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If K is a field and char K} n, then any binomial
x2"—b € K[x] has the property that K(a) is its splitting field for
any root « iff a primitive nth root of unity {, is an element
of K. Thus, if {,€ K, any irreducible binomial x* — b € K[x]
is automatically normal. Similar nice results about binomials
z* —b (Kummer theory comes to mind) can be obtained with
the assumption , € K.

In this paper, without assuming the appropriate roots of
unity are in K, one asks: what are the binomials z™ —ac
K[x] having the property that K(«) is its splitting field for
some root a? Such binomials are called partially normal.
General theorems are obtained in case K is a real field. A
complete list of partially normal binomials together with
their Galois groups is found in case K — @, the rational
numbers.

This is a continuation of work begun in 1926 by Darbi [1] and
Bessel-Hagen (see [8], p. 302) who determined all normal binomials
over Q. Recently, Mann and Vélez [5] considered binomials having
a weaker property than normal but stronger than partially normal,
namely, K(e) is the splitting field for any root «. They obtained
a complete classification of such binomials together with their Galois
groups in case the ground field is Q. In a similar direction, but for
arbitrary ground field, Schinzel [7] has characterized two types of
binomials: (a) those with abelian Galois group and (b) those whose
polynomial degree is a power of a prime and which are products of
normal factors.

The central role played by partially normal binomials in the
general structure theory of pure extensions has been pointed out by
Norris and Vélez in [6]. The results of Darbi and Bessel-Hagen,
Mann and Vélez have been generalized for real fields by Gay [3].

In §2, we create a general setting by considering partially normal
binomials over a typical real algebraic number field. (We have chosen
this general setting to begin with in order to give more insight and
to sketch how the results of this paper might be generalized to real
fields.) In §3, we return to the rational numbers, apply the results
of §2, and state a classification theorem. Sections 4 and 5 are devoted
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to proving this theorem. Finally, in §6, we compute the Galois
groups of these binomials.

2. Generalities on partially normal binomial extensions of
real fields. In what follows we let R denote a fixed real algebraic
number field. This section will be devoted to consequences of the
following.

DEFINITION. The binomial 2™ — @ € R[#] is partially normal over
R if there is a root a of 2™ — « such that R(«) is the splitting field
of 2™ — a over R. Such a root « is called a generating root.

Let £, be a primitive nth root of unity. Let ¢z(n) = [R((,): R].
Thus ¢, is an Euler’s ¢-function relative to the field R. In particular,

go(n) = ¢(n).

PROPOSITION 2.1. The binomial 2™ — a € R[x] is partially normal
over R iff there exists a root ¥ of a™ — a such that R(E,.) = R(7).
Furthermore, if ™ — a 1s partially normal over R with generating
root «, them there is a positive integer s such that [R(®): R] = s¢z(m),
R@®) = R&,) and x* — a* is the minimal polynomial for a over

R(C.).

Proof. The first statement of the proposition follows from the
fact that if 0 is a root of 2™ — @ then all the roots are 9, {,0, {20,
ee., LI,

To prove the second statement, we note that from the first
statement R({,) & R(a). Let s =[R(a): R(,)]. Then [R(a): R] =
s¢x(m). Now let f(x) be the minimal polynomial for a over R((,).
Then f(x) is of degree s and

F@) =11 @ — Lia).
The constant term of f(x) = +a° [[3-.£¥ and is in R(,). Thus a’¢
R(,). Since 2° — a® is a polynomial of degree s over R({,) with a
as a root, f(x) = 2° — a°*. This together with the fact R(a®) < R(,)
forces R(a®) = R(..).

In what follows, we choose a fixed binomial z™ — a, partially
normal over R with generating root a and s = [R(a): R((,)] as in
Proposition 2.1. Let 8 = ¥]a], the real, positive mth root of |a|.
Let ¢ be the smallest positive integer such that 82¢ B. The following
results will tell us something about the relationships among 3, s and
g and their limitations. First, two lemmas.
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LeMMA 2.2. Let 7 be algebraic over a field F with v" e F and
x" — Y irreducible over F. Then 7' e F (t a positive integer) implies
rlt.

Proof. If 7" e F and 2" — 7" irreducible over F', then [F(7): F] =
r. Thus, if Y"eF,t=»r. If r}t, then write { = ar + b with 0 <
b < r. Hence 7' = (7)™ or ¥*e F, a contradiction. Thus 7|¢.

