{(n)} \in R^{(j)}$ with $\langle x^{(n)}, \lambda^{(n)} \rangle \neq 0$ and $\langle x^{(m)}, \lambda^{(m)} \rangle = 0$ for $m > n \geq 1$. We identify M^J with $\text{Hom}_R(S^{(j)}, M)$. An element $x \in M^J$ corresponds to the homomorphism $\alpha_x : R^{(j)} \to M$ given by $\alpha_x(\lambda) = \langle x, \lambda \rangle$. For $n \geq 2$ let V_n be the S-submodule of $S^{(j)}$ generated by $\lambda^{(1)}, \ldots, \lambda^{(n-1)}$ and L_n the R-submodule of $R^{(j)}$ generated by $\lambda^{(1)}, \ldots, \lambda^{(n-1)}$. From Lemma 4.1 we get $L_n = V_n \cap R^{(j)}$. Denote the map $\alpha_n : R^{(j)} \to M$ by $f^{(n)}$. Then $f^{(n)}(L_n) = 0$. If $g^{(n)} : R^{(j)} + V_n \to M$ is defined by $g^{(n)}(u + v) = f^{(n)}(u)$ for any $u \in R^{(j)}$, $v \in V_n$, then using the facts that $V_n \cap R^{(j)} = L_n$ and that $f^{(n)}(L_n) = 0$, it can easily be shown that $g^{(n)}$ is a well-defined R-homomorphism. Clearly $R^{(j)} + V_n \in \Gamma_r$. By assumption, $\text{Ext}^{1}(S^{(j)}/R^{(j)} + V_n, M) = 0$. It follows that $g^{(n)}$ can be extended to an R-homomorphism $h^{(n)} : S^{(j)} \to M$. Under the usual identification of $\text{Hom}_R(S^{(j)}, M)$ with $\text{Hom}_R(S, M)' = M'$ let $h^{(n)}$ correspond to the element $h^{(n)} = (h_i^{(n)}) \in M'$ with $h_i^{(n)} \in M'$. Then the element $\langle h^{(n)}, \lambda^{(1)} \rangle \in M' = \text{Hom}_R(S, M)$ satisfies $\langle h^{(n)}, \lambda^{(i)} \rangle(s) = \sum_j h_j^{(n)}(\lambda_j^{(i)})s \in M$ for every $s \in S$. But $\langle h^{(n)}, \lambda^{(i)} \rangle(1) = \sum_j h_j^{(n)}(\lambda_j^{(i)})s$. Since $h_k^{(n)}/V_n = 0$, it follows that $\langle h^{(n)}, \lambda^{(i)} \rangle(s) = 0$ for $1 \leq i \leq n - 1$. In other words, $\langle h^{(n)}, \lambda^{(i)} \rangle(s) = 0$ for $s \in S$ whenever $1 \leq i \leq n - 1$. Hence $\langle h^{(n)}, \lambda^{(1)} \rangle = 0$ in M' for $1 \leq i \leq n - 1$. Also $\langle h^{(n)}, \lambda^{(i)} \rangle(1) = f^{(n)}(\lambda^{(i)}) = \langle x^{(n)}, \lambda^{(i)} \rangle \neq 0$. Thus M' does not have A_r.

Let M be an injective module in mod-R. Then $M' = \text{Hom}_R(S, M)$ is injective in mod-S [Proposition 1.4, § 1, Chap. VI, [3]].

Corollary 4.3. With the same conventions as at the beginning of this section, let $M \in \text{mod-}R$ be injective. If M' is Σ-injective in mod-S, then so is M in mod-R.

Proof. This is because an injective module is Σ-injective if and only if it has A_r.

Remark 4.4. Theorem 4.2 and Corollary 4.3 are not valid for an arbitrary ring S containing R as a subring. For instance, let R be a non-noetherian integral domain and S its quotient field. Since R is non-noetherian, there exists an injective module $M \in \text{mod-}R$ which is not Σ-injective. However, since S is a field, $M' = \text{Hom}_R(S, M)$ is Σ-injective in mod-S.

