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An Ehrenfeucht game is developed for some languages
which admit the Malitz quantifiers. The method is used to
show that equivalence of structures with respect to such
languages is usually preserved by the cardinal sum operation,
and that such equivalence need not be preserved by the direct
product operation. Craig’s theorem is shown to fail in all
cardinal interpretations of the languages.

In this paper we report the results of a study of the model
theory of Lgv-LZ“ is essentially the union of the languages L where
L° is the first order predicate calculus and for » > 0 L? is an extension
of L° obtained by allowing the additional quantifier symbol @™ which
binds » distinet variables and Q"z, :--, z,» has the interpretation:
“there is a set of individuals X of power & such that for distinct
x, 2, €X, @.” In this study the principal tool is an Ehrenfeucht
game and the main results are that L<“ equivalence is preserved by
cardinal sums of structures, that L<“ equivalence need not be preserved
by direct products of structures, and that Craig’s theorem fails in
L<e,

Using our notation L' is the language L(Q) studied by Keisler
[12], Fuhrken [9], [10], Vaught [17] and others. L<°is an extension
of L' which was introduced by Magidor and Malitz in [14]. In this
paper they show that with L$° one can say without the use of
additional symbols that an equivalence relation has uncountably many
classes, that a tree order is a Suslin tree, and that a group has an
uncountable abelian subgroup. To show that this is significantly
more expressiveness than is possible with L) they point out models
of set theory where the notion of a Suslin tree cannot be characterized
in L, even with the use of relativized reducts. They show that
under certain set theoretical assumptions L is countably compact.

1. Preliminaries. The class of infinite cardinals is denoted by
card. £ and )\ usually denote infinite cardinals. ¢X denotes the
cardinality of X and ef x£ denotes the cofinality of «.

L’ denotes the ordinary first order predicate calculus with its
customary rules for formations of formulas. If new — 1, L™ denotes
the language which extends L° by admitting the additional quantifier
symbol @" and with the additional rule of formation that says if ¢
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is a formula of L" and z, -+-, #, are distinct variables then Q*z,, - - -,
z,p is also a formula of L". L<“ is the extension of L° which admits
all the quantifier symbols @*. If A is a structure and £ an infinite
cardinal we write U=, Q"x, -+-, x,p if there is X & A such that
¢X = r and for distinct @, -+, 0, X, A=, pla, --+, a,]. £ is called
the cardinal interpretation of Q. If £ is fixed throughout a discussion
or is clear from the context we may omit the subscript £ and simply
write =. Also if we wish to discuss the languages L™ or L<“ with
the interpretation, £, fixed throughout we refer to the languages
as L* or Lge.

The language L is an extension of L° which admits the additional
quantifier symbols @7 for ne® — 1 and \ e card; and admits conjunc-
tions and disjunctions of any cardinal length. Satisfaction for L is
defined as expected when Q7 is treated like Q" with the \-interpre-
tation.

It will be convenient to assume our languages have quantifiers
dual to the @*. We denote these by O and define satisfaction of
them by ¥ =, 0"z, ---, 2,0 if and only if A=, —Q"x, +++, v,—p. If
L is a language, two structures are said to be L equivalent if they
satisfy exactly the same sentences of L; we denote this by U = B(L).
For a precise definition of the elementary terms not defined here we
refer the reader to [4].

2. Ehrenfeucht games. Classical Ehrenfeucht games provide
a test for determining L° equivalence of structures. The game
theoretic form of this method was first developed by Ehrenfeucht
[6] but a similar method was known to Fraissé [8] in the form
of m-equivalence between structures. Lipper [13], Brown [3], and
Vinner [18] independently extended the method to L!. In this section
we extend the games to L®, L<, and L.

Suppose A and B are similar structures (i.e., of the same type),
m and n are positive integers, and £ is an infinite cardinal. We
describe Gr(¥, B),, a game played by two players denoted I and II.
G=(Y, B), consists of m periods of play. During each period of play
n or less elements are chosen from |%| and the same number of
elements are chosen from |B|. We describe a typical period of play,
the jth period, with all others being similar.

Player I begins by choosing a structure, say A. If I chooses B
then the roles of 9 and B are reversed in the following description.
Player I may make either of two types of moves.

