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THERESA P. VAUGHAN

In this paper we give a simple geometric description of
the Jacobi-Perron algorithm, based on the matrix-theoretic
approach to the algorithm. An important advantage of the
geometric description is that it may be used as an aid to
intuition as well as a practical tool. As an illustration, we
prove convergence for a special case,

The theory and procedures of the JPA have been studied from
many different viewpoints (cf. [1] and [3]). We consider here some
of the linear algebra and geometry naturally associated with the
matrix theory of the JPA. :

In particular, for n = 2,3 the procedures of the JPA may be
represented concretely in the Euclidean spaces R?* and R® and the
notion of convergence of the JPA takes on a fairly simple geometrical
meaning.

In §1 we summarize briefly the JPA as described by Bernstein
in [1] (throughout, we use [1] as the standard reference). In §2,
we restate the definitions given in §1 in matrix-theoretic terms.
Based on this, we give a general description of the geometrical
meaning which may be attached to the notion of convergence of the
JPA. In §38 we consider in detail the geometry associated with the
JPA for n = 3. The behavior of a JPA may be represented graph-
ically in this case. (This may be done similarly for » = 2, but the
case » = 8 is far more representative of the general case.) We
conclude with a straightforward, elementary proof of the convergence
of any JPA for a T-function whose values are positive integers, for
the case n = 3.

1. The Jacobi-Perron algorithm (JPA). In this section, we
briefly recall the description of the JPA given in [1], and throughout
this section we use the notation of [1].

Let n be fixed, and let k¥ be a nonnegative integer. The vector
a® in R* ' is defined by

(L.1) a® = (), aff), +--+, alf) .

A transformation T of R"* to itself is defined as follows: suppose
f is a (vector) function on R"' such that

(1.2) f(@®) = b® = (b{¥, b, +- -, b,
and suppose also that a{*’ + b, Then put
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262 THERESA P. VAUGHAN
(1.3) T(@®) = (af” — b{") (@” — b5", - -+, @i, — b2, 1)

fork=0,1,2, ---.

A sequence (a®) = (a, &', a'?, ---)> of vectors in R"! is called
a Jacobi-Perron algorithm of the vector a'®, provided there exists a
transformation T' of R"™* defined as above such that

(1.4) T@@®) =a*™ (k=0,1,2,---),

that is, if we have {(a®) = (T*(a™)>.
With a given JPA (a®) we have the associated functions T and f,
and also families of matrices defined as follows:

A is the n x n identity matrix,

n—1
A(Zn}-v) — Z bgv)A£v+J)(b6v) — aa'v) — 1 ,

=0

i=0,-00,m—1,

v=0,1,-+)
0 cov eus 0 1
1 0 0 b
B =|0 1 0 0 by
0 oo o. 0 1 b2,

These matrices are related by:
APt = AWBY = (A&”“”) (?} =0, 1, %y 7;; .7 =0, 1’ ey M — 1) .

In [1] the properties of the matrices A and B are studied
in some detail, and it is shown how they are related to the JPA.
In the next section we consider some of the geometry which is
naturally associated with these matrices.

2. Matrix theory of the JPA. In this section we use the nota-
tion of the last section for the vectors and matrices of a JPA. We
also employ the following standard notation: If A is an n X n
matrix and v € R*, then, regarding v as a column vector, Av is the
usual matrix product. For emphasis, we may write col (v), indicat-
ing that v is to be regarded as a column vector.

The formula (1.4) may be restated in matrix theoretic terms as
follows. Put

v = eol (1, af, o), -+, a)

(k=0,1,---). Then
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(2.1) e Ep——. T L

a(lk) . bik)

It is clear that we also have

k
p® =[] (@ — b?) X BOB® «.. B® .yt

Jj=0

— ﬁ (a(xj) — b(lj)) X A(k+1) . v(k+1) .

The convergence of a JPA may be described in terms of the
behavior of the column vectors of the matrices A*™., We first
require some notation.

Let X be a vector in R”, say X = (v, %, +++, 2z,). If X is pro-
jected onto the 2, — ; plane, its image is the vector (x,, 2,), which
has polar coordinates (7, 6,) where

= VET G
tang, = i

@,

It is well known that the vector X is completely determined by its
length and the n — 1 angles 4,,6;, ---, 8,. We shall refer to these
angles as the direction angles of X,

The convergence of the JPA may be viewed as convergence of
the direction angles of the column vectors of the matrices A™® of
the given JPA. To be precise: given the sequence {A*®} of a JPA,
for each matrix A%®, let X{¥, X{®, ..., X!¥ be its column vectors.
Let the direction angles of X{* be denoted by '

(k) (k) (k)
ﬁz,i, 03,iy ) 67»,1‘ ’

and let the direction angles of v be 6,, --+, ,. Then the JPA con-
verges provided that, as k— <, we have

{6él,c"2} —_— 02 (7' = 1’ 2’ %y n)
{65} — 6, (1=1,2---,m)

{0;’]‘,1}-—_) ﬁ'n. (7: = 19 27 M) n)

that is, corresponding direction angles of the column vectors of A®
must converge to a common value as k — co.