LEMMA 2.8. Let K be an abelian extension of the real field R.
Suppose e € R with ¢ >0 and ¥ a ¢ K (¥ a is a real mth root). Then
(¥ a)eR.

Proof. This is a standard result in Galois theory. See [5],
Lemma 1.

PROPOSITION 2.4. We have (a) s|m and q|m; (b) B8*€R; (¢) if
B°c R, then q|s and tf B°¢ R, then q|2s.

Proof. (a) From Proposition 2.1 2° — a* is irreducible over R({,,).
But also @ = ¢ € R. Thus from Lemma 2.2, s|m. By an argument
similar to the proof of Lemma 2.2, q divides any positive integer ¢
such that e R. Thus ¢|m.

(b) Now a = {38 where e =0 if ¢« >0 and e =1 if a <0.
Thus «° = £¢e.6° € R(,,) by Proposition 2.1. Hence 8° ¢ R(,;,.). By
Lemma 2.3, B° is either an element of R or is the square root of
an element of E. In either case, 8 € R.

(¢) By (b) and the proof of part (a), q|2s. If, in addition,
B e R, then q|s.

The following result delineates ¢ and s more precisely:

PROPOSITION 2.5. (a) If @ >0 or a <0 and q even, then B°c R
iff ¢ = s.

(b) If a <0 and q odd, then B°€R iff ¢ = s or s = 2q.

() B eR iff ¢ =2s.

Proof. (a) Suppose S°c R and e > 0or a < 0 and g even. Then
a! = (53058 e R(L,). Hence, by Proposition 2.1 and Lemma 2.2, s|q.
By Proposition 2.4 (¢), ¢|s. Thus ¢ = s. The converse is obvious.

(b) If p*°eR,a <0 and ¢q odd, then a* = {2/(s5* ¢ R({,). Thus
by Proposition 2.1 and Lemma 2.2, s|29. But by Proposition 2.4 (c¢),
g|s. Thus s =¢q or s = 2q. Again the converse is obvious.

(¢) Suppose B°¢ R. Thus by Proposition 2.4 (c), ¢|2s. Further-
more, ¢ must be even. Thus a’¢c R({,). Again by Lemma 2.2, s|q.
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Thus s = g or 28 = q. The former cannot happen since 8°¢ R. Thus
2s = ¢. The converse is easy.

The following result will enable us to narrow the possibilities
for s considerably.

PROPOSITION 2.6. In all cases ¢z(m) < 2¢(m/s). In particular,
if @ >0 and B°€ R, then gz(m) = gx(m/s); +f a <0, and £5°c R, then
$n(m) = px(2m/s).

Proof. We have a = {3(,8. Thus a* = {%.(.,.8°€ R(C,.,.).
Consequently, sgx(m) = [R(@): R] = [R(@): R(/)I[B(Cn/s): Bl < 25¢5(m/s)
or gp(m) = 2¢x(m/s).

If >0 and B°€R, then @ = {},,8°€e R(,,.)- Thus ¢(m) =
op(m/s). If s =2q, then by 2.5 8°c R and a’ = {5,(,,.8°€ R(Coso)-
Thus éx(m( = ¢x(m/q) = ¢(2m/s). Finally, if ¢« < 0,8°€R and q = s,
then @ = (4,,8on/:8° € R(omss) & R(C,). Thus ¢i(m) = ¢x(2m/s).

3. Partially normal pure extensions of the rationals. In this
section we will apply the results of §2 to the field R = Q. Without
loss of generality, we consider (as in [4]) only those binomials 2" — ¢
with ¢ an integer. The following lemma will enable us to use Pro-
position 2.6 directly. We use the notation p°||m, for prime p, to
mean p*|m but p*™ ) m.

LEMMA 3.1. Let d and m be positive integers with d|m.

(a) If ¢(m) £ 2¢(m/d), then d =1,2,8,4 or 6. In case d = 6,
then 2||m; if 3|d, then 3||m; +f d = 4, then 4||m.

(b) If ¢(m) = ¢(m/d), then d = L or 2. In case d = 2, then 2||m.

