A CHARACTERIZATION OF $PSp(2m, q)$ AND $P\Omega(2m + 1, q)$ AS RANK 3 PERMUTATION GROUPS

Arthur Anthony Yanushka
A CHARACTERIZATION OF $PSp(2m, q)$ AND $PΩ(2m+1, q)$
AS RANK 3 PERMUTATION GROUPS

ARTHUR YANUSHKA

This paper characterizes the projective symplectic groups $PSp(2m, q)$ and the projective orthogonal groups $PΩ(2m+1, q)$ as the only transitive rank 3 permutation groups G of a set X for which the pointwise stabilizer of G has orbit lengths $1, q(q^{2m-2} - 1)/(q-1)$ and q^{2m-1} under a relatively weak hypothesis about the pointwise stabilizer of a certain subset of X. A precise statement is

Theorem. Let G be a transitive rank 3 group of permutations of a set X such that the orbit lengths for the pointwise stabilizer are $1, q(q^{-2} - 1)/(q-1)$ and q^{-1} for integers $q>1$ and $r>4$. Let x^i denote the union of the orbits of length 1 and $q(q^{-2} - 1)/(q-1)$. Let $R(xy)$ denote $\{z^i : x, y \in z^i\}$. Assume $R(xy) \neq \{x, y\}$ for $y \in x^i - \{x\}$. Assume that the pointwise stabilizer of $x^i \cap y^j$ for $y \in x^i$ does not fix $R(xy)$ pointwise. Then r is even, q is a prime power and G is isomorphic to either a group of symplectic collineations of projective $(r-1)$ space over $GF(q)$ containing $PSp(r, q)$ or a group of orthogonal collineations of projective r space over $GF(q)$ containing $PΩ(r+1, q)$.

1. Introduction. The projective classical groups of symplectic type $PSp(2m, q)$ for $m \geq 2$ are transitive permutation groups of rank 3 when considered as groups of permutations of the absolute points of the corresponding projective space. Indeed the pointwise stabilizer of $PSp(2m, q)$ has 3 orbits of lengths $1, q(q^{2m-2} - 1)/(q-1)$ and q^{2m-1}. In a recent paper [7], the author characterized the symplectic groups $PSp(2m, q)$ for $m \geq 3$ as rank 3 permutation groups.

Theorem A. Let G be a transitive rank 3 group of permutations of a set X such that G_x, the stabilizer of a point $x \in X$, has orbit lengths $1, q(q^{-2} - 1)/(q-1)$ and q^{-1} for integers $q \geq 2$ and $r \geq 5$. Let x^i denote the union of the G_x-orbits of lengths 1 and $q(q^{-2} - 1)/(q-1)$. Let $R(xy)$ denote $\{z^i : x, y \in z^i\}$. Assume $R(xy) \neq \{x, y\}$. Assume that the pointwise stabilizer of x^i is transitive on the points unequal to x of $R(xy)$ for $y \in x^i$. Then r is even, q is a prime power and G is isomorphic to a group of symplectic collineations of projective $(r-1)$ space over the field of q elements, which contains $PSp(r, q)$.
We note that the orthogonal group $PΩ(2m + 1, q)$ for $m \geq 2$ acts on the singular points of the orthogonal geometry of a projective $2m$-space over the field of q elements as a rank 3 permutation group in which its pointwise stabilizer has the same orbit lengths of 1, $q(q^{2m-2} - 1)/(q - 1)$ and q^{2m-1} as $PSp(2m, q)$ in its action on the absolute points of the symplectic geometry. In the proof of Theorem A, the possibility that G was an orthogonal group was eliminated because of the hypothesis that a hyperbolic line $R(xy)$ for $y \notin x^\perp$ carried at least 3 points. It seems reasonable to expect that with a change of hypothesis a characterization of the rank 3 groups G in which the pointwise stabilizer has orbit lengths 1, $q(q^{r-2} - 1)/(q - 1)$ and q^{2r-1} is possible and that these groups will be subgroups of the collineation groups of the symplectic geometry or of the orthogonal geometry. We establish a result of this nature in the following form.

