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FINITE GROUPS WITH CHEVALLEY-TYPE COMPONENTS

N. BURGOYNE

This article contains the proof of one part of the un-
balanced group conjecture of Aschbacher, Thompson and
Walter.

1. Introduction. In [13] Thompson discussed simple groups X
such that O(Cy(@)) + 1 for some involution @€ Aut X and sketched
a proof of the theorem stated below in §3. The key to this proof
is a recent result of Aschbacher [2]. Some detailed properties of
Chevalley type groups over finite fields of odd characteristic are
also required.

The purpose of this article is to prove the necessary properties
of Chevalley type groups (see §§5 and 6). To motivate these results
it seemed worthwhile to review the arguments in [13]. This occu-
pies §§3 and 4.

2. Notation. Let X denote a finite group, then

InvX={aeX:a®*=1, a+ 1}
Comp X ={Y: Y X, Y=Y, Y/(Y) quasi-simple}
L(X) = product of all YeComp X .
For properties of L, in particular L-balance and its implications,
see [5].
# = {X: L(X) simple, C,(L(X)) = 1}
A ={Xe&:00Ca)) #1 some aclnv X}.
For convenience, the known groups in ._# are divided into four
disjoint families.
A, ={Xe . #:L(X)= Lyq) or 4,, ¢ = odd}
Ay ={Xe #: I(X) = L(4) or Held’s group [9]}
M={Xe #:I(X)= A, n=9 and odd}
A ={Xe #: LX) a Chevalley type group of
odd characteristic, but not an L.q)} .

In general, our notation follows Gorenstein [7].

3. The grand conjecture. This states that .# = _#Z U . Z U
AU 7. Thompson’s attack on this conjecture starts with the follow-
ing proposition. Its proof depends on several long and difficult results.
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PROPOSITION. Let Ge _#Z and assume |G| minimal subject to
Ge¢ #ZU 44U #4U #,. For aclnv G let I', = {BelnvCya):
O(Ce(@)) N Ce(B) & O(Cs(B))}.  Then,

(i) I, is monempty for some a € lnvG.

(ii) If Bel', and D = O(Cg(a)) N Ca(B) then there ewists a Y €
Comp Cy4(B) normalized by D and such that [D, Y/O(Y)] # 1.

Proof. (i) If SCN,(2) of G is empty then by [11] G has sectional
2-rank at most 4. Hence by [8] G is a known group. Thus if (i)
is false, since SCN,(2) is nonempty, the results of [4], [6], [1] may
be used. They imply that G is known.

(ii) An extended form of L-balance, see [5], implies that D
normalizes each element of Comp C.(B). Since D & O(CyB)) the
result follows from elementary properties of L.

Let G,a,8,D,Y be defined as in the proposition. Then a
lemma in [6] gives Y* = Y and [a, Y/O(Y)]# 1. Put M={a, D, Y)
and M* = M/Z*(M) then M*e_# and so, by the choice of G, M* e
#; for some t€{l, 2, 3, 4}.

THEOREM. M* ¢ _/,.

The proof will be given in the following sections. The result
of [2] will be used in the following form.

ASCHBACHER’S THEOREM. Let Xe . #,7veInv X, L € Comp Cy(7).
Suppose L has 2-rank equal to 1 and ve L then Xe _#,.

The grand conjecture directly implies the B-conjecture, namely;
B(G) 2 B(Ny(T)) for any finite group G and T any 2-subgroup of
G, where B(X) = product of all YeComp X with Y not quasi-
simple.

4. Proof of the theorem. Let G, a, 8, D, M, M* be defined
as in §3 and assume M*e_#. Using Aschbacher’s theorem and
the results proved in §5 and §6 we proceed, as in [13], to obtain
a contradiction.

Let EC D and let A/B be some section of G: we say that
{(a, E) ‘acts properly’ on A/B if {a, E) normalizes A and B and
Cio.n)(A/B) is a proper subgroup of E (possibly 1). Thus F # 1 and,
to begin, we know that {a, D) acts properly on M*,

Step 1. By Proposition A of §5 (with X=M*, t=a and Y=F)
there exists 7* € Inv M* and S* € Comp C;(¥*) with S* = SL,(¢q) for
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some odd ¢, (v*) = Z(8*), and {a, D) acts properly on S*.

Choose S, to be the full inverse image of S* in M and put
S, = 8,“’. Choose 7elInv Z*(S,) so that [v,a] =1 and put S=
Cs, (7). By -construction, veCy<a, 8)) and so ¥ normalizes D.
Put D, = Cy(7) then, since [D, V]S DNO(S) = D, we see that {a, D>
acts properly on S/O(S).