Type 1. Player I chooses a sequence of % or less elements from
Iml’ Qjiy =0y Qjige
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Player II then responds with a sequence of k; elements from |8/,
biu M bjkj'

Type 2. Player I chooses a set X & || with ¢X = «.

Plays II responds with ¥ < |98]| with ¢Y = «.

Player I chooses a sequence of 7 or less distinet elements from
Y! ba’u ) bjkj-

Player II responds with a sequence of %; distinct elements from
X; Qjiy =%y Qjgge

This completes the description of period 5. The completion of
period m constitutes the completion of G%(Y, B),. Many times we
omit the subscript £ when it is clear from the context what « is, in
particular, when the language under discussion is L5 or L*. In the
future we may refer to a move of Type 1 as an “existential move”
and a move of Type 2 as a “Q move.”

Let O, ={(e;j, b;):1 <571l and 1 =i =<k;} for I <m and let
O = 0,. O is called the outcome of G-, B), and O, for I < m is
called a partial outcome. We say that player II wins G&(¥, B), if
O is an isomorphism from its domain to its range when each is
viewed as a substructure of U and B respectively. We say that
player I wins if player II does not win. By a winning strategy
for player II in G%(¥, B). we mean a fixed procedure that player
II can follow so that no matter how player I moves, player II
wing. If O, is a partial outcome of G2, B), we say that player
II is in a winning position or that O, is a winning position for
player II if there is a fixed procedure that player II can follows
to finish G%(¥, B), such that no matter how player I moves, player
I1 wins.

THEOREM 2.1. Suppose U and B are of the same finite type and
n 18 @& positive integer. Then U = B(LY) if and only +f for each
positive integer m player II has a winning strategy in G, B),.

We omit the proof because the method parallels closely that used
for L. and that method appears in the literature in [18]. A detailed
proof of Theorem 2.1 appears in [2].

COROLLARY 2.2. Suppose U and B are of the same finite type.
Then A = B(LE*) of and only if for each pair of positive integers
m and n, player 11 has a winning strategy in G=(A, B),.

This follows from Theorem 2.1 by noting that for each pe L<®
there is an new — 1 and + € L” such that =, @ «— 4.
In practice when using the games to show two structures fully
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equivalent we may assume that when player I makes an existential
move he chooses exactly one element. This is sufficient to imply the
structures equivalent, for if player I could win G2(, B), by choosing
=<n elements on each existential move, then there would be a ¥ <
m-n such that player I could win G}(%, B)., by choosing only one
element in each existential move.

We now define a game for determining L equivalence of structures.
This game we denoted by G, B). It is like G=(¥, B). except for
the following differences:

(i) there are w periods of play,

(ii) there is no bound on the length of the finite sequence of
elements that player I chooses in each period,

(iii) in a move of type two player I may choose any infinite
subset of a structure, and player II must respond with a subset of
the other structure of equal or greater cardinality than the cardinality
of that subset chosen by player I.

The definitions of outcome, partial outcome, winning, and winning
strategy for G(¥, B) are analogous to those definitions for G=(, B),.

THEOREM 2.3. Supose U and B are of the same type. Then
A = B(L) if and only of player 11 has a winning strategy in G, B).

Again we omit the proof. A proof does appear in [2], and it
makes use of methods similar to those of Karp in [11].

3. Cardinal sums and L<“ equivalence.

DEFINITION 3.1. Spupose ,;(z € I) are similar relational structures.
We define in the usual way the cardinal sum of 2,(iel), denoted
Sier U,. First, assume that |U;| N |Y;| = 0 for 2 = 5. If this is not
the case, replace certain U, by suitable isomorphic copies. Suppose
Niier ¥, is denoted by A. Then |U| = U,.; || and if R is in the
common type, R* = ,.; BR™.

THEOREM 3.2. Suppose £ is regular and U, = B,(L5) for all
ve€l. Then DW= Dy BI(LIY).