Theorem B. Let G be a transitive rank 3 group of permutations of a set X such that the orbit lengths for G_x, the stabilizer of a point x in X, are 1, $q(q^{r-2} - 1)/(q - 1)$ and q^{r-1} for integers $q > 1$ and $r > 4$. Let x^\perp denote the union of the G_x-orbits of length 1 and $q(q^{r-2} - 1)/(q - 1)$. Let $R(xy)$ denote $\bigcap\{z^\perp : x, y \in z^\perp\}$. Assume $R(xy)$ $\neq \{x, y\}$ for $y \in x^\perp - \{x\}$. Assume that the pointwise stabilizer of $x^\perp \cap y^\perp$ for $y \notin x^\perp$ does not fix $R(xy)$ pointwise. Then r is even, q is a prime power and $G \cong H$ where either H is a group of symplectic collineations of projective $(r-1)$ space over $GF(q)$ such that $H \cong PSp(r, q)$ or H is a group of orthogonal collineations of projective r space over $GF(q)$ such that $H \cong PΩ(r + 1, q)$.

The proof of Theorem B actually yields the following corollary which distinguishes between the two cases.

Corollary. Assume the hypotheses of Theorem B.

(i) Assume that the pointwise stabilizer of x^\perp is nontrivial. Then r is even, q is a prime power and $G \cong H$ where H is a group of symplectic collineations of projective $(r-1)$ space over $GF(q)$ such that $H \cong PSp(r, q)$.

(ii) Assume that the pointwise stabilizer of x^\perp is trivial and that the pointwise stabilizer of $x^\perp \cap y^\perp$ for $y \notin x^\perp$ does not fix $R(xy)$ pointwise. Then r is even, q is a prime power and $G \cong H$ where H is a group of orthogonal collineations of projective r space over $GF(q)$ such that $H \cong PΩ(r + 1, q)$.

Note that Corollary B(i) is a stronger result than Theorem A. We consider this paper a continuation of [7] and note that the
proof of Theorem B is similar to that of Theorem A. In § 2 we will prove Theorem B. At times we will refer the reader to [7] for the proofs of several statements. There are other characterizations of the rank 3 classical groups, due to D. Higman, W. Kantor and D. Perin [3, 4, 5].

2. The proof of Theorem B. In this section assume that G is a rank 3 permutation group on X which satisfies the hypotheses of Theorem B. Let $D(b)$ denote the G_b-orbit of length $q(q^r - 2)/ (q - 1)$ and let $C(b)$ denote the G_b-orbit of length $q^r - 1$. Let v_r denote $(q^r - 1)/(q - 1)$.

Lemma 2.1. (i) G is primitive of even order.
(ii) $\mu = \lambda + 2 = v_{r-2}$.
(iii) $a^b \cap b^b \neq R(ab)$ for $b \in D(a)$.

Note that 2.1 (iii) eliminates problems with generalized quadrangles.

Lemma 2.2. (i) $|a^b \cap C(b)| = q^{r-2}$ for $b \in D(a)$.
(ii) G_{ab} is transitive on the points of $a^b \cap C(b)$ for $b \in D(a)$.

For the proofs, see Lemmas 3.1 and 3.2 of [7].

Notation. If $\{x_1, x_2, \ldots, x_i\}$ is a set of $i \geq 2$ distinct points of X, then let $R(x_1, x_2, \ldots, x_i)$ denote

$$\cap \{z^i: x_1, x_2, \ldots, x_i \in z^i \text{ for } z \in X\} = R(x_1, x_2, \ldots, x_i).$$

Lemma 2.3. (i) $y \in R(x_1, x_2, \ldots, x_i)$ if and only if $y^l = \cap \{x_j^i: 1 \leq j \leq i\}$.
(ii) $g(R(x_1, x_2, \ldots, x_i)) = R(g(x_1), g(x_2), \ldots, g(x_i))$ for $g \in G$.
(iii) $R(x_1, x_2, \ldots, x_i) = R(y_1, y_2, \ldots, y_i)$ if and only if

$$\cap \{x_j^i: 1 \leq j \leq i\} = \cap \{y_j^i: 1 \leq j \leq i\}.$$

Remark. This lemma is valid for any permutation group G on X and for any self-paired orbit $D(x)$ of G_x where $x^i = \{x\} \cup D(x)$.

Proof. In the proof the intersections are taken from $j = 1$ to i.
(i) Assume $y \in R(x_1, x_2, \ldots, x_i)$. Let $w \in \cap x_j^i$. Then $x_1, x_2, \ldots, x_i \in w^i$ by Lemma 2.1 (vi) of [7]. Since $y \in R(x_1, x_2, \ldots, x_i)$ and $R(x_1, x_2, \ldots, x_i) \subseteq w^i$, it follows that $y \in w^i$ and $w \in y^i$.

