A CHARACTERIZATION FOR COMPACT CENTRAL DOUBLE CENTRALIZERS OF C*-ALGEBRAS

Sin-ei Takahasi
A CHARACTERIZATION FOR COMPACT CENTRAL DOUBLE CENTRALIZERS ON C^*-ALGEBRAS

SIN-EI TAKAHASI

The purpose of this note is to give a characterization for compact central double centralizers on any C^*-algebra A in view of the Dixmier's representation theorem of central double centralizers on A. The proof makes use of the Urysohn's lemma for spectra of C^*-algebras and algebraic properties of a central double centralizer.

Throughout the note, A denotes a C^*-algebra. Let $\text{Prim } A$ denote the structure space of A, that is the set of all primitive ideals of A, with the hull-kernel topology. Let $M(A)$ denote the double centralizer algebra of A and $Z(M(A))$ the center of $M(A)$. Busby [1] has noted that the algebra $C^0(\text{Prim } A)$ of all bounded continuous complex-valued functions on $\text{Prim } A$ can be canonically identified with $Z(M(A))$, which is equivalent with a result of Dixmier ([5], Theorem 5). Moreover, we can regard the algebra $Z(M(A))$ as the algebra of all bounded linear operators T on A such that $(Tx)y = x(Ty)$ for all $x, y \in A$. In its final form, this identification Φ between $Z(M(A))$ and $C^0(\text{Prim } A)$ can be described as follows: If $T \in Z(M(A))$, then $Ta + P = \Phi(T)(a + P)$ for all $a \in A$ and $P \in \text{Prim } A$, where $a + P$ for $P \in \text{Prim } A$ denotes the canonical image of a in A/P (Dauns and Hofmann theorem [3] shows that every functions in $C^0(\text{Prim } A)$ can be realized uniquely in this way).

We will characterize the set of all compact central double centralizers on A in view of this representation theorem of $Z(M(A))$. Our characterization is similar to ones established by Kellogg [6] and Ching and Wong [2] for H^*-algebras, and this is also a generalization of one proved by Rowlands [7] for dual B^*-algebras.

Let $Z_c(M(A))$ denote the compact central double centralizers on A. If $LC(A)$ is the algebra of all compact operators on A, then $Z_c(M(A)) = Z(M(A)) \cap LC(A)$, so that $Z_c(M(A))$ is a closed ideal of $Z(M(A))$. Let I_c be the set of all functions f in $C^0(\text{Prim } A)$ such that for any closed compact subset K in $\text{supp } (f)$, A/I_K is finite dimensional. Here $\text{supp } (f)$ denotes the set of all $P \in \text{Prim } A$ such that $f(P) \neq 0$, and I_K denotes a closed two-sided ideal of A with $\text{Prim } (A/I_K) \simeq K$ (cf. [4], §3.2). Note that if K is the empty set, then A/I_K is zero-dimensional, so that I_c contains the zero function. Now I_c is a closed ideal in $C^0(\text{Prim } A)$. For since $\text{supp } (f) \supset \text{supp } (fg)$ for each f, g in $C^0(\text{Prim } A)$, I_c is an ideal in $C^0(\text{Prim } A)$. Let $\{ f_n \}$ be a sequence of functions in I_c which converges uniformly...
to a function f in $C^b(\text{Prim } A)$. Let K be any nonempty closed compact subset in $\text{supp } (f)$. Set

$$\delta = \inf \{ |f(P)| : P \in K \} .$$

Then $\delta > 0$ and $\| f_N - f \| < \delta$ for sufficiently large number N. This implies $K \subseteq \text{supp } (f_N)$. Then A/I_K is finite dimensional since $f_N \in I_c$. Hence $f \in I_c$ and so I_c is uniformly closed. Let $C_0(\text{Prim } A)$ be the set of all bounded continuous complex-valued functions on $\text{Prim } A$ which vanish at infinity. Let $I_{c_0} = I_c \cap C_0(\text{Prim } A)$. Then I_{c_0} is a closed ideal of $C^b(\text{Prim } A)$.