Proof. Let A= ,.;%U and B =>,.;B,. Since each sentence
involves only finitely many relation symbols, it suffices to show
that |, = B|. (L) for each finite type z. So we may assume that
the type of the structures is finite. Let m,ne®w —1 be given,
we will show that player II has a winning strategy in G&(¥, B).
Explicitly, we will show that player II can play G, B) such
that for each (a, b) in the outcome we have a<|%,;| if and only if
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be|®B;| and such that if O, =0nN|Y| x |B;] then O, is a winning
position for player II in G2(¥;, B,). These two facts mean that player
II has a win, for if (v, +--,v,) is an atomic formula and a,, ---, @,
do not all come from a single ||, then % ¥ @|a,, - - -, @,]; and similarly
B B ofb,, -++b,] when not all of b, -+-, b, come from a single |B,].

We suppose inductively that player II can play so that through
j — 1 periods the above holds, where for O we mean that portion of
the outcome constructed in the first 5 — 1 periods.

Case 1. Suppose player I chooses a;<|%;| & |¥|. Player II
considers a; as a choice made by player I in G%(¥, B,). Player II
has a strategy in this game, since %, = B,(L:*) and since the type
is finite. Also, by induction, player II is in a winning position in
this game. G~(¥,,B;,) may or may not be in period j, depending
upon how many elements have been chosen from the ¢th summand
thus far. But this is not a factor in the argument. Certainly the
play in G%(¥,, B,) is not beyond the jth period. So the strategy in
Gn(Y,, B,) gives be|B,|, which player II chooses as a bec|B|. The
induction assumption is satisfied.

Case 2. Suppose player I chooses X C |¥U]|, cX = k.

Subcase a. Suppose there is some ¢ € I such that ¢(X N |2,;]) = «.
Then player II considers X N |¥;| as a choice made by player I in
G~ (Y, B,) and the reasoning is the same as in case 1.

Subcase b. Suppose there is no +€ I such that (X N|Y;|) = &.
Then since £ is regular, cM = £ where M = {t ¢ I: XN |¥,;]| # 0}. For
each 7 e M, pick a single z,€ XN |%A;|. Player II considers 2, as a
choice made by player I in a move of Type I in G%(¥,, B,), for each
1€ M. The strategies in each of these games give y, € |B,]| for 1 ¢ M.
For Y < ||, player II chooses Y = {y,: 1€ M}. ¢Y = & since cM = &.
No matter what distinet b;, -+, b;, € Y that player I chooses, there
are n distinct indices ¢, ---, ¢, € M such that b;, =y;, k=1, .-+, n.
For a;, -+, a;,€ X, player II chooses a;, = x,,k =1, ---, n. Again
the induction hypothesis is satisfied.

REMARK. If £ is singular the theorem still holds if eI < ecfk.
The proof is the same, except Subcase b of Case 2 will not arise,
and this is the only place where the regularity of £ was used.

If Xx=cfe <k and £ =c¢I =N\ we have this counterexample.
Suppose &£ = 3;c;k; where w <k, < k£ for all ¢ex. The type of
the structures in our counterexample will have one unary relation,
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U. For ten set A, =k, k) and B, = (w, w). For 1ep — \ set
B, = (1, 0> and B, = <1, 0>. Because of the cardinalities involved it
is clear that o, = B,(L:*) for all 1e . However ¢U in >, ¥, is
Swaki=fand eUin >, B, is S0 =0 v=n< k., So>,.. U E
QxU(x) whereas 3,.; B, FQaU®). So >, U # e BLY.

DEFINITION 8.3. Suppose ) is a cardinal, % a structure. By
AN we mean >, U, where U, = A for eachieland || N|U;| =0
for 1 == j.

A natural extension of the question of preservation of L<° equi-
valence by cardinal sums is the following: When is it the case that
A= B(Ls) and N = pu(L5*) imply AN = B-p(L5)? Of course, \ =
M(Lg“) just means that v and g are the same finite cardinal or
and z are both infinite and less than £ or A and g are both greater
than or equal to k. The answer is given the following theorem and
counterexample. We omit the proof. The interested reader is referred
to [2].

THEOREM 3.4. Suppose A = B(Ls°) and » = p(L5*) and suppose
it 15 not the case that cf x <\ + ¢ < k. Then U\ = B-pu(L).

Counterexzample 3.5. Suppose cf £k <A+ p< k. Then there are
structures 2 and B such that U = B(L*) and AU-n = B-p(L2).