Remark 4.5. Let R be any ring and \mathfrak{A} a two-sided ideal of R. Let $f : R / \mathfrak{A} \to R / \mathfrak{A}$ be the canonical quotient map. Let $E \in \text{mod-}R$ and $E' = \{ x \in E \mid x\mathfrak{A} = 0 \} \cong \text{Hom}_R(R / \mathfrak{A}, E) \in \text{mod-}R / \mathfrak{A}$. Suppose E' does not
have \(A_i \) in mod-\(R/\mathfrak{U} \). Then there exist \(x^{(m)} \in E' \) and \(\lambda^{(m)} \in R \) such that \(x^{(m)}f(\lambda^{(m)}) \neq 0 \) and \(x^{(m)}f(\lambda^{(m)}) = 0 \) for \(m > n \geq 1 \). But \(x^{(m)}\lambda^{(i)} = x^{(m)}f(\lambda^{(i)}) \).

Thus \(x^{(m)}\lambda^{(m)} \neq 0 \) and \(x^{(m)}\lambda^{(m)} = 0 \) for \(m > n \geq 1 \). Since \(x^{(m)} \in E \) it follows that \(E \) does not have \(A_i \). Now if \(E \) is \(R \)-injective, then \(E' \) is \(R/\mathfrak{U} \)-injective. By the argument above if \(E \) is \(\Sigma \)-injective, then so is \(E' \) in mod-\(R/\mathfrak{U} \). Since \(E' = \{ x \in E' | x\mathfrak{U} = 0 \} \) this last fact can also be seen directly.

5. Arbitrary family \(M_\alpha \). Let \(\{ M_\alpha \}_{\alpha \in I} \) be any family of modules. For any \(k \)-tuple \((\varphi^{(1)}, \ldots, \varphi^{(k)}) \) with \(\varphi^{(i)} \in \Pi M_\alpha \) let \(T_{\varphi^{(1)}, \ldots, \varphi^{(k)}} = \{ (\lambda^{(1)}, \ldots, \lambda^{(k)}) \in R^k | \sum_{i=1}^k \varphi^{(i)}\lambda^{(i)} \in \bigoplus M_\alpha \} \).

Definition 5.1. A \(k \)-tuple \((\varphi^{(1)}, \ldots, \varphi^{(k)}) \) with \(\varphi^{(i)} \in \Pi M_\alpha \) is called “special” if there exists a finite subset \(F \) of \(I \) such that \(\sum_{i=1}^k \varphi^{(i)}\lambda^{(i)} = 0 \) for all \(\alpha \in I - F \) and \((\lambda^{(1)}, \ldots, \lambda^{(k)}) \in T_{\varphi^{(1)}, \ldots, \varphi^{(k)}} \). Here \(\varphi^{(i)} = (\varphi^{(i)}_{\alpha \in I}) \).

For any integer \(k \geq 1 \) the following result is the analogue of Proposition 2.6. Its proof is practically similar to that of Proposition 2.6 and hence is omitted.

Proposition 5.2. Let \(\{ M_\alpha \}_{\alpha \in I} \) be any family of \(R \)-modules and \(k \) an integer \(\geq 1 \). Then the following statements are equivalent.

(a) Each \(k \)-tuple \((\varphi^{(1)}, \ldots, \varphi^{(k)}) \) of elements from \(\Pi M_\alpha \) is special.

(b) For every countable infinite subset \(X \) of \(I \) and any enumeration of \(X \), there do not exist families of elements \((x^{(i)}_{\mu \in X}), \ldots, (x^{(k)}_{\mu \in X}) \) in \(\Pi_{\mu \in X} M_\mu \) and \((\lambda^{(i)}_{\mu \in X}), \ldots, (\lambda^{(k)}_{\mu \in X}) \) in \(R^X \) satisfying

\[
\begin{align*}
(i) & \quad \sum_{i=1}^k x^{(i)}_{\mu} \lambda^{(i)}_{\mu} \neq 0 \quad \text{for all } \mu \in X \\
(ii) & \quad \sum_{i=1}^k x^{(i)}_{\nu} \lambda^{(i)}_{\mu} = 0 \quad \text{for } \nu > \mu \in X.
\end{align*}
\]

(c) The sequence \(0 \to \bigoplus M_\alpha \to \Pi M_\alpha \to \Pi M_\alpha / \bigoplus M_\alpha \to 0 \) is pure-exact with respect to \(\mathcal{E}_k \).