Since S <]<] C,(7) therefore SeComp C.((B,7)). Let K be the
normal closure of S in L(Cy(Y)). Then by L-balance either,

(a) KeCompCy7) and K* = K, or

(b) K = KK, with K,, K,eComp Cx(7), Kf = K, and K/O(K)=~
SL,(q) % SLy(q).

Furthermore, {a, D,> acts properly on K/O(K) and, in case (b), on
each K,/O(K,). In case (a), since v <€ K, K/O(K) is a nontrivial cover-
ing of K/Z*(K).

In the next two steps we will show that cases (a), (b) both lead

to the following configuration:

W~ Z,%x Z, is a subgroup of G with N,, N,eComp CxW)
such that, if N = N,N,, then N/O(N) =~ SL,q) x SL,(q) for
some odd ¢, WS Z(N), and {(a, E> acts properly on each
N,JO(N,) for some K< D,

(%)

Step 2. In case (a) put J=<a, B, D,, K) and J*=J/Z*(J). Then
J*e 2 and so J*e _# for some 1€{l,2, 8,4}, ' If J*e_# then
Aschbacher’s theorem (with X = G, L = K) contradicts our choice
of G. If J*e_+«, then, since Held’s group has no proper covering,
L(J*) ~ L(4) and the calculation in §6 yields a contradiction. If
J* € _# the results in [12] contradict the choice of G. Hence J*¢
.#,. In this case we may use Proposition B of §5 (with X = J*,
t=a, s=p8 and L = KO(J )/O(J)). This gives configuration (x) in
KO(J)/O(J) and arguing as in the second paragraph of Step 1 we
see that () also occurs in G.

Step 3. In case (b), since ¥ e Z(K), we may choose o € Inv Z*(K)
with o # 7 and so that o normalizes {a, D,>. Hence [p, @] =1 and
putting D, = C, (p) we see, as in Step 1, that {(a, D,> acts properly
on each K,/O(K,). Then W = (v, o) and N = C(W)* give the con-
figuration (*).

Step 4. We may assume (x). Put {3,) = N, W, so that W=
{6, 05y, and put C = G4(6,). Then, by L-balance, we have N< L(C).
Hence W< L(C) and so 0, normalizes each element of Comp C. Thus
if H, is the normal closure of N, in L(C), then H,cComp C.

Suppose [H,, §,]SO(H,). Then H, = O(H,)Cy(d,) and, since
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N, <]<|Cy,(0;), we have H, = O(H,)N,, By Aschbacher’s theorem this
contradicts our choice of G. Thus [H, d,] &€ O(H,) and, since d, € H,
we must have H, = H,.

Put H={(H,a, E) and H* = H/Z*(H) and put o6F, N} for the
images of d,, N, in H*. Then N*eComp C%(6F) and N* = L.q)
while (87> € N;* =~ SL,(q). By Aschbacher’s theorem H*e_# and
so Proposition C of §5 applies (with X = H*, R, = N, and » = 0).
We have H* =~ By(q) and, since (e, E) acts properly on each N},
a contradiction.

Hence M* ¢ _#,.

This last step, the reduction to the seven dimensional orthogo-
nal group B;(q), is at the heart of the argument. This point is
made in the closely related work of Walter [14].

5. Results on Chevalley-type groups. We now apply the
methods of [3] to prove Propositions A, B, C. Together with the
arguments in §6, this will complete the proof that M* ¢ . 7. At
several points the proofs of the propositions reduce to case by case
calculations. These are always straightforward applications of the
theory in [3] and are therefore omitted.

The notation of [3] is followed closely: thus G will now denote
a connected, simple algebraic group over an algebraically closed
field k. T is a maximal torus of G and X(T), I'(T) are the associ-
ated lattices. 2 is the root system in X(T) and W = Ny (T)/T the
Weyl group. We assume that rank G =+ is = 2 and that the
characteristic of & is p, an odd prime. Since G is simple we may
take X(T) to be the adjoint lattice, i.e., spanned by 2. Let II =
{a, ---, a,} be a simple root system in ¥ and {7, ---,7,} the dual
basis in I(T). Let a, = — (ma, + --- + m,«,) be the low root in
3 relative to I7 and &, e I'(T) its co-root.