We now show that these ideals $Z_c(M(A))$ and I_{c_0} can be canonically identified and thus obtain a characterization for $Z_c(M(A))$.

Theorem 1. $Z_c(M(A))$ is isometrically *-isomorphic to I_{c_0}.

To show the above theorem, we need the following Urysohn’s lemma for arbitrary C^*-algebras.

Lemma 2 ([8], Theorem). Let \hat{A} be the spectrum of A and let S_1, S_2 be two nonempty closed subsets in \hat{A}. Then the following two conditions are equivalent

(i) $S_1 \cap S_2 = \emptyset$.

(ii) For any element $a \geq 0$ in A there exists an element x in A such that $0 \leq x \leq a$, $\pi(x) = 0$ for all $\pi \in S_1$, and $\pi(x) = \pi(a)$ for all $\pi \in S_2$.

Proof of Theorem 1. Let Φ be the canonical *-isomorphism of $Z(M(A))$ onto $C^b(\text{Prim } A)$ as be stated above. We will show that $\Phi(Z_c(M(A))) = I_{c_0}$ going through three steps.

(I) $\Phi(Z_c(M(A))) \supset I_{c_0}$. Let $f \in I_{c_0}$ and $\varepsilon > 0$ be chosen arbitrarily. Set

$$K_\varepsilon = \{ P \in \text{Prim } A : |f(P)| \geq \varepsilon \}$$

and

$$F_\varepsilon = \{ P \in \text{Prim } A : |f(P)| \leq \varepsilon/2 \} .$$

Let $\{ u_\lambda \}$ be a positive approximate identity for A (in the sense of Appendix B29 in [4]). By Lemma 2, for each λ there exists an element $x_{\lambda, \varepsilon}$ in A such that $0 \leq x_{\lambda, \varepsilon} \leq u_\lambda$, $x_{\lambda, \varepsilon} + P = u_\lambda + P$ for all $P \in K$, and $x_{\lambda, \varepsilon} + P = 0$ for all $P \in F_\varepsilon$. Set $T = \Phi^{-1}(f)$, so that T is a central double centralizer on A. Moreover, set

$$T_{\lambda, \varepsilon}(a) = T(x_{\lambda, \varepsilon} a)$$

for each λ and $a \in A$. Then $T_{\lambda, \varepsilon}$ is a bounded linear operator on A.
We will show that $T_{x,\varepsilon}$ is an element of $LC(A)$. Let $\text{supp}(T_{x,\varepsilon})$ be the set of all $P \in \text{Prim} A$ such that $T_{x,\varepsilon} \in P$. Since $T_{x,\varepsilon} \in T(P) \subset P$ for all $P \in F_{i}$, we have F_{i} is included $\text{Prim} (A) \setminus \text{supp}(T_{x,\varepsilon})$. This implies that

$$\text{cl} (\text{supp} (T_{x,\varepsilon})) \subset \text{cl} (\text{Prim} (A) \setminus F_{i}) \subset K_{\varepsilon/2},$$

where cl denotes closure in the hull-kernel topology. Since $K_{\varepsilon/2}$ is compact, it follows that $\text{cl} (\text{supp} (T_{x,\varepsilon}))$ is a closed compact subset in $\text{supp} (f)$. Let $I_{x,\varepsilon}$ is a closed two-sided ideal of A such that $\text{Prim} (A/I_{x,\varepsilon}) \cong \text{cl} (\text{supp} (T_{x,\varepsilon}))$. Then $A/I_{x,\varepsilon}$ is finite dimensional since $f \in I_{\varepsilon}$. Let $\{a_{n}\}$ be a sequence of A with $\|a_{n}\| \leq 1$ for all $n = 1, 2, \cdots$. Then $\{a_{n} + I_{x,\varepsilon}\}$ is also a bounded sequence in $A/I_{x,\varepsilon}$, so that there exists a convergent subsequence $\{a_{n_{j}} + I_{x,\varepsilon}\}$. We now have