Proof. Part (b) is obvious. To prove part (a), we first make
an observation. Suppose one of the following occurs:

either p|d with p a prime >3,

or 9/m and 3|d,

or 8|d,

or 4||d and 8|m,

or 6|/d and 4|m.
Then ¢(m) = 3¢(m/d). Thus, in order that s(m) = 2¢(m/d) be true
we must have

(i) d=1,2,8,4,6 or 12; (ii) if 3|d then 3||m; (iii) if d = 4,

then 4||m; and (iv) if d = 6, then 2||m. The case d = 12 is impossible,
as is easily checked.
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COROLLARY 3.2. If z™ — a is partielly normal over Q, then
s§=1,2,3,4, or 6.

The following result limits s even more and relates its value to
the rationality of &°.

ProrosITION 3.3. (a) B°€Q and a > 0 implies s =1, 2 (s = q).
(b) £°cQ and a <0 implies s=1,2 (s=¢q) or s=2,q = 1.
(¢) £°¢Q implies s=1,2 or 3 (¢ = 2s).

[We shall see later that all these possibilities can actually be
realized.]

Proof. (a) By Proposition 2.6 and Lemmza 3.1, s =1 or 2. By
2.5, g = s.

(b) If a <0 and S e R, then by 2.6 ¢(m) = ¢(2m/s). If q is
even, then ¢ = s = 2s, by 2.5. Thus by 3.1 (b) s, =1or2. Ifs =
2, then 2|/m. But s = 4 implies 4|m (2.4). This is a contradiction.
Thus ¢ =s=2. If q is odd, then by 2.5 (b) g =s or 29 =s. If
q = s, then Q) = Q@) = Q(l/Lomse) S Qoms)- This can happen
for ¢ odd only when ¢ = 1. On the other hand, if s = 2¢, then ¢(m) =
#(m/q) so that, by 3.1 (b), g =1 (s=2)orqg=2(s=4). If ¢ =2,
then 2|/m. But again s =4 implies 4|m, a contradiction. Thus
qg =1,s = 2. This completes the proof of (b).

(¢) If B*¢Q, then we know ¢(m) < 24(m/s) (2.6) and ¢ = 2s (2.5
(e)). From the first statement we know s =1, 2, 3,4 0r 6 (3.1). But
if s = 4, then ¢ = 8. Since ¢|m, this contradicts 3.1. Similarly, if
s = 6, then ¢ = 12 and 12|m contradicting 8.1. Thuss=4and s =6
are impossible. We conclude that s =1, 2, 8 with ¢ = 2s.

COROLLARY 3.4. If z™ — a 1s partially normal over Q, then
there is a positive integer b such that either a = =b™, a = b2,
o = £b™", or @ = £b™°.

Corollary 3.4 marks out the possibilities for partially normal
binomials over @ quite clearly. The following theorem (our main
result) gives necessary and sufficient conditions for when one of these
admissible binomials is actually partially normal.

THEOREM 3.5. Let m and b be positive integers. Then

(1) a™—b™ is partially mormal with s = q =1; 2™ + b™ is
partially normal with s = 2,q =1 (m even) or s = q =1 (m odd).

(2) a™ — b™? is partially mormal with s =q = 2= 2||m and

Vbe Q).
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(3) z™— bd™* 45 partially mormal with s =1, ¢ = 2 = either
VbeQ(C,z) and V'b¢Q or V5eQU,),VbeQ(,,) and 4||m.

(4) z™+ b is partially normal withs=1,¢=2=1"0¢c Q)
and Vb e QE,).

(5) a™+ b™? is partially normal with s = q =2 =1"b¢Q(,.,)
or VbeQ,) and V' beQq.

(6) a™—b™* is partially normal with s=2,¢g=4—=1"be
QL), V'b¢ QL) and 4|m. _

(7) a™ +b™* is partially normal with s=2,9g=4=1"b¢
Q&,..) and 1'b¢Q.

(8) ™ —b™" is partially normal with s=3,¢q=6<=1"be
QL) V' b¢Q(L, and 2| m. _

(9) a™+ b™° is partially normal with s=3,¢=6=1"be
Q(Cm)y -l/—b—é Q(Cm) and 'l/_b_g Q(sz/3)~

We will prove this theorem in §5 after stating and proving some
useful lemmas.

4. Square roots and generators of cyclotomic extensions. In
this section we will state and prove some results which will be used
to prove our main Theorem 3.5. These results are independent of
the rest of this paper and are partial responses to the following
question: for what positive integers b, m, n is it the case that
Q. b)) =Q(,)? We will use (implicitly) the following known result
from Galois theory. (See, for example, [2] p. 240.)

LEMMA 4.1.