To avoid confusion with the above notation, the involutions
«, B, 06, -+ occurring in §§1-4 are replaced by lower case latin
letters. Since the calculations of this section are completely inde-
pendent of the earlier sections this should not cause any trouble.
Note that if H is some connected reductive algebraic group then
E(H) is used to denote its maximal semi-simple subgroup and F(H)
to denote the largest central torus of H. Thus [E(H), F(H)] =1
and E(H)F(H) = H (see [3] §2). Context should enable one to
avoid confusion with the corresponding symbols in finite group
theory.

In the following table we list (1) the simple Chevalley groups
and their extended Dynkin diagrams. Each simple root is numbered
and «, is denoted by *, (2) a representative in T for each class of
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involutions in the group. Here “%,” is short for %(—1)e T, (3) the
(quasi) simple components of the centralizer of each involution.
Certain obvious conventions are used: 4, = B, =C, =1, A, =B,=C,
B, =C,, A,= D, and D, is not simple and should be omitted while
D, has two components, each of type A,.

Similar results for the graph automorphisms are tabulated in

§ 4.3 of [3].

The methods of [3] are to a certain extent based on the earlier

work of Iwahori

[10].

This useful paper contains several very

detailed computations of classes and centralizers of involutions.

Group Involutions Components
A, r=2 y O* y; 1<e<(r+1)/2 A, A
10—-—0r
B, r=>3 /.* 7 1<4<yp Bi 1y Dr_iiy
O=0— —*.\
1 2 or
C. r=2 O=0——0=0 71 Ay
1 2 r * .
7, 2<i<(r+2)/2 Cic1y, Croina
D, r>4 10 O* 71, () A,
/O— —O\ 7: 3<i<(r+2)/2 D;yy, Dryia
20 3 OT Nr r—1
EG O* 71 D5
(136 7]6 Al, A5
|
O—0—0—0—0
1 2 3 4 5
E; (I) 7 Ai, D
0—0—0—0—0—0—0 7 By
* 1 2 383 4 5 6 N7 A
Eg ?8 i D,g
0—0—0—0—0—0—0—0 o Ay, B
1 2 3 4 5 6 7 *
Fy ?—-O=.—.—g 71 B,
2 3 4 N4 Ay, Cs
GZ Oo=0—0 e Al, A1
1 2 *
@ =long root. In D,, » and 7, are (are not) conjugate if » is odd (even).

The finite groups corresponding to G are the fixed point sets
G(p) = {geG: pg = g} where p is a finite type endomorphism of G

(§5.1 in [3]).

We may assume that o stabilizes T and hence p =

1,0, where 1,9 = ngn~' with ne€ Nyg(T), and o is in standard form
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relative to T and I, i.e.,
OB, o(E) = Tuoo(£%) all aell, tck

where @ — oo is a permutation of I7 and ¢, is a power of p. The
distinet pairs G, ¢ produce all possible finite Chevalley type groups
G(o) (and G(o) = G(p) when p = 1,0).

By the lemma below, G of type G, will not occur, and hence,
since ¥ = 2 and p = odd, we have L(G(o)) = O*(G(s)). Thus there
is a natural embedding L(G(0)) S G(0) S Aut L(G(o)) with G(c) con-
sisting of all the inner and diagonal automorphisms. The usual
notation, e.g., A,(q), Byq), *Eyq), --- is used to denote the simple
groups L(G(c)). In all cases which occur below, q, = q for all a € II.

If we W is the image of me Ny (T) then p = 1,0 induces the
action p = wo on I'(T) (§2.3 in [3]). Since most calculations take
place in I'(T') we usually describe o in this latter form.

Let X e _#; then we may find G, p satisfying L(X) = L(G(p)).

LEMMA. Let Xe 7, telnv X and Y = O(C,(t)) # 1, then
(a) (LX), t Y)<SG(p)

(b) L(X) is mot one of *Dy(q), Exq), Fi(q), Gq), *GAq)

(¢) |Y| divides ¢ — 1 or q¢ + 1 (in particular ¢ == 3).

Proof. If ¢t induces a field or graph automorphism then O(C,(t))=
1 as follow from §§5.5. and 4.3 in [3]. Hence teG(p). Since [Y,
L(C4(%))] = 1 no element in Y can induce field automorphisms or (in
the case of D,) graph automorphisms and hence Y S G(p). This
proves (a).