Conversely assume $y^l = \cap x_j^i$. Let $x_1, x_2, \ldots, x_i \in w^i$. Then $w \in \cap x_j^i \subseteq y^i$. So $y \in w^i$ and $y \in R(x_1, x_2, \ldots, x_i)$.
By (i) \(z \in R(g(x_i)g(x_2) \cdots g(x_i)) \) iff \(z^\perp \supseteq \cap g(x_j)^\perp \) iff \((g^{-1}(z))^\perp \supseteq \cap j \) iff \(g^{-1}(z) \in R(x_i, x_2, \cdots x_i) \) iff \(z \in g(R(x_i, x_2, \cdots x_i)) \).

(iii) Assume \(R(x_i, x_2, \cdots x_i) = R(y_i, y_2, \cdots y_i) \). For \(1 \leq j \leq i \), \(x_j \in R(y_i, y_2, \cdots y_i) \). By (i) \(x_j^\perp \supseteq \cap y_j^\perp \) for \(1 \leq j \leq i \). So \(\cap x_j^\perp \supseteq \cap y_j^\perp \). It follows that \(\cap x_j^\perp = \cap y_j^\perp \).

Conversely assume \(\cap x_j^\perp = \cap y_j^\perp \). Then \(z \in R(x_i, x_2, \cdots x_i) \) iff \(x_j^\perp \supseteq \cap x_j^\perp = \cap y_j^\perp \) iff \(z \in R(y_i, y_2, \cdots y_i) \). This completes the proof of the lemma.

Definition. A \(1 \)-clique is a set \(\{x\} \) for \(x \in X \).

For \(i \geq 2 \), an \(i \)-clique is a set \(\{x_1, x_2, \cdots, x_i\} \) of points of \(X \) such that \(\{x_1, x_2, \cdots, x_{i-1}\} \) is an \((i-1) \)-clique, \(x_i \in D(x_j) \) for \(1 \leq j \leq i-1 \) and \(x_i \in R(x_1, x_2, \cdots x_{i-1}) \) where \(R(x_1) = \{x_1\} \).

If \(\{x_1, x_2, \cdots, x_i\} \) is an \(i \)-clique, then we will call \(R(x_1, x_2, \cdots x_i) \) an “\(i \)-space.”

Note that a “2-space” is a totally singular line of [2] and a “3-space” is a “plane” of [7]. Eventually an “\(i \)-space” will correspond to a totally singular subspace generated by \(i \) linearly independent singular points of a classical geometry.

Notation. Let \(T(xy) \) denote the pointwise stabilizer in \(G \) of \(x^\perp \cap y^\perp \) for \(y \in C(x) \). Thus

\[
T(xy) = \cap \{G_z: z \in x^\perp \cap y^\perp\}.
\]

Proposition 2.4. \(T(xy) \subseteq G_{R(xy)} \) and \(T(xy) \) is transitive on the points of \(R(xy) \) for \(y \in x^\perp \).

Proof. First we prove that \(G_{R(xy)} \) is primitive on the points of \(R(xy) \). Indeed if \(|R(xy)| > 2 \), then \(G_{R(xy)} \) is 2-transitive on the points of \(R(xy) \) by a lemma in [2]. If \(R(xy) = \{x, y\} \), then \(|G: G_{R(xy)}| = nl/2 \) if \(y \in x^\perp \) and \(|G: G_{xy}| = nl \). Therefore \(|G_{R(xy)}: G_{R(xy)}| = 2 \) because \(G_{R(xy)} = G_{xy} \).

If \(g \in G_{R(xy)} \), then

\[
g(R(xy)) = R(g(x)g(y)) = R(xy)
\]

and

\[
g(x)^\perp \cap g(y)^\perp = x^\perp \cap y^\perp
\]

by Lemma 2.3. But

\[
T(xy)^g = \cap \{G_z: z \in x^\perp \cap y^\perp\} = T(g(x)g(y))
\]
and so $T(xy)^g = T(xy)$. Therefore $T(xy)$ is a normal subgroup of the primitive group $G_{R(xy)}$. Since $T(xy)$ does not fix $R(xy)$ pointwise by hypothesis of the theorem, it follows that $T(xy)$ is transitive on the points of $R(xy)$.