$$\|T_{x,\varepsilon}(a_{n_{j}}) - T_{x,\varepsilon}(a_{n_{k}})\| = \sup \{\|T_{x,\varepsilon}(a_{n_{j}} - a_{n_{k}}) + P\| : P \in \text{Prim} A\}$$

$$= \sup \{\|T_{x,\varepsilon} + P(a_{n_{j}} - a_{n_{k}} + P)\| : P \in \text{cl} (\text{supp} (T_{x,\varepsilon}))\}$$

$$\leq \sup \{\|T\| \|a_{n_{j}} - a_{n_{k}} + P\| : P \in \text{cl} (\text{supp} (T_{x,\varepsilon}))\}$$

$$= \|T\| \|a_{n_{j}} + I_{x,\varepsilon} - (a_{n_{k}} + I_{x,\varepsilon})\|$$

for all $j, k = 1, 2, \cdots$. Then $\{T_{x,\varepsilon}(a_{n_{j}})\}$ is Cauchy and hence converges in A. Thus $T_{x,\varepsilon}$ is compact for each λ. Now since $f \in I_{\varepsilon}$ and K_{ε} is a closed compact subset in $\text{supp} (f)$, it follows that $A/I_{K_{\varepsilon}}$ is finite dimensional C^{*}-algebra and hence $\{u_{\lambda} + I_{K_{\varepsilon}}\}$ converges to the identity 1_{ε} of $A/I_{K_{\varepsilon}}$. Then there exists a λ_{ε} such that $\|1_{\varepsilon} - (u_{\lambda_{\varepsilon}} + I_{K_{\varepsilon}})\| < \varepsilon$. Set $T_{\varepsilon} = T_{x,\varepsilon}$ and $x_{\varepsilon} = x_{x,\varepsilon}$. For any $a \in A$ we further set

$$\alpha = \sup \{\|T(a - x_{\varepsilon}a) + P\| : P \in K_{\varepsilon}\},$$

$$\beta = \sup \{\|T(a - x_{\varepsilon}a) + P\| : P \in \text{Prim} (A) \setminus K_{\varepsilon}\}. $$

Since $x_{\varepsilon} + P = u_{\varepsilon} + P$ for all $P \in K_{\varepsilon}$, we have

$$\alpha = \sup \{\|T(a + P) - (u_{\varepsilon} + P)(T_{\varepsilon}a + P)\| : P \in K_{\varepsilon}\}$$

$$= \|1_{\varepsilon} - (u_{\lambda_{\varepsilon}} + I_{K_{\varepsilon}})(T_{\varepsilon}a + I_{K_{\varepsilon}})\|$$

$$\leq \|T_{\varepsilon}\| \varepsilon.$$

We further have

$$\beta = \sup \{|f(P)| \|a - x_{\varepsilon}a\| + P\| : P \in \text{Prim}(A) \setminus K_{\varepsilon}\}$$

$$\leq (\|a\| + \|u_{\varepsilon}\| \|a\|) \varepsilon$$

$$\leq 2 \|a\| \varepsilon.$$
Therefore \(\| T\alpha - T_x\alpha \| \leq \alpha + \beta \leq (\| T\alpha \| + 2 \| \alpha \|)\varepsilon \) for all \(\alpha \in A \), so that \(\| T - T_x \| \leq (\| T \| + 2)\varepsilon \). Since \(T \) is compact and \(\varepsilon \) is arbitrary, \(T \) is also compact and (I) is proved.