Using the classification in §3 [3], with 4 =1 (see the above
table), we may assume t = 7,(—1) for some 1 =i =7r. If Cut)
is semi-simple then, since X(T) is adjoint, Z(C.(t)) turns out to be
a 2-group. This follows from inspection of the table (the only case
that needs further calculation is the involution 7,(—1) in E;). Hence
F(Cyt) =1 (§2.1 in [3]) which implies that m, =1 in the expan-
sion of a,. This is immediate from the description of the centralizer
subgroups as given in §4 of [3], see also Proposition 8 of [10].
This eliminates groups of type E;, F,, G,. If L(G(p)) = *D,q) then
© permutes cyclically the three involutions with m, =1 and hence
no conjugates of them can lie in G(p). This proves (b).

Since t=7(—1) and m, =1, F(Cyt)) = {):Lek*), and so
Y 0): (o —1)mi(C) =1, Lek*). Since pn, = =+ qn,, this proves
(e).

PROPOSITION A. Let Xe #, telnvX and 1# Y O(C.())
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then there exists welnv X such that Se€Comp Cr(u) where S~
SLyq), {u) = Z(S), and {t, Y) acts properly on S.

Proof. By the lemma we may suppose X = G(o). We choose
u = &, (—1) and put S, = (U,, U_.) (§2.1 [3]). Since @&, (—1)e8S,,
we have S, = SL,(k). By inspection of the extended Dynkin dia-
gram of G we see that S, is always a factor of E(Cy(u)). Now
N2, (O = 2,,(6C"") and hence (¢, Y) acts properly on S..
Thus it remains to show that ¢ may always be chose to stabilize
S,, for then (¢, Y) will act properly on S = S,(p).

Let v,e€ W be the unique element stabilizing the set {a, ---, @,,
.} and such that »,a, = a,. Let w,€ W be the unique element
such that w7 = —1II, and let w{" be the corresponding element for
the simple root system II — {a;}. A simple argument yields v, =
wPw,.

Let ¢ be in standard form relative to T and II. The methods
of §5.3 in [3] show directly that all possible pairs (X, ¢) occur
among (G(p), 7,(—1)) where m, =1 and p =0 or p =v,0. When
© = o it is clear that o stabilizes S, and we are done. However if
© = v,0, then pS, # S,. In this case put o’ = wo. Let n{’ e Ny(T)
be any inverse image of w{’. By the definition of w{® we see, by
§ 4.2 in [3], that x{” lies in the connected component of C,(¢). Hence,
since w, = w" v, and G(p’) =~ G(p), all pairs (X, ¢) occur (up to
isomorphism) among the pairs (G(0"), 7.(— 1)) with m;, =land p’ =0
or o' = wwo. Since w,x, = —ea,, o' stabilizes S, and we are done.

Let ¢, be some power of ¢. In faet it will turn out that ¢, ¢

{g, ¢°}.

PROPOSITION B. Let Xe _# and let L be a 2-fold covering of
L(X) and let t, seInv (Aut L) such that

(1) Y=00C:(®) #1 and [5,{t, Y)]=1,

(ii) there exists QeComp CA(s) such that Q ~ SLJq), Z(Q) <
Z(L) and {, Y acts properly on Q.

Then there exists ueInvL such that S, S, e Comp Ci(u) where
8.8, = SL,q) x SL.q), Z(S8.8,) = <u, Z(Q)> and <t, Y acts properly
on both §1 and §2.

Proof. As before, we may suppose L(X) = L(G(p)) for suitable
G, p. Let G denote the simply connected covering group of G and
lift the action of o to G, then LS G(p). Since | Z(G)| must be even
G is not of type A, (» = even) or E,.

Consider all v € Inv (Aut X) with @ € Comp Cx(v) such that @ =
Lyq,). Since r =2, by §5.5 in [3], v cannot be a field-type auto-
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morphism. If G is of type A, (r =25), C, (r = 3), or E;, then the
methods of §4 in [3] show that v must be conjugate to @,(—1).
Since S, = (U.,, U_..> is the wunique simple rank 1 factor in
Cy@,(—1)) and S,(p) = SL,(q) we conclude that G must be of type
B,(r=2) or D,(r = 3). For these cases we have, up to conjugacy
in G, the following candidates for s:

B(rz2 O=e—e—---—@ s=a,(—1) or 7,(—1)
1 2 3 r
10

D,(r =3) >o—- ©—O 5= &(—1) or n(—L)y
207 38 r

where 4 is the standard form graph automorphism interchanging
«, and a,.