4. Direct products and L<° equivalence. It is well known that
if o, =B(LY) for 1€l then [[;e; U = [Lier Bi(LY) (here T denotes
the ordinary direct product of structures). This was first shown by
Mostowski [15], and was considerably generalized by Feferman and
Vaught in [7]. In this work they show that a very general type
of produet of structures preserves the notion of elementary equiva-
lence between its factors. As special cases they obtained preservation
theorems for cardinal sum and direct product, among others.
Wojciechowska [19] extended their work to the language L' and
obtained preservation theorems with some restrictions placed on the
interpretation &, and on the size of the index set. Lipner [13] also
obtained similar results.

In this section we will see that the situation for L<¢ is quite
different. Using the Ehrenfeucht games (which in L° gives an im-
mediate proof of the positive result) we will produce counterexamples
which show that L<“ equivalence need not be preserved under products.
In fact we produce structures ¥ and B such that ¥ = B(L<*) but
A = BX(L*). Here W* denotes A x A.
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DEFINITION 4.1. A linear order is said to be x-dense if between
any two elements there are £ elements.

THEOREM 4.2. Suppose A and B are k-dense linear orders without
endpoints of power £. Then U = B(L).

Proof. We will show player II has a winning strategy in G(, B).

Let O; denote that portion of the outcome selected through the
first j periods. Say O; = {(a;, b,): 1 < k; < w}. We will show that
player II can play such that for each j there is permutation 7;: k; —
k; such that

Qr;(0) * S Qo and

(*) = e =

sz(o) é b:rjm é e é bi‘fj(kj—l) ’

with equality holding in the first list if and only if it holds at the
corresponding place in the second list. The existence of such =z, for
each j ¢ ® implies that player II has a win in G(Y, B).

We assume by induction, that player II can play so that at the
end of period 5 (*) holds. Without loss of generality we may assume
7; i1s the identity. We describe player II’s strategy during period
J+ 1.

Case 1. Suppose player I chooses a single element, ac|%|. If
a equals some previously chosen a,, then player II chooses b to be
the corresponding b,. Otherwise, either a¢ < a, or a > @;—, OT there
is 1 €k; such that o, < a < a,.,. If a < @, then player II chooses b
to be any element <b, this can be done because B has no endpoints.
If @ > a4, player II chooses b>b,, .. If a;, <a < a;, player II
chooses b to be any element in B such that b, < b < b,,,. This can
be done because B is a dense linear order. In any of these cases
it is clear that there is m;..: k;,, — k;,, such that (*) holds.

Case 2. Suppose player I chooses X |U| with w EAv=cX Z k.
First note that a, ---, a;,_, partition [?| into k; + 1 segment. So
there is at least one of these segments, say (a,, a,,,) such that
| XN (e, 6;0)] =N. Here (a,, a,,,) denotes {x:a;, <z < a,.,}. If it
happens that the only segment with the large intersection is the
initial or terminal segment, the argument is similar. Since a, < a,,,,
by induction b, < b,.,; and since B is x-dense, there are k£ elements
between b, and b,,,. For Y < |®B|, player II chooses the set of
elements strictly between b, and b,.,. Since B is k-dense, this is a
set of power k. Now suppose player I chooses distinet by, *--,
biin.€Y. All of these are strictly between b, and b,.,. Since there
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are \ elements of X strictly between @, and a,,,, it is clear that
player II can choose @iy, -**, G;in. € X so that the induction hypo-
thesis is satisfied.

LEMMA 4.4. Suppose A = (4, £*> s a reflexive linear order.
Then the following are equivalent:

(i) 92 has an antichain of power k.

(ii) WEQuy[—@ =y) A =¥y = 2)].

(iii) There is f S |AU? so that f is a strictly decreasing function
and cardinality of f is =k.

Proof. (i)« (ii) follows immediately from the definition of an-
tichain and satisfaction. Suppose (ii). Then there is X & |%?| so
that for distinet z, ye X, —(x < %) and —(y < z). X is our candidate
for f. Let z = (z, #,) and ¥ = (%, ¥.). By definition of < in 2* we
have (since —z < y) that z, <"y, implies %, £*y,. Since =" is a
linear order this means that z, <%, implies y, < x,. Also 2, # ¥,

for if z, = %, then since 2, < ¥, or ¥, < 2, we would have 2 < y or

y < . This establishes (iii). A similar argument shows that (ii)
follows from (iii) by showing that f is a satisfying set.