(II) \(\Phi(Z_c(M(A))) \subseteq I_c \). Let \(f \in \Phi(Z_c(M(A))) \) and \(T \in Z_c(M(A)) \) with \(f = \Phi(T) \). Suppose that \(f \notin I_c \), so that there exists a non-empty closed compact subset \(K \) in \(\text{supp}(f) \) such that \(A/I_K \) is infinite dimensional. Then there exist elements \(a_\alpha \) in \(A \) such that
\[
\| a_n + I_K \| = 1 \quad (n = 1, 2, \ldots) \quad \text{and} \quad \| (a_n + I_K) - (a_m + I_K) \| \geq 1/2 \quad (n \neq m).
\]
We can assume that \(\| a_n \| \leq 2 \quad (n = 1, 2, \ldots) \). Set
\[
\delta = \inf \{ \| f(P) \| : P \in K \}.
\]
Then \(\delta > 0 \) since \(K \) is compact and we have
\[
\| T\alpha_n - T\alpha_m \| \geq \sup \{ \| f(P) \| \| (a_n - a_m) + P \| : P \in K \} \\
\geq \sup \{ \| (a_n - a_m) + P \| \delta : P \in K \} \\
= \| (a_n + I_K) - (a_m + I_K) \| \delta \\
\geq \delta/2
\]
for all distinct numbers \(n, m \). Then \(\{ T\alpha_n \} \) contains no convergent subsequence. But this is impossible since \(T \) is compact and (II) is proved.

(III) \(\Phi(Z_c(M(A))) \subseteq C_0(\text{Prim } A) \). Let \(T \in Z_c(M(A)) \) and \(\varepsilon > 0 \). Set
\[
f = \Phi(T) \quad \text{and} \quad K_\varepsilon = \{ P \in \text{Prim } A : |f(P)| \geq \varepsilon \}.
\]
We only show that \(K_\varepsilon \) is compact. Let \(I_{K_\varepsilon} \) be a closed two-sided ideal of \(A \) with \(\text{Prim } (A/I_{K_\varepsilon}) \simeq K_\varepsilon \), as he stated above. Suppose that \(A/I_{K_\varepsilon} \) is infinite dimensional. Then, as in the proof of (II), there exist elements \(a_\alpha \) in \(A \) such that
\[
\| a_n \| \leq 2, \quad \| a_n + I_{K_\varepsilon} \| = 1 \quad (n = 1, 2, \ldots)
\]
and
\[
\| (a_n + I_{K_\varepsilon}) - (a_m + I_{K_\varepsilon}) \| \geq 1/2 \quad (n \neq m).
\]
By the same computation in the proof of (II), we have \(\| T\alpha_n - T\alpha_m \| \geq \varepsilon/2 \), so that \(\{ T\alpha_n \} \) contains no convergent subsequence, which contradicts \(T \) is compact. Thus \(A/I_{K_\varepsilon} \) is a finite dimensional \(C^* \)-algebra. Then \(A/I_{K_\varepsilon} \) can be canonically identified with its enveloping von Neumann algebra. Suppose that \(\text{Prim } (A/I_{K_\varepsilon}) \) contains an infinite countable subset \(\{ P_1, P_2, \ldots \} \). Let \(\pi_i \) be a nonzero irreducible representation of \(A/I_{K_\varepsilon} \) with \(P_i = \text{Ker } \pi_i \) and \(\xi_i \) a norm one element in the Hilbert space associated with \(\pi_i \) for each \(i \). Set
\[
f_i(x + I_{K_\varepsilon}) = (\pi_i(x + I_{K_\varepsilon})\xi_i | \xi_i) \quad (i = 1, 2, \ldots)
\]
for each \(x + I_{K_\varepsilon} \in A/I_{K_\varepsilon} \). Since \(\pi_i \neq \pi_j \) \((i \neq j) \), it follows that \(\| f_i - f_j \| = 2 \) \((i \neq j) \) (cf. [4], 2.12.1). Let \(p_i \) denote the support of \(f_i \) for each \(i \). Then \(\{ p_i \} \) are mutually orthogonal (cf. [4], 12.3.1). But this is impossible since each \(p_i \) is an element in \(A/I_{K_\varepsilon} \) and so
Prim \((A/I_{K_{\varepsilon}})\) is finite set. Then \(K_{\varepsilon}\) is also a finite set, so that it is compact and (III) is proved.