Note that $G_{R(xy)}$ is a doubly transitive group on the points of $R(xy)$ and has a normal subgroup $I(xy)$. By familiar classification theorems not needed here, $|R(xy)| - 1$ is usually a prime power.

Note that if $T(x)$, the pointwise stabilizer of x^+, is nontrivial, then $T(xy)$ does not fix $R(xy)$ pointwise for $y \in x^+$ because $T(x)$ is semiregular off x^+ by a lemma in [2] and $T(x) \leq T(xy)$.

Denote the group generated by $T(xy)$ for all $x, y \in X$ with $y \in C(x)$ simply as K. Thus

$$K = \langle T(xy) : x, y \in X, y \in C(x) \rangle .$$

Proposition 2.5. (i) If $\{x_1, x_2, \ldots, x_i\}$ is a set of i distinct points of X, then $K_{x_1 x_2 \ldots x_i}$ is transitive on the points of $\cap \{x_j^+ : 1 \leq j \leq i\} - R(x_1 x_2 \ldots x_i)$.

(ii) K is transitive on i-cliques.

Proof. (i) In the proof the intersections are taken from $j = 1$ to i. Let c and h be distinct points of $\cap x_j^+ - R(x_1 x_2 \ldots x_i)$. Either $c \in C(h)$ or $c \in D(h)$. If $c \in C(h)$, then $R(ch)$ is a hyperbolic line in $\cap x_j^+$. Since $|G|$ is even, $x_1, x_2, \ldots, x_i \in c^+ \cap h^+$ and so $T(ch)$ fixes x_1, x_2, \ldots, x_i. By Proposition 2.4, there exists $t \in T(ch) \leq K_{x_1 x_2 \ldots x_i}$ such that $t(c) = h$.

Assume now that $c \in D(h)$. Since $c, h \in R(x_1 x_2 \ldots x_i)$, there exists by Lemma 2.3 (i) $u \in \cap x_j^+ \cap C(c)$ and $v \in \cap x_j^+ \cap C(h)$. There are 3 possible cases to consider:

1. $u \in C(h), (2) v \in C(c) \cap C(h)$ and $v \in D(c)$.

(1) If $u \in \cap x_j^+ \cap C(c) \cap C(h)$, then $R(cu)$ is a hyperbolic line in $\cap x_j^+$. By Proposition 2.4, there exists $t \in T(cu) \leq K_{x_1 x_2 \ldots x_i}$ such that $t(c) = u$. The line $R(uh)$ is hyperbolic and lies in $\cap x_j^+$. By Proposition 2.4, there exists $s \in T(uh) \leq K_{x_1 x_2 \ldots x_i}$ such that $s(u) = h$. Thus $st(c) = h$ and $st \in K_{x_1 x_2 \ldots x_i}$.

(2) If $v \in \cap x_j^+ \cap C(c) \cap C(h)$, then a proof similar to that of case (1) yields the desired result.

(3) $u \in \cap x_j^+ \cap C(c) \cap D(h)$ and $v \in \cap x_j^+ \cap D(c) \cap C(h)$. Since $c \in D(h)$, there exists $w \in R(ch) - \{c, h\}$ because by hypothesis $|R(ch)| > 2$. Note $w \in C(u)$, for if $w \in u^+$, then $c \in R(ch) = R(wh) \subseteq u^+$, a contradiction in case (3). Now $w \in R(ch) \subseteq x_j^+$. But $w \in R(x_1 x_2 \ldots x_i)$ because $u \in \cap x_j^+ \cap C(u)$. So $u \in \cap x_j^+ \cap C(c) \cap C(w)$. By case (1) there exists $t \in K_{x_1 x_2 \ldots x_i}$ such that $t(c) = w$. Note $w \in C(v)$, for if $w \in v^+$, then $h \in R(ch) = R(wh) \subseteq v^+$, a contradiction. Now $v \in \cap x_j^+$
\(C(w) \cap C(h) \). By case (1) there exists \(s \in K_{x_1 x_2 \cdots x_i} \) such that \(s(w) = h \).

So \(st(c) = h \) and \(st \in K_{x_1 x_2 \cdots x_i} \).