(A) If p is an odd prime, then V pcQ(,) iff p =1 (mod4)
and V' —peQK,) iff p =3 (mod4); V=1eQ); V' 2eQ().

(B) Let b be a square free integer. Then, f m is odd, blm
W Vb oor V—b0eQ{,) = Q) Wf V5eQ(l,) iff V—-beQ(un)-
Further, if 8|m, then V' bcQ(,) iff b|m.

LEMMA 4.2. Let m and b be positive integers. Then

(A) If m is even, then V b e Q(,), V' b Q,), and 1V b ¢ QL)
i QlonisV D) = Q).

(B) If m is odd, then V' 0eQK,), Vb€ Q) iff QCusV D) =
Q...

Proof. (A) It is sufficient to consider the case where b is square
free. Now V 0e€Q(.,.) and V' b¢Q,., implies 3||m. Similarly,
1V beQ.) and 1 b¢Q(,) implies 8  m. Thus there are two pos-
sibilities: (a) 2||m in which case b = 3b, with (b, 6) =1 land 170, ¢
Q.. and (b) 4||m in which case b = 6b, with (b, 6) =1 and 1/ b, ¢
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Q(,/s). In both cases Q(,, s ) is an extension of Q({,,,). In case
(a),

Q(LonssV B) = Qs LlmssV 31D
= QL LV'3)
= Qs V' —3)
= Q(,.);

and, in case (b),

Q(sz/s-l/?) = Q(Conss CBCWIJ/?VEV b,)
= Qs LsV'2V3)
= Qs L +V'3)
= Q(Cm/s: -‘/g)
= QCn) .

Conversely, suppose Q (L, ) = Q(C,). Thus omist b€ QL)
and, therefore, 1 beQ(,,). If also 1 beQ(,), then also Ly € Q(C,)
contradicting the fact that m is even. Thus 1 b¢Q({,). Finally,
if V'be€Q(,m), then Q) Q) Which is impossible. Thus also
V'8¢ Q). This completes the proof of (A).

(B) Again we may assume without loss of generality that b is
square free. Now 1/ beQ(,,) and V' b ¢ Q(l,,,.) implies 3||m, b = 3b,
and V' —b,€ Qsm) = Qo). Thus, since Q1 b) is an extension
of Q(,.), we have

Q(Cm/:ﬂ/T) = Q(Cm/s; ngv_——_lh)
= Q(lesr v '—3)
= Q) -

The proof of the converse is analogous to that of (A).

LEMMA 4.3. Let m and b be positive integers with m even.
Then

(A) The following statements are equivalent

(i) V0eQ(:y) and V' 5¢Q(,)

(i) QwV'D) = Q)

(iii) either 2||m, the square free part of b is odd and V' —be
Q) or 4||m, the square free part of b is even and V' b_/-Z_ e Q.-

B) 2/m, Ve and V¢ Q(L,) = QL. b) = QCsm)-

__Proof. (A) We will show that (i)= (iii) = (ii) = (1). Suppose
V' beQ(,,) and V' b5¢Q(,). Thus 8.t m. It follows that, since m
is even, either 2||m or 4||m. In the first case it also follows that
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the square free part of b must be odd and that V" —bc¢Q{,). In
the second case it also follows that the square free part of b is even
and V' b/2€Q(,). This shows that (i) implies (iii).

Now assume that (iii) holds. Clearly Q({,,V b) is an extension
of Q(,). Thus, in case 2{|m,

Qv 8) = QC» Low?V D)
= QU LLupV ' b)
= Q(¢m V' —b)
= Q) -

In case 4||m,

Qe T) = Q8w GEniv T 1)

= Q. LV 2)
= Q) -

This shows that (iii) implies (ii).

That (i) implies (i) is obvious. This completes the proof of part
(A) of the lemma.

(B) If 2|lm, vV beQ(, and V' b5¢Q(,), then vV —bec Q).
Furthermore, Q.1 b) is an extension of Q. = Q(¢,). Thus

QLD = Qs LV D)
= QL VD)
= Qs 1V —D)
= Q(Cszr %)
= QL) -

Conversely, suppose Q1 b) = Q(&,,). It follows easily that
VbeQUwm). If also V' beQ(,), then Q,,) < Q(,) contradicting
the fact that m is even. Thus 1" b€ Q(,,) and V' b¢Q(,). By part
(A) of the lemma, either 2||m or 4||m. We will show that the latter
is impossible. Indeed, suppose 4|m and Q(,V b) = Q). On the
one hand, Q(,,) is an extension of Q((, . of degree 4. On the other
hand, Q.1 b) is an extension of Q(,,) of degree at most 2. Thus
4|lm cannot happen and part (B) of the lemma follows.