Put S, = (U,, U_,) then S, = SL,(k) is a factor of E(Cy(&,(—1))
and S,S, =~ SL,(k)*SLyk) with {(&,(—1)) = Z(S,S,). As in the proof
of Proposition A, we see that if ¢ = 7,(—1) then. (¢, Y) acts pro-
perly on both S, and S, except in one case, namely ¢ = 7(—1) (or
7,(—1)) and G of type D,. However we can show that this case
does not satisfy hypothesis (i) and (ii): Suppose s = 7,(—1)y, then
a complete set of representatives for the classes of involutions in
Cy(s)° are 7(—1) and ( + 5,)(—1) in 'y (see §4.2 in [3]) where
Ne{n, + Ny Ny +++, ,_,}. Using the algorithm in Appendix 2 of [3]
one shows that none of these involutions are conjugate in G to
either 7,(—1) or 7,(—1). TFor example (9, + 9, + 7,)(—1) ~ (9, +
Ny — Npy + 771)(_1> ~ (771 + N — N + 7]7‘—1)(—1) ~oere (771 + N —
7+ 9)(—1) ~79(—1) in G. Now classify the involutions in
Cy(n(—1)). Up to conjugacy in Cyn,(—1)) we find that we may
assume s = @,(—1). Hence if p7n(—1)=7n(—1) and seG(p), P
must always stabilize both S, and S,. Hence (S,S,)(0)=SLyq)*SL,q)
(if o flipped S, and S, then (S,S,)(0) = Lyg* X {(s)) and so hypo-
thesis (ii) is not satisfied.

Finally, note that we must have L= @(p) since hypothesis (ii)
is not satisfied for any intermediate covering when G is of type
D,. Let S, S,eComp Csz(v) where w = &,(—1). Then §,S, =
SL,(k) x SL,(k) and Z(S,S,) = {(w, Z(Q)>. As in the final step of
the proof of Proposition A we can choose p to stabilize 7(—1) and
S, and S, and hence are done.

PrROPOSITION C. Let Xe _#, relnv X, R, R,cComp C(r) such
that R, = Lyq), R, = SL)q) and {r) = Z(R,) then

(a) L(X) = Byq) and

(b) there is mo teInv X with Y S O(Cy(t)) #+ 1 such that {t, Y)
acts properly on both R, and R,.
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Proof. (a) follows from inspection of the centralizers of all
elements in Inv (Aut X), (I(X) = L(G(p)), as before). For this, see
the above table and related facts in [3].

So G is of Type B,, We make take r=a,(—1) and since [¢,7]=1
can look for possible t’s in Cy(r). With S; = (Us;y U_;) we have
Cy(0) = 8,8,S,. where S, = L,(k) and S,S, =~ SL,(k)xSL,(k). Elements
in Cy(r)/Cy(r)® flip S, and S, and so teCyr) (if it exists). There
are 5 classes of involutions in Cy(r)° with representatives 7(—1)
where 7 €{n, Do D1 + Vo % + s . + 7). Only 7(—1) with pe{n+
Ny N; + 7} are conjugate in G to 7,(— 1) (in B, only m, = 1). Since
a, = — (2a, + 2a, + ;) and since Y S ({):Lek*) we see that
{t, Y) centralizes S, and S, if y=% +n, and S, if p =79, + 7,
Hence there is no such ¢ and (b) is proved.

6. The Lg4) case. In Step 2 of the proof in §4 the case
L(J*) = L,(4) may be eliminated as follows:

The involutions inside L,(4) have solvable, core-free, centralizers
and hence both «, 8 induce outer automorphisms on L(J*). Put
J =J/O(J) then L(J) is quasi-simple. Put S = SO(J)/O(J) then
S ~ SL,(q) and SeComp C7(8) (and ¢ =5 or 7). This implies, by a
direct calculation on L,(4), that L(f ) is the full 2-fold covering of
Ly4) and Cy5/(B) = (p)+S where pe Z(J), (p* = Z(S) and p*=p"".

Since Z(S) = (v> we may choose peC,(8), an inverse image
of o, satisfying p* = 7. Then p normalizes but does not centralize
M(see §3). Put M, = <M, p) and M* = M,/Z*(M,) and, for conveni-
ence, let «, p, 7 also denote the images of these elements in M?*.

We may assume that «, 7 are chosen as in Proposition A of §5.
Since P e Z(J) therefore p centralizes every element of Comp Cs(7).
By the general structure of Cj (7) (see §§4 and 5 in [3]) we must
have pe{a@,():{ek*) and hence p and a = 7,(—1) commute. This
contradicts the fact that 0 is inverted by a.

The author wishes the thank M. Harris and R. Solomon for
helpful comments and is also indebted to the referee for numerous
useful suggestions.
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