In order to construct the counterexamples we need the existence
of a certain type of linear order.

LEMMA 4.5. Suppose £ > @w. Then there is a reflexive linear
order U such that A is k-dense, W is of power k, A has no end points,
A has o suborder of tyve k, and A* has no antichain of power k.

Proof. We begin the construction by constructing a sequence
of order types #,, 1 < n < w such that for each =, g, is isomorphic
to the ordinal £*, and for each =, t, = £&,.,.

Let ¢, = £ with the usual order. Given g, #,., results from
M. by placing a copy of k strictly between a and a + 1 for each
acp,.

It is clear that p, & p,.,, in fact it is a subordering. Let g =
U.<u<o 4, With the induced order. g has the following properties:

(i) et = k.

(ii) g has a first element and no last element.

(ili) p¢ is x-dense.

(iv) x¢ has a suborder of type «.

(v) ¢ has no antichain of power .

Only (v) needs verification. We check condition (iii) of Lemma 4.4.
Suppose X S ¢, ¢X = w, and f: X — . We claim f cannot be strictly
decreasing; this will establish (v). Suppose f is strictly decreasing.
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Let X, =Xnp, for 0<n<w. X=UX,. Since cX = w, thereis
an ne® such that ¢X, = w, so we have f: X, —p¢ and X, & 4,.
Let Y = f(X,). ¢Y = o, since f is strictly decreasing. Y =UY,
where Y, =Y N ¢, for 0 <m < w. Choose m = n so that ¢Y, = @..
Let X'={xeX,: f(x)eY,}. Then f: X'—>Y,,¢X = w, f is decreasing
and X', Y, & #,. Since x, = £™ this is impossible.

To obtain %, we remove the first element of .

Counterexample 4.6. Suppose £ is uncountable. There are struc-
tures ¥ and B such that A = B(L) but W = B(LI).

Take U to be the order constructed in Lemma 4.5. Take B =
A-£*. Here £* is the converse ordering of the ordinal £, and - denotes
ordinal product. Both % and B are k-dense linear orders without
endpoints of power £ and so by Theorem 4.2 o = B(L). A* has no
antichain of power £ so W, Qy[—(x = ¥) A = (y = 2)]. B has a
suborder of type £ and a suborder of type £* so there is f & |BJ?
so that f is strictly decreasing and card f = k. By Lemma 4.4
this means

B EQuy[ @ =) A —(y 2 w)].

For the case £ = @ we must construct a different counterexample.
In the remainder of this section we will be working in the w-inter-
pretation; + and - will denote ordinal addition and multiplication
and N and p will be arbitrary order types. As in Slomson [16],
we say that player II has a nice winning strategy in G\, 2 if
player II has a winning strategy in Gn(\, t) following which he
picks the first element from ) or g if and only if player I has
on the same move just picked the first element from the other

order type.

LeMMA 4.7. (1) If player II has o winning strategy in Gu(@-+X\,
® + ) then player 11 has a nice winning strategy in Gu(® + N,
® + ).

(ii) If player II has o wice winning strategy tn Gu(n, 1) then
player 11 has o winning strategy in Gr . (@0-\, @« ).

(ii) is an analogue of Lemma 5.2 in [16]. Slomson proves the re-
sult in the uncountable interpretation and with » =1. His proof goes
through without changes in the w-interpretation with » = 1. Only
minor modifications are needed to deal with the Malitz quantifiers
(n>1). (i) is clear because @ + v =1+ w-+x and w+p =1+ o+ o

LEMMA 4.8. “(1 +\) = @0°(1 + p)(Ls*).
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Proof. Let A denote w“(1 + \) and B denote w“(1 + ). Clearly
player 1I has a winning strategy in G*(%, B). So by Lemma 4.7%i)
player II has a nice winning strategy in G, B). Applying 4.7(ii)
player II has a winning strategy in G} (®-%, ®-B). But w-UY =
- (w1 + N) = (w-0°)1 + \) = w1 + \) = YU and similarly @-B=B.
So player II has a winning strategy in GX(¥, B). Repeated applications
of Lemma 4.7 yield that for all m, player II has a winning strategy
in G%(YU, B). Since n is arbitrary, U = B(LI®).