5. Proof of Theorem 3.5.

(1) This is easy.

(2) In this case @ =1/ b and thus Q@) = Q(¥) = Q(,.).
Consequently, 2||m and Vb ¢Q(,).
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Conversely, if 2||m and Vb ¢ Q(,.), then Q(, 1/ b) is an extension
of Q(L,) of degree exactly 2.

(8) In this case, a =1/ b, s =1 and Q(a) = Q(,). Thus
V'beQE,). Ifalso 1V b¢Q(,,:), then by Lemma 4.3 (A), QD) =
Q(&,..). Thus (j,m)=d = 1. Consequently, Q({,) = Q.. v b)=
Q& V') is an extension of degree 2 over Q(,.). This can
happen only when d =2 or 8. If d =3, then by Lemma 4.2
Ql.sV' b) = Q.. which is a contradiction. On the other hand, if
d = 2, then Q. b) = Q(,). This and Lemma 4.3 (B) then implies
4||m.

Conversely, suppose V' b€ Q((,,,). Then Q,V b) is an extension
of Q) and QLY 0) = Qs LuV' B) = Qs L) = Q). Thus
a =,V b generates the splitting field of 2™ — b™* which is therefore
p.n. (partially normal) with s = 1. On the other hand, suppose 1/ b ¢
Ql.), Vb eQ(,,;) and 4||m. Then by Lemma 4.3 (B), Q.. b) =
Q,.) so that 2™ — b™* is p.n. with s = 1,

(4) If a =i,V bgenerates the splitting field of 2™ + b™?
with Q(a) = Q(£,), then clearly 17'b € Q(,,) and V' b ¢ Q(K,).

Conversely, suppose ' b€ Q(,,) and 1/ b ¢ Q(,). Then by Lemma
4.3 (A), Q& V' b) = Q(,). Hence z™ + b™2 is p.n. with s = 1.

(5) Suppose that a = i{,,1V b generates the splitting field of
a™ + b™* and Q(a®) = Q(L¥C,) = Q(,). Then either 1/ b € Q(,) or
V' b¢Q(,). If the latter, then Vb ¢ Q(,,) also. For, if 1/beQ((sm)
and ¢Q((,), then by Lemma 4.3 (A) Qv b) = Q(,). It would
then follow that Q(a) = Q({,.) contradicting the fact that s = 2.
Thus either 1 be Q) or V' b ¢ Q).

Conversely, suppose V' b€ Q(,). Then Q(,, 1V 5)=Q(,, LmV b) =
Qo Low) = Qw). Thus a =,V b generates the splitting field of
™ + b™* so that the latter is p.n. with s = 2.

On the other hand suppose that 1"b¢Q(,,). Then Q(&,,V b) =
Q&,., L,»V b) is at most a quadratic extension of Q(Z,). If, in fact,
QLwV b) = QL) & Qn), then V'5eQ(,,). Thus Q&,,VD) is an
extension of degree 2 of Q({,). As a result, z™ + b™? is p.n. with
s = 2 with splitting field generated by &,, 1/ 5.

(6) In this case, @ = {3, ¥b with Q(,) = Q@ = Q( VD).
Thus V' beQ(,). Furthermore, Vb ¢ Q((,,,) and 4|/m using a slight
variation on the argument of Lemma 4.3 (B).

Conversely, suppose 4||m, vV beQ(,) and V' b ¢ Q(&,.). Thus by
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Lemma 4.3 (B), Qv b) = Q{,). Thus a ={,¥b generates the
splitting field of ™ — b™* forcing the latter to be p.n. with s = 2.

(7) If 2™ +b™* is p.n. with s = 2, then a = {il,, Vb and
QL) = Q) = Q(L,.L.V D). Thus vV beQ(,). We claim also that
1V 5€Q(,,). For, if not, then by Lemma 4.3 (A), (Vb€ Q).
It follows from this that

Q) = QLY b)
- Q(Cm/m CMV—E
= Q)

contradicting the fact that 4|m.