(ii) Let \(\{x_1, x_2, \cdots, x_i\} \) and \(\{y_1, y_2, \cdots, y_i\} \) be 2 \(i \)-cliques. The proof is by induction on \(i \). First note that \(K \) is transitive on \(X \) because \(K \) is a normal subgroup of the primitive group \(G \). If \(i = 1 \), then there exists \(k \in K \) such that \(k(x_1) = y_1 \). Assume \(i > 1 \). By the induction assumption there exists \(g \in K \) such that \(g(x_j) = y_j \) for \(j = 1, 2, \cdots, i - 1 \). From Lemma 2.3 (ii) and the definition of \(i \)-clique, it follows that \(\{y_1, y_2, \cdots, y_{i-1}, g(x_i)\} \) is an \(i \)-clique because \(\{x_1, x_2, \cdots, x_{i-1}, x_i\} \) is an \(i \)-clique. Since

\[g(x_i), y_i \in \cap \{y_j: 1 \leq j \leq i - 1\} = R(y_1 y_2 \cdots y_{i-1}) , \]

by (i) there is \(h \in K_{x_1 y_2 \cdots y_{i-1}} \) such that \(h(g(x_i)) = y_i \). Thus \(hg(x_j) = y_j \) for \(j = 1, 2, \cdots, i \). This completes the proof of the proposition.

Note that 3-cliques exist by Lemma 2.1 (iii).

Proposition 2.6. \(G_a \) is a rank 3 permutation group on the set of totally singular lines through \(a \). For \(b \in D(a) \), \(G_{a \cap R(ab)} \) has nontrivial orbits

\[\{R(ac): c \in a \perp \cap b^\perp = R(ab)\} \]

and

\[\{R(ac): c \in a \perp \cap C(b)\} \].

The proof is similar to that of Proposition 3.4 of [7]. This proposition follows from Lemmas 2.2 and 2.3 and Proposition 2.5 (i) for \(i = 2 \) just as Proposition 3.4 of [7] follows from Lemmas 3.2 and 2.2 and Proposition 3.3 of [7].

Proposition 2.7. Totally singular lines carry \(q + 1 \) points.

Proposition 2.8. If \(b \in D(a) \), the \(X = \cup \{c^\perp: c \in R(ab)\} \).

Proposition 2.9. \(X \) together with its totally singular lines forms a nondegenerate Shult space of finite rank \(\geq 3 \) in which lines carry \(q + 1 \) points.

The proofs of the above three statements are identical to the proofs of Propositions 3.5, 3.6, and 3.7 of [7].

Lemma 2.10. If \(\{x_1, x_2, \cdots, x_i\} \) is an \(i \)-clique, then \(R(x_1 x_2 \cdots x_i) \) is a Shult subspace of \(X \).
Proof. In the proof the intersections are taken from \(j = 1 \) to \(i \).

Let \(d, e \in R(x, x_2, \ldots, x_i) \). By definition of \(i \)-clique, \(x_k \in \cap x_j^j \) for \(1 \leq k \leq j \) and so by definition of "\(i \)-space" and by Lemma 2.3 (i) it follows that

\[
d \in R(x, x_2, \ldots, x_i) \subseteq \cap x_j^j \subseteq e^i.
\]

Thus any two points of \(R(x, x_2, \ldots, x_i) \) are adjacent. Let the line \(R(xy) \) meet \(R(x_1, x_2, \ldots, x_i) \) in \(\{u, v\} \). Then \(R(xy) = R(uv) \) and \(x^j \cap y^j = u^j \cap v^j \). If \(z \in R(xy) \), then

\[
z^j \supseteq x^j \cap y^j = u^j \cap v^j \supseteq \cap x_j^j
\]

since \(u, v \in R(x_1, x_2, \ldots, x_i) \) by Lemma 2.3. Thus \(z \in R(x_1, x_2, \ldots, x_i) \) and \(R(xy) \subseteq R(x_1, x_2, \ldots, x_i) \). Therefore \(R(x_1, x_2, \ldots, x_i) \) is a Shult subspace of \(X \), as desired.

Proposition 2.11. (i) \(q \) is a prime power and \(r \) is even.

(ii) Either \(X \) is isomorphic to the polar space \(S \) associated with an alternating form \(f \) defined on a protective space \(P \) of dimension \(r - 1 \) over \(GF(q) \) or \(X \) is isomorphic to the polar space \(S \) associated with a symmetric form \(f \) defined on a protective space \(P \) of dimension \(r \) over \(GF(q) \) for \(q \) odd.

For the proof see Proposition 3.9 of [7].

Since \(r \) is even and \(r \geq 5 \), there exists a natural number \(m \geq 3 \) such that \(r = 2m \).