(The actual definition of convergence given in [1] uses tané
rather than @; it is required that

{tan 6{)} —— tan 6,



264 THERESA P. VAUGHAN

and so on. This is evidently equivalent to the previous description.)
The convergence of the JPA may also be viewed in the following
way. We think of the matrices B as linear transformations of
R®. Suppose for example that all of the b{¥ are nonnegative, and
put
S = {(xu Loy = **y xn)[mz = 0} .

Then B*(S) S and we always have
AP(S)D A*H(S)

If the original vector v = (1, a!®, --., a!,) lies in S, and if it should
happen that

i\A"”(S) ~ L, alein S,

then we must have the direction angles of L equal to the limiting
angles 6,, - -+, 8, described above for a convergent JPA, that is, the
JPA for v converges and L is the line along ».

Conversely, if the JPA for +® converges, for »®@ ¢S (and B*
as described above), then we must have M, A*(S) = L, where L
is the line along »'.

In the next section, we employ a slight modification of this
viewpoint to give a graphical representation of the behavior of a
convergent JPA for the case n = 8.

3. The geometry of a JPA for n = 3. When # = 2 or 3, the
situation can be pictured in R* or R® R® is the more illuminating.
To keep our pictures simple, we shall assume that the T-function
yields only positive integer values, and that the starting vector v
has all nonnegative entries. '

First define six 3 x 3 matrices {E,;|7 = j; 4, 7 = 1, 2, 3} by:

1, r=s
(E'ij)’rs: 1’ ')":j,S:"?:
0 cherwise s

that is, E,; is the result of performing the elementary operation
“add row 7 to row 5’ on the identity matrix I,, We also define

the 3 x 8 matrix T by
0 0 1
T=1{1 00
010

One checks easily that the matrices B® factor as:
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BY = ERET
(where 7,, s, are the positive integers b{*, b*’). One checks that
3.1) E,T = TE,, E,T = TE,, E,T* = T*E,, E,T* = T*E,
and so we may write
(3.2) ESEVTERERTERESRT = Ei ELERERELES .

For our purposes we use, instead of the sequence {B®}, the equiva-
lent sequence {B*'} defined by: for B* = E}ET, put

E}YEY if kE=3m
Bw = E}EY if k=3%m+1
EFEY if kE=3m+ 2
for k=10,1,2, ---.
Let
F,={1,9,2|0=y,z=1}
F,={@ 12|02,z =1}
Fy={,91|0=2y=1}
c ={@, 9, 2|z, v9,2=0},

sothat ¢« is the first octant and the F);, are the three faces of the
unit cube in ~.

A= EE;s

(1,1,1)
1,1,2)— (341
1,21)— %1%
1,2,2)—(,1,1)
FIGURE 1

A(1,0,0)
A(1,0,1)
A1, 1,0)
A(1,1,1)
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Since B’ has nonnegative entries, we have B*(<)c . We
may visualize B*(£”) more easily by looking at the intersection of
B® () with the set F = F,UF,UF,. The effect of T is just a
rotation, and for geometric simplicity we prefer to use the matrices
B® instead of the matrices B*. In Figure 1 we show the effect
of E,E, on & it is a sweep towards the y — z plane (resp. for
E,E, the x — z plane; for E,F,, the 2 — y plane). Figures 2, 3
show the picture for Ej Ej; according to whether » < s or » > s; if
r = 8, the picture is symmetric about the line z = y = 1.

Next, put

Dl = E12E13(ﬁ) nNF
Dz = E21E23(ﬁ) nF
D3 = EzuEsz(ﬁ) NnF.

@]

A= E;IEg‘z
A(1,0,0) = (1,0,0)
A(1,0,1) =(3,8,1)—(1,1,3)

A(1,1,0) =(1,1,0)
AL LD =@41)— @ LD
4(0,0,1) =(2,3,1)— (3,1, %)
A0,1,1)=241)— (LD
4(0,1,0) = (0,1,0)

FIGURE 2
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b m e m e — — Dy,

5: 27 1) i (ly %1 %)

41 2: 1) - (1’ %y '})

/
s/

1 s

1

1 // <

5 //

/
7/
@) 2 I 3 3 S
5 2 5 4
X
A= EglEgz
A(1,0,0) = (1,0,0)
A(1,0,1) = (
A(1,1,0)=(1,1,0)
A(I! 1: 1) = (51 31 1) i (17 %! %)
A(0,0,1) =(
A(0,1,1) = 4,3,1)— (1, 4,1
A(0,1,0) =(0,1,0)
A(0,1,3) =(@1,1,}
FiGgure 3

The sets D, cover F' and have disjoint interior.
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z
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y

n

Sy

Ficure 4
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I
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In Figure 4 we have sketched in the sets D,, D,, D,., One sees in
Figure 2, that E, F, acting on D, produces a plane set in F, which
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is a good deal smaller in its plane dimensions than D,; similarly for
E,E, acting on D,, and E,E, acting on D,.