Counterexample 4.9. There are structures ¥ and B such that
oA = VL) but A = B(L2).

Take U = (w*, <) and B = (WA + ®*), £>. By Lemma 4.8
A = B(L5"). Since B has a suborder of type @ and a suborder of
type @* there is fC|B[* such that card f = w and is f strictly decre-
asing. Since ¥ is an ordinal there is no such f < |%Z. By Lemma
4.4 this means that

B EQuy[—(x =y) A —(y =x)] and
WHELry[— (= y) A —(y = 2)]

Since U = (w*, £> is well ordered and B = {(w*(1l + w*), <) is not
well ordered and since U = V(L) we have:

THEOREM 4.10. The notion that a binary relation is a well order
18 not expressible in LZ°.

5. Craig’s theorem. The Counterxamples 4.6 and 4.8 also provide
a proof that Craig’s theorem fails in these languages. The essential
observation is that if we add pairing functions to a structure 2 then
the theory of 2* reduces to the theory of 2 with the pairing functions.

Let < be a binary relation symbol, P and R binary function
symbols, and let 7, 7, 0, and p, be unary function symbols. Let
@ express that < is a linear order, let § say that P, 7,, and «, are
pairing and coordinate functions,

0 = Yavy[r,(P(x, ¥)) = ¢ A m(P(, ¥)) = y N\ P(n(x), ©x)) = ]

and let 7 say that R, p, and o, are also pairing and coordinate func-
tions. Let

0, = Oyln(x) < 7,(y) A mo(z) < m(y)] and
0, = @Zmy[px(x) = (01(?/) AN 402(90) = 102('!/)] .

Now suppose € is of type <, P, 7, @, R, 0, 0;. Some easy facts
to check are:
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if € =0 then P® maps |€|* one-to-one and onto |€]
if € =7 then R® maps |€|* one-to-one and onto |€|

if €=¢p A0 then € =,0, if and only if € has no x-powered
antichain,

Similarly if € =9 A ¥ then € =,0, if and only if €* has no
k-powered antichain.

Using these facts we see that

E@ANINOT)— (Y—0;) .
@ N0 Ao, is of type <, P, w, and 7, and
Yy—> g, is of type <, R, 0,, and p,.

==

We claim that there is no Craig interpolant, ¢ in LZ* and of
type < such that E(@ Ad A 0,)— 37 and EJ7— (Y —0,).

Suppose such & did exist. We will get a contradiction. If
k=w let A and B be as in in Counterexample 4.9, if £ > w let A
and B be as in Counterexample 4.6. U and B are both infinite and
of type <. Since ¥ is infinite we can define P, ,, and x, such that
JUul, &, P,w, m,y =0. Since A is a linear order and A* has no k-
powered antichain we have (||, =, P, 7, T) =9 AN d A g, So
JU|, <, P, w, mm,y =0, but 7 is of type < so A E=a. U = B(LL) so
BEF. Also B= . Since |B| is infinite we can define R, p,, and
0. such that (|B|, <, R, 0, ) =Y. But = —(v—o0,) so {B|, <,
R, 0, 0.) E@ AY A 0,. This means B’ has no k-powered antichain,
which contradicts its construction. We have just proved

THEOREM 5.1. Craig’s theorem fails in LZI® in that there is o
valid implication of L2 which has mo interpolant in LF*. (No as-
sumption «.)

This result may be contrasted with the unpublished result of
Stavi who showed that if £ is uncountable and regular then there
is a valid implication of L. which has no interpolant in L7,

Actually, if we assume £ > @ then we know U = B(L). This
means we can then strengthen the result to say that there is a valid
implication of L} with no interpolant in L.

As was pointed out in [2] a more general result which implies
Theorem 5.1 is that which says that if L is any language in which
theory of the square of a structure is interpretable into the theory
of the structure with pairing functions added, if in L one can express
the notion of pairing functions, and if there are two infinite structures
whose squares do not preserve their I, equivalence, then Craig’s
theorem must fail in L.
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