Conversely, suppose that 1V 5e€Q(,.,,). Then &, Vb is a root
of 2* — £,V b over Q(,) and, therefore, Q((,, (.., ¥ b) is an extension
of degree 2 over Q({,). Furthermore, Q, V' b) = Q(,) or Q.. ).
The latter cannot happen by Lemma 4.3 (A). Thus {,, VD generates
the splitting field of z™ + b™* with s = 2.

(8) If =15 ¥ generates the splitting field of 2™ — b™° with
Q) = Q(L,), then Vb e Q(,). Moreover, vV b ¢ Q(C,,,,) since otherwise
Q®) = QUi VD) Q). It follows from this that 3||m. Further-
more, if 4|m then [Q(,): R, .)] = 4. But [Q(a®): Q(..,)] is at most
2. Thus also 2||m.

Conversely, suppose 2||m, 3||m, V' be Q(,)and Vb ¢ Q(,.). Then
Lemma 4.2 (B) applies and Q(,,,sV b)) = Q(,). Finally, Q. ¥b) is
of degree 3 over Q({,). Thus {, ¥ b generates the splitting field of
a™ — b™° with s = 3. :

(9) If =20, ¥Yb generates the splitting ﬁild of a™ + b™/°
with Q(@) = Q((,), then clearly Vb¢Q,) and V' beQ(,,). Fur-
thrmore, 1/ b0 ¢ Q(&;n/,) for, if otherwise, then

Q(Cm) = Q(aa) = Q(C{n/aCMn/a-l/-B—) - Q(sz/s)

—clearly a contradiction. . -
Conversely, suppose V' b €Q((,,), V' b€Q(L,) and Vb ¢ Q).
Then Lemma 4.2 (A) applies and

QLonsV b)) = QL) -

Thus z™ + b™° is p.n. with a@ = &, ¥'b. Since Q(,,, V) is of degree
3 over Q(,.), s = 3.

This completes the proof of the theorem.
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We conclude this section with an example.

Lest one suspect that, if #™ — b is partially normal, its splitting
field can always be generated by a = ¢, ¥'b, consider the polynomial
2® — 3% According to Theorem 3.5 (3), this polynomial is partially
normal with s = 1, ¢ = 2 and generating root 1”3 for some positive
integer j. Thus Q(iV'3) = Q). If (4,12) = 2, then by Lemma
4.3 (B), QiV'3) = Q(L,,) follows. However, if (j,12) =1, {1/ 3 =
(HLN(FLV'8 = (£1/2)i(—1 + V=38V 3 = (£1/2)(V'—3 + 3). Thus
Qi 3) = Q(,). Consequently, {,1”" 3 is not a generating root for
x* — 3% but 13 is!

6. Galois groups of partially normal binomials. In this section
we will determine the Galois groups of the binomials listed in Theorem
3.5. We will assume the known facts about the Galois group of
Q(C,) (see [4], Chapter 8): that G(Q({,~)) is eyclic of order (p — 1)p"*
for p an odd prime and that G(Q(...)) = G(Q(,.)) x G(Q(,)) wherever
(n, m) = 1. We will also assume the Galois theoretic fact ([4] p. 196)
that if A and B are two Galois extensions of C with groups G and
H respectively, then the group (over C) of the compositum AB is
Gx Hiff AnB=C.

The following theorem determines the groups of the binomials
of 3.5 except cases (6) and (7) (which will be treated separately).

THEOREM 6.1. Let G(z™ — a) denote the group of the partially
normal binomial ™ — a over Q. Then the following are the Galois
groups numbered according to the scheme of 3.5:

(1) G@™—0b") = G@™ — 1); Gla™ + d™) = G@*™ — 1).

(2) Gl™— b = G*™ — 1).

(3) Gl™— b™*) = G(z™ — 1).

(4) Glx™ + d™") = G(x™ — 1).

(5) Gl™ + b™*") = G(z*™ — 1).

(8) G(x™— b~ = 8§, x G(z™ — 1).

(9) G(@™ -+ ™% =S, X G(z™* — 1).

Here S, denotes the symmetric group on 3 letters.

Proof. (1), (8) and (4) are clear.

(2) In this case, Q@) = Q¢ V' b) = Q. V' b). Since Vb ¢
Q(,), the group of Q(a) is isomorphic to Z,x G(x™ — 1) which, since
2||m, is isomorphic to G(z*™ — 1).