Proposition 2.12. (i) \(G \) is isomorphic to a subgroup of \(P\Gamma U(f) \), the group of collineations of \(P \) which preserve the form \(f \).

(ii) For \(x \in X \), \(\phi(x^j) = \{w \in P : f(w, w) = 0, f(w, \phi(x_j)) = 0\} \) where \(\phi : X \to S \) is a polar space isomorphism.

(iii) For an \(i \)-clique, \(|R(x_1, x_2, \ldots, x_i)| = v_i \) and \(\cap \{x_j^j : 1 \leq j \leq i\} = v_{r-i} \).

(iv) \(X \) contains \(m \)-cliques but does not contain \((m + 1)\)-cliques.

Proof. For (i) and (ii) see Proposition 3.10 (i) and (ii) of [7].

(iii) From (ii) it follows that

\[
\phi(R(x_1, x_2, \ldots, x_i)) = \cap \{\phi(z^j) : \phi(x_1), \phi(x_2), \ldots, \phi(x_i) \in \phi(z^j)\}
\]

which equals the set of singular points in the intersection of all the hyperplanes containing \(\phi(x_1), \phi(x_2), \ldots, \phi(x_i) \). But this set is the projective subspace generated by \(\phi(x_1), \phi(x_2), \ldots, \phi(x_i) \) since \(\phi(x_k) \perp \phi(x_j) \) for all \(k, j \). Thus \(|R(x_1, x_2, \ldots, x_i)| = v_i \).

From (ii) \(\cap \{x_j^j : 1 \leq j \leq i\} = v_{r-i} \).
(iv) Since \(r = 2m \), (iv) follows from (iii).

Now let \(\{x_1, x_2, \ldots, x_m\} \) be a fixed \(m \)-clique of \(X \). Then
\[
x_1 \subset R(x_1 x_2) \subset R(x_1 x_2 x_3) \subset \cdots \subset R(x_1 x_2 \cdots x_m)
\]
is a chain of Shult subspaces of \(X \) of length \(m \geq 3 \). Define sub-
groups \(K_i \) of \(K \) as follows:
\[
K_1 = K \quad K_i = K_{i-1} \cap K_{R(x_1 x_2 \cdots x_{i-1})} \quad \text{for} \quad 2 \leq i \leq m+1.
\]
Note the choice of the fixed \(i \)-clique is arbitrary since \(K \) is transi-
tive on \(i \)-cliques.

Proposition 2.13. (i) \(K_i \) is transitive on the set of “\(i \)-spaces” containing \(R(x_1 x_2 \cdots x_{i-1}) \), for \(2 \leq i \leq m \).

(ii) \(|K_i| = \prod_{j=1}^{m} v_{x^j} \).

Proof. (i) Let \(R(x_1 x_2 \cdots x_{i-1} d) \) and \(R(x_1 x_2 \cdots x_{i-1} e) \) be “\(i \)-spaces” containing \(R(x_1 x_2 \cdots x_{i-1}) \). Then
\[
d, e \in \bigcap_{j=1}^{i-1} x_j^j - R(x_1 x_2 \cdots x_{i-1}),
\]
a set on which \(K_{x_1 x_2 \cdots x_{i-1}} \) is transitive by Proposition 2.5. There
exists \(k \in K_{x_1 x_2 \cdots x_{i-1}} \) such that \(k(d) = e \). By Lemma 2.3 (iii), it follows
that
\[
k(R(x_1 x_2 \cdots x_{i-1} d)) = R(x_1 x_2 \cdots x_{i-1} e)
\]
and that \(k \in K_i \).

(ii) For \(2 \leq i \leq m \) the number of “\(i \)-spaces” containing \(R(x_1 x_2 \cdots x_{i-1}) \) is
\[
\left| \bigcap_{j=1}^{i-1} x_j^j \right| - |R(x_1 x_2 \cdots x_{i-1})| \left| |R(x_1 x_2 \cdots x_{i-1})| - |R(x_1 x_2 \cdots x_{i-1})| \right|
\]
\[
= (v_{2m-(i-1)} - v_{i-1})(v_i - v_{i-1}) = v_{2m-(i-1)}.
\]
So \(|K_i : K_{i+1}| = v_{2m-(i-1)} \) by (i). Since \(K \) is a normal subgroup of
the primitive group \(G \), \(K \) is transitive and \(|K_i : K_2| = v_{2m} \). Now (ii)
follows.