This observation may be made precise, and used to yield a proof
of convergence of any JPA in this setting (starting vector ¢ in
”; T-function gives positive integers; Theorem 3.5). We indicate
below the motivation for our proof.

Referring to Figure 1 again, we have sketched in a triangle

T3 = {(97, Y, 1>eD1|x g’%}

and in fact, E,ED,) N F =T,. Now E,FE,(D,) N F is contained in
a similar triangle T, on F', so that

R = E12E13(T1) NFcC T3;

we sketch this set in Figure 5.

If we continue to iterate this process, we expect to get nested
sets with diameter decreasing to zero.

Define sets R, by induction on k:

R, = BY2>)NF
R, = (E(mgm vee f;m(ﬁ)) nNF.

Then clearly we have
3.3) RDORDODR,D -

and we may state

THEOREM 3.4. The JPA which gives the sequemce {B*} for a
vector v\ in 7, converges if and only if

,fj,R,, ={P} = {v" N F}
a single point in F, hence if and only if diam R, —0 as k— oo.

Proof. The set R, is a triangle in F' whose vertices, regarded
as vectors in ¢, are multiples of the column vectors of the matrix

BO ... B — A

and when k& = 3m we have A% = A% the k"™ matrix of the JPA.
The first statement [follows from this, the second follows from the
Cantor intersection theorem.

It is possible to show geometrically that diam R,— 0 as &k — co,
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FIGURE 5

thus proving convergence for all such JPA. We indicate briefly
here how such a proof may be carried out.

THEOREM 3.5. For the sets R, defined above, diam B, —0 as

ke — oo,

Proof (Sketch). The matrix A has non-negative integer entries,
and if £ =1, R, lies on one of the sets F,. Write

al bl cl
AP =1 q, b, ¢

a; b, ¢

By the construction of the JPA, A® must have the form (say k =
3m + 2)

A" = EYESERES -« « BByl B By
and from this we have the inequalities

63>Cz>cub3>b2>b1’a3>az>aucs>a3’bs>a’3-
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The column vectors of A® intersected with F, give a triangle on
F,, whose vertices we label @, b, ¢: @ = (a,/a,, @,/a;, 1); b = (b,/bs, b,/bs, 1);
¢ = (eesy €f6yy 1),

Now A®™ = AW E"F, for positive integers r, s; the new triangle
has vertices b, ¢, and

6:<a1+rb1+scl a, + rb, + sc, 1)
a, + b, + 8¢, @, + rb, + sc,

?

u

Y

%y

o

FIGURE 6
The points u,, u, are defined by:
w, = (al + 'rbl’ a, + rbz’ 1>
a, + rb, a; + rb,

_ (al + 8¢, @, + sc, 1>
u2 - ’ ’ .
a; + 8¢; Q3 + SC,

One finds that the ratios of the lengths of collinear segments
are rational; we have:

d(b, u,) a 1 1
3.6 2 = 3 = el
(3.6) d(b, a) a, + rb, 1+fr'_b3<2
Q3
(since b, > a;); and
(3.7) d(e, u,) — Q3 — 1 < l
d(c, @) Qs + 8¢ 14 36 2

(since a, < ¢;). NOW_ the altitude from v to b¢ is less than half the

altitude from @ to be .

After two more steps, the set R*™ is a triangle with altitudes
respectively less than half the altitudes of R* = Jabé. Hence
diam R*— 0 as k — oo, and this completes the proof.

REMARK 1. At the k™ step, the triangle R*'* has a common side
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with the triangle R*; its other two sides are shorter. Thus con-
ceivably we could have diam R* = diam R*"*. The triangle R*™ has
a common side with R*", but not the same as the common side of
R* and R*''; it is this “turning” effect that makes things work out.
In fact, we do have diam R* < diam R*"% our proof could probably
be strengthened along these lines.

In the general case, in R*, we would have nested sets in R*
with diameter converging to zero. The preceding proof would require
that the process be carried out to at least n — 1 steps before one
could say diam R* < ¢ diam R**""* (for some ¢ € (0, 1)).

REMARK 2. The proof outlined above is rather tedious (and the
tedium varies directly with n). It does have the advantage over
the usual proofs given for a JPA, of being easy, elementary, and
involving only rational procedures. It also shows clearly how the
rate of convergence is affected by the exponents r,, s, (formulas (3.6)
and (3.7)).

REMARK 3. Concerning the use of integers in the 7T-function,
we note that a careful examination of Figures 1, 2 and 3 suggests
why a “greatest integer” type of T-function would be valuable.

For example, if we wish to write

v = B} Bttt

it is obviously most efficient to select the “smallest” possible set like
the ones sketched in Figure 2 or 38, containing #»*. One could say
also that the triangles R* are made as small as possible, consistent
with other requirements, by the use of a “greatest integer” T-func-
tion. (In Figure 6, the point v® N F lies in Jabc; one selects 7, s
so that the Jvbc is as small as possible and contains v N F.)
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