(5) TFor this case, either b€ Q((,) or Vb ¢ Q). In the first
instance, Q(@) = Q(C.nV 0) = QU LV b) = Qs Lom) = Q(Lom)- Thus
the group is G(z** — 1). In the second, let m = 2*q, ¢ odd. Then
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Q) = QLwV' b) = Q4 Lok, Lk b ). Thus the group of Q(a) is
isomorphic to G(z* — 1) X G(Q(y, L+ b)). The second factor is
G2 + b*") which for k = 3 is isomorphie, by ([4], Theorem 9), to
Z,x Zy—. Fork=1,2itis easy to check that the same result holds.
Hence G(z™ + b™?) = G(x*™ — 1) in the second instance also.

(8) Since in this case 2||m, 3||m, and V' beQ(,), we have
Q) = Qlm, V) =QU, (V)™ VD) =QUlpy, ¥Vb)=QCons» L5 ¥b).
Thus since Q) N Q&, ¥ )= Q and Q&, ¥ b) has group S,, we
conclude that G(x™ — b™°%) = S, x G(x™* — 1).

(9) If a™ + b™° is p.n., then a = {,, ¥ b and therefore {,, ¥V be
Q(). Since also {,cQ(a), we must have that ¥bec@Q(a). Conse-
quently, Q(, ¥b)cQ(a). Furthermore, Ql, ¥ b)NQC.;) = Q and
[Q&s ¥D): Q1-[Q(C,.): Q] = 3-¢(m) since 3||m. Hence Q@) = QLo
¢, ¥'b) with Galois group S, x G(z™*® — 1).

The remainder of this section will be devoted to calculating the
groups of (6) and (7) of 3.5. To do this we will use the following
lemma and its corollaries.

LEMMA 6.2. Let a and b be relatively prime square free integers.
Suppose that A and B are cyclic fields of degrees 2' and 27 over
ANB=Q such that VacA, V' beB. If i <j, then there is a
cyclic field C of degree 2¢ over Q with VabeC,CB = AB and
CNnB=AQ.

Proof. Let G,, G, be the groups of A, B respectively. Then the
group of AB is G, X G,. If o, r generates G,, Gy respectively, then
ocV'a)=—V"a and 7/ b) = —V'b. The subgroup H of G, X G,
generated by (o, 7) is cyclic of order 2/ and fixes Vab. Let C be
the fixed field of H. Then VabeC, G, x H = G, x G5 C has group
G, and the fixed field of G, is B with group H = (,. The lemma
follows.

COROLLARY 6.3. Let a, ---,a, be pairwise relatively prime
square free integers, K, a cyclic field of degree 2 with Va, e
K, (i=1,---,n) arranged so that j,. < §, < +++ £ 7,. Assume that
K, N K; = Q whenever © + j. Then there exists a cyclic field K, of
degree 2t with V'aa, -+ - a, € K, and a field K such that K,N K = Q
ond K,K=KK,---K,.

Proof. Use the lemma and induction on %: successively construct
pairs of fields J, L, such that J, is eyclic of degree 27t containing
vae,---a,J;NL =@Q and JL, = KK,--- K,., Then K,=J,, K =
L, satisfy the conclusion of the corollary.
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COROLLARY 6.4. Let m and b be positive integers such that m
is odd and b is square free. Let b = p,p,+--p, be the prime fac-
torization of b and, for 1 =1, -+, n, let j, be the positive integer
such that 2%(|p,—~1. By relabelling, if necessary, assume that j, =
G, < <er = 4. Then, iof V' beQU,), there exist subfields F,, F of
Q(,) such that F, is cyclic of degree 24,V beF, F,NF = Q and
F.F = Q(C,).

Proof. By Lemma 4.1, bjm. Let d be the largest divisor of m
relatively prime to 8. Then G(z™ — 1) = G(x? — 1) x G(z™? — 1). Let
G = G(x™? - 1), G, its Sylow 2-subgroup, and G,, the direct product
of its Sylow p-subgroups, p an odd prime. Then G = G, X G,. Let
J,, J,, be the fixed fields of G,, G, respectively. It is easy to see that
Vv bedJ, and that J, is the compositum of pairwise linearly disjoint
cyclic fields K, with 1/ =p, e K, and [K,;: Q] = 27(3 = 1, ---, n). The
hypotheses of Corollary 6.3 are thus satisfied so that we can find K,
K J, with K, cyclic of degree 24, K, N K = Q and KK = J,.

The corollary follows with F, = K, and F' = KJ,Q(,).
We can now compute the group of case (6) of Theorem 3.5.