We will next show that a result of Rowlands ([7], Theorem 2) is a special case of Theorem 1. Let \(\Omega(A)\) be the space of minimal closed two-sided ideals of \(A\) with its discrete topology, in case \(A\) is dual. Let \(\{I_i : \lambda \in \Lambda\}\) be the family of all minimal closed two-sided ideals of \(A\) and \(\Lambda_0 = \{\lambda \in \Lambda : I_i\) is infinite dimensional\}. Let \(I_0\) be the set of all functions \(f\) in the algebra \(C^b(\Omega(A))\) of all bounded complex-valued functions on \(\Omega(A)\) such that \(f(I_i) = 0\) for all \(\lambda \in \Lambda_0\); if \(\Lambda_0 = \emptyset\), let \(I_0 = C^b(\Omega(A))\). Let \(C_0(\Omega(A))\) be the subalgebra of \(C^b(\Omega(A))\) which consists of functions vanishing at infinity.

Corollary 3 ([7], Theorem 2). If \(A\) is a dual C*-algebra, then
\[Z_C(M(A)) \text{ is isometrically } *\text{-isomorphic to } I_0 \cap C_0(\Omega(A)).\]

Proof. By ([4], 10.10.6), \(\text{Prim } A\) is discrete. For each \(P \in \text{Prim } A\), we define a function \(\delta_P\) on \(\text{Prim } A\) by the equation: \(\delta_P(P) = 1\) and \(\delta_P(Q) = 0\) if \(Q \neq P\), and set \(\mu(P) = \Phi^{-1}(\delta_P)(A)\). Then we can easily see that \(P \rightarrow \mu(P)\) is a bijection of \(\text{Prim } A\) onto \(\Omega(A)\). Let \(\mu^*\) be the dual map of \(\mu\). Then \(\mu^*\) is a isometric \(*\)-isomorphism of \(C^b(\Omega(A))\) onto \(C^b(\text{Prim } A)\). By the definitions of \(I_0\) and \(I_0\), we see that \(\mu^*(I_0 \cap C_0(\Omega(A))) = I_0\). Set \(\Psi(T) = (\mu^*)^{-1}(\Phi(T))\) for each \(T \in Z_C(M(A))\). Then \(\Psi(Z_C(M(A))) = I_0 \cap C_0(\Omega(A))\) by Theorem 1 and the corollary is proved.

The author wishes to thank the referee for his useful comments.

References

Received October 13, 1976 and in revised form March 10, 1977.

Ibaraki University
Mito, Ibaraki, Japan
Kazuo Anzai and Shiro Ishikawa, *On common fixed points for several continuous affine mappings* ... 1
Bruce Alan Barnes, *When is a representation of a Banach *-algebra Naimark-related to a *-representation* ... 5
Donald S. Coram and Paul Frazier Duvall, Jr., *Approximate fibrations and a movability condition for maps* ... 41
Kenneth R. Davidson and Che-Kao Fong, *An operator algebra which is not closed in the Calkin algebra* ... 57
Garret J. Etgen and James Pawlowski, *A comparison theorem and oscillation criteria for second order differential systems* 59
Philip Palmer Green, *C*-algebras of transformation groups with smooth orbit space ... 71
Charles Allen Jones and Charles Dwight Lahr, *Weak and norm approximate identities are different* ... 99
G. K. Kalisch, *On integral representations of piecewise holomorphic functions* ... 105
Y. Kodama, *On product of shape and a question of Sher* 115
Heinz K. Langer and B. Textorius, *On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space* ... 135
Albert Edward Livingston, *On the integral means of univalent, meromorphic functions* ... 167
Wallace Smith Martindale, III and Susan Montgomery, *Fixed elements of Jordan automorphisms of associative rings* ... 181
R. Kent Nagle, *Monotonicity and alternative methods for nonlinear boundary value problems* ... 197
Richard John O’Malley, *Approximately differentiable functions: the r topology* ... 207
Mangesh Bhalchandra Rege and Kalathoor Varadarajan, *Chain conditions and pure-exactness* ... 223
Christine Ann Shannon, *The second dual of C(X)* ... 237
Sin-ei Takahasi, *A characterization for compact central double centralizers of C*-algebras* ... 255
Theresa Phillips Vaughan, *A note on the Jacobi-Perron algorithm* ... 261
Arthur Anthony Yanushka, *A characterization of PSp(2m, q) and PΩ(2m + 1, q) as rank 3 permutation groups* ... 273