Proposition 2.14. (i) \(\psi(K) \) is a flag-transitive subgroup of \(\text{PGU}(f) \), the group of projective transformations of \(P \) which pre-
serve \(f \).

(ii) If \(X \) is symplectic, then \(\psi(K) \geq \text{PSp}(2m, q) \).
(iii) If X is orthogonal, then $\psi(K) \cong P\Omega(2m + 1, q)$.

Proof. Let $x, y \in X$ with $y \in C(x)$. Since $T(xy)$ is the pointwise stabilizer in G of $x^\perp \cap y^\perp$, it follows that $\psi(T(xy))$ is the pointwise stabilizer in $\psi(G)$ of $\phi(x)^\perp \cap \phi(y)^\perp$. If t is a nontrivial element of $T(xy)$, then $\psi(t) \in P\Gamma U(f)$ and fixes $\phi(x)^\perp \cap \phi(y)^\perp$ pointwise. This implies that $\psi(t) \in PGU(f)$ and so $\psi(K) \leq PGU(f)$.

Now $\psi(K_{m+1})$ fixes the flag
$$\{\phi(x_1), \langle\phi(x_1), \phi(x_2)\rangle, \ldots, \langle\phi(x_1), \phi(x_2), \ldots, \phi(x_m)\rangle\}.$$ If B is the subgroup of $PGU(f)$ which fixes the above flag, then B is a Borel subgroup of $PGU(f)$ and $B \cap \psi(K) = \psi(K_{m+1})$. Therefore by Proposition 2.13 (ii)
$$|B\psi(K)| = |B| \cdot |\psi(K) : \psi(K_{m+1})|$$
$$= q^{m^2}(q - 1)^m \cdot \prod_{i=1}^{m} v_{2i} = |PGU(f)|.$$

Thus $B\psi(K) = PGU(f)$ and $\psi(K)$ is a flag-transitive subgroup of $PGU(f)$. By a theorem of Seitz [6], it follows that
$$\psi(K) \cong PSp(2m, q)$$
if X is symplectic and
$$\psi(K) \cong P\Omega(2m + 1, q)$$
if X is orthogonal, as desired.

References

4. W. Kantor, Rank 3 characterizations of classical geometries, J. Algebra, 36 (1975), 309-313
7. A. Yanushka, A characterization of the symplectic groups $PSp(2m, q)$ as rank 3 permutation groups, Pacific J. Math., 59 (1975) 611-621.

Received July 17, 1975 and in revised form July 9, 1976.

Southern Illinois University
Carbondale, IL 62901
Kazuo Anzai and Shiro Ishikawa, *On common fixed points for several continuous affine mappings* .. 1

Bruce Alan Barnes, *When is a representation of a Banach ∗-algebra Naimark-related to a ∗-representation* ... 5

Donald S. Coram and Paul Frazier Duvall, Jr., *Approximate fibrations and a movability condition for maps* ... 41

Kenneth R. Davidson and Che-Kao Fong, *An operator algebra which is not closed in the Calkin algebra* ... 57

Garret J. Etgen and James Pawlowski, *A comparison theorem and oscillation criteria for second order differential systems* 59

Philip Palmer Green, *C*-algebras of transformation groups with smooth orbit space ... 71

Charles Allen Jones and Charles Dwight Lahr, *Weak and norm approximate identities are different* .. 99

G. K. Kalisch, *On integral representations of piecewise holomorphic functions* ... 105

Y. Kodama, *On product of shape and a question of Sher* 115

Heinz K. Langer and B. Textorius, *On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space* ... 135

Albert Edward Livingston, *On the integral means of univalent, meromorphic functions* ... 167

Wallace Smith Martindale, III and Susan Montgomery, *Fixed elements of Jordan automorphisms of associative rings* 181

R. Kent Nagle, *Monotonicity and alternative methods for nonlinear boundary value problems* ... 197

Richard John O’Malley, *Approximately differentiable functions: the r topology* ... 207

Mangesh Bhalchandra Rege and Kalathoor Varadarajan, *Chain conditions and pure-exactness* ... 223

Christine Ann Shannon, *The second dual of C(X)* 237

Sin-ei Takahasi, *A characterization for compact central double centralizers of C*-algebras* ... 255

Theresa Phillips Vaughan, *A note on the Jacobi-Perron algorithm* 261

Arthur Anthony Yanushka, *A characterization of PSp(2m, q) and PΩ(2m + 1, q) as rank 3 permutation groups* ... 273