THEOREM 6.5. Let x™ — b™* be a partially normal binomial of
type (6). Let D, denote the dihedral group on four letters. Then
there exists a direct cyclic factor H of G(xz™* — 1) of order 2 such
that G(z™ — b™'*) = D, X (G(x™* — 1)/H).

Proof. Let m = 4q with ¢ odd. Then
Q) = QL Vb)) =Q(, ¢, VD).

By Theorem 3.5, Vo€ Q(,) but V' o¢Q(’,). Thus 1V—be(,) and
QLINAQE, ¥b)=Q(1 =b). By Lemma 4.1 the integer j, of Corollary
6.4 must be 1. Hence, by the same corollary, there is a field F < Q({,)
with QV'—b)- F=Q(¢,) and QV'=b) n F=Q. Thus Q@)= F-Q(, ¥?)
and FNQU, ¥Vb)= Q. The theorem follows.

We now turn to case (7) of Theorem 3.5. Let p(z) = z*™ + p*»
be a fixed partially normal binomial with m odd, b a square free
integer and k£ = 2. Thus, by 8.5, V' b € Q(&yi—1,,) and & = Cyesr,, ¥ 0. It
is clear that Q(@) = Q(C,, Lo ¥ D).

To compute G(p(x)), let _b = 2%, where ¢, = 0 or 1 and b, is odd.
Let 6 = 0 or 1 so that +V/b, € Q(Z,) (by 4.1). Then by Corollary 6.4
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there are fields F,, F c Q) so that F,F = Q(,.), GQ(,)) = G(F,) x
G(F), F, is cyclic of degree 2% and Vb, e F,. Thus it is easy to
see that G(p®)) = G(Fy(lu+1 ¥ b)) X G(F). Since G(F) can be com-
puted from 6.4, it is sufficient to determine G(Fy(Cye+1 ¥VD)).

Let B = L1 ¥/ . We know that F,(B) is an extension of degree
2 over Fy({,x) so that there is an automorphism ¢ of F(B) such that
o(B) = —B with fixed field F({,x). On the other hand, the group of
Fy(&,,) is the direct product of cyclic groups of orders 27, 2, 2°7* with
respective generators p, 0, g,. Denoting by the same letters exten-
sions of these generators to F,(B), we have that the group G’ of
Fy(pB) is generated by o, o, 0, 0,. On Fy ;) these generators are
defined by

o) = Lo, 0V B) = (=1)Vb;
Gleo = 1; 02(C2k) = C;Icl, 0'2(1/?) = 1/?,
0,|Fy =1, 0(x) = L, 0,V0) = (=1)Vb
where ¢, is as defined above and ¢, = 1 if bisodd or ¢, =1 and 5/2 > 1

and 0 otherwise. To see how p, 0, 0, may be extended to Fy(B), it
is sufficient to determine how they act on B:

o(B) =B,

01(:8) = C2ki506 ’

o,(B) = LG
From these formulas, it is a straightforward matter to determine
relations amongst the generators o, o, 0,, and 0,. For one, 6% = ¢.

We summarize the rest in the following.

THEOREM 6.6. The group G(x*™ + b*'m) is isomorphic to the
direct product of an abelian group G(F) with a nonabelian group
G of order 271** gemerated by p, 0, 0, and satisfying the following
relations:

ok—1

o} =o0;=p0*=1 (where a = max (2%, 44)),
0,0, = 01" g,

) 0,0 = p020i12k~2 ’
0.0 = p0, .

In particular,

(@) if e =0, then j, =0 and G(F) = G(x™ — 1); furthermore G’
18 1somorphic to a group gemerated by o, 0, satisfying relations

k-1 ___ 2 _ . k—2 .
oy =03 =1,00 =07 oy,
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b) ife=¢6=1and j,=k — 1, then G(p(x)) is isomorphic to
G(x™ — 1) x {0, 0,).

Proof. The relations (*) are easily determined from the discus-
sion preceeding the theorem. Part (a) follows from(*) and the fact
that b = 2 in this case. Finally, (b) follows from (*) by setting
7 = po,. Then 0,7 = 70, and 7 is an element of order 2.. By Co-
rollary 6.4, {(z, G(F)) = G(z™ — 1). Furthermore, {t) N <o, 0,) = {1}
and thus G(p(z)) = <o, 0,y X G(z™ — 1).
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