(d) For every countable subset \(X \) of \(I \) the sequence \(0 \to \bigoplus_{\mu \in X} M_\mu \to \Pi_{\mu \in X} M_\mu \to \Pi_{\mu \in X} M_\mu / \bigoplus_{\mu \in X} M_\mu \to 0 \) is pure-exact with respect to \(\mathcal{E}_k \).

(e) For any \(L \subset R^k \) and \(f: R^k \to \Pi M_\alpha \) with \(f(L) \subset \bigoplus M_\alpha \) there exists a \(g: R^k \to \bigoplus M_\alpha \) satisfying \(g/L = f/L \).

References

Received March 1, 1977. Research done while the second author was spending part of his sabbatical leave at the Tata Institute of Fundamental Research, Bombay. The hospitality extended to him by the T.I.F.R. and support from NRC grant A8225 are gratefully acknowledged.

Tata Institute of Fundamental Research
Homi Bhabha Road, Bombay 400 005, India

AND

The University of Calgary
Calgary, Alberta, Canada T2N 1N4
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

C. W. CURTIS
University of Oregon
Eugene, OR 97403

C. C. MOORE
University of California
Berkeley, CA 94720

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. FINN AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazuo Anzai and Shiro Ishikawa, On common fixed points for several continuous affine mappings</td>
<td>1</td>
</tr>
<tr>
<td>Bruce Alan Barnes, *When is a representation of a Banach *-algebra Naimark-related to a -representation</td>
<td>5</td>
</tr>
<tr>
<td>Richard Dowell Byrd, Justin Thomas Lloyd, Franklin D. Pedersen and James Wilson Stepp, Automorphisms of the semigroup of finite complexes of a periodic locally cyclic group</td>
<td>27</td>
</tr>
<tr>
<td>Donald S. Coram and Paul Frazier Duvall, Jr., Approximate fibrations and a movability condition for maps</td>
<td>41</td>
</tr>
<tr>
<td>Kenneth R. Davidson and Che-Kao Fong, An operator algebra which is not closed in the Calkin algebra</td>
<td>57</td>
</tr>
<tr>
<td>Garret J. Etgen and James Pawlowski, A comparison theorem and oscillation criteria for second order differential systems</td>
<td>59</td>
</tr>
<tr>
<td>Philip Palmer Green, C-algebras of transformation groups with smooth orbit space</td>
<td>71</td>
</tr>
<tr>
<td>Charles Allen Jones and Charles Dwight Lahr, Weak and norm approximate identities are different</td>
<td>99</td>
</tr>
<tr>
<td>G. K. Kalisch, On integral representations of piecewise holomorphic functions</td>
<td>105</td>
</tr>
<tr>
<td>Y. Kodama, On product of shape and a question of Sher</td>
<td>115</td>
</tr>
<tr>
<td>Heinz K. Langer and B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space</td>
<td>135</td>
</tr>
<tr>
<td>Albert Edward Livingston, On the integral means of univalent, meromorphic functions</td>
<td>167</td>
</tr>
<tr>
<td>Wallace Smith Martindale, III and Susan Montgomery, Fixed elements of Jordan automorphisms of associative rings</td>
<td>181</td>
</tr>
<tr>
<td>R. Kent Nagle, Monotonicity and alternative methods for nonlinear boundary value problems</td>
<td>197</td>
</tr>
<tr>
<td>Richard John O’Malley, Approximately differentiable functions: the r topology</td>
<td>207</td>
</tr>
<tr>
<td>Mangesh Bhalchandra Rege and Kalathoor Varadarajan, Chain conditions and pure-exactness</td>
<td>223</td>
</tr>
<tr>
<td>Christine Ann Shannon, The second dual of C(X)</td>
<td>237</td>
</tr>
<tr>
<td>Sin-ei Takahasi, A characterization for compact central double centralizers of C-algebras*</td>
<td>255</td>
</tr>
<tr>
<td>Theresa Phillips Vaughan, A note on the Jacobi-Perron algorithm</td>
<td>261</td>
</tr>
<tr>
<td>Arthur Anthony Yanushka, A characterization of PSp(2m, q) and PΩ(2m + 1, q) as rank 3 permutation groups</td>
<td>273</td>
</tr>
</tbody>
</table>