SUFFICIENCY OF JETS

JEAN-JACQUES GERVais
SUFFICIENCY OF JETS

JEAN-JACQUES GERVAIS

We give a necessary and sufficient condition for the \(C^\infty \)-sufficiency of a jet; this generalizes and improves some results of J. N. Mather and J. C. Tougeron. Our result, given in terms of \(G \)-sufficiency which is a generalization of the ordinary sufficiency, can be applied to many cases.

NOTATIONS. Let \(G \) be a \(q \)-dimensional Lie subgroup of \(\text{Gl}_p(R) \). Let \(G(n) = C^\infty_0(\mathbb{R}_n, G) \) be the group of germs at 0 of smooth mappings \(g \) from \(\mathbb{R}^n \) to \(G \) such that \(g(0) = e \) (where \(e \) is the identity of \(G \)) and \(\text{Diff}(n) \) the group of germs at 0 of smooth diffeomorphisms \(\tau \) from a neighborhood of 0 in \(\mathbb{R}^n \) on a neighborhood of 0 in \(\mathbb{R}^n \) such that \(\tau(0) = 0 \). Let \(\mathcal{G} \) be the ring of germs at 0 of smooth functions from \(\mathbb{R}^n \) to \(R \) and \(m \) its maximal ideal. For \(f \in \bigoplus_p m \), \(j^r(f) \) will denote the \(r \)-jet of \(f \) at 0. The set \(\mathcal{G}(n) = G(n) \times \text{Diff}(n) \) is a group with the following multiplication: \((g_1, \tau_1) \cdot (g_2, \tau_2) = (g_1 \cdot (g_2 \circ \tau_1^{-1}), \tau_1 \circ \tau_2) \). Then we may define an action of \(\mathcal{G}(n) \) on \(\bigoplus_p m \) by the formula: for \((g, \tau) \in \mathcal{G}(n) \) and \(f \in \bigoplus_p m \), \((g, \tau) \cdot f \) is the germ at 0 of the mapping \(x \mapsto \tilde{g}(x) \cdot (\tilde{f} \circ \tilde{\tau}^{-1}(X)) \) where \(\tilde{g}, \tilde{f}, \) and \(\tilde{\tau} \) are representatives of \(g, f, \) and \(\tau \) respectively.

DEFINITION 1. An \(r \)-jet \(z \) of an element of \(\bigoplus_p m \) is \(G \)-sufficient if for any \(f \in \bigoplus_p m \) such that \(j^r(f) = z \) there exists \((g, \tau) \in \mathcal{G}(n) \) such that \((g, \tau) \cdot f = z \).

REMARK. When \(G = \{ e \} \) and \(p = 1 \) the \(G \)-sufficiency is the ordinary \(C^\infty \)-sufficiency of jets.

We will use the well known:

NAKAYAMA'S LEMMA. Let \(A \) be a commutative ring with identity and let \(I \) be an ideal in \(A \) such that \(1 + a \) is invertible for any \(a \in I \). Let \(M \) and \(N \) be submodules of an \(A \)-module \(P \) such that \(M \) is finitely generated and \(M \subset N + I \). \(M \). Then \(M \subset N \).

JETS \(G \)-sufficient. Let \(\{ A_1, \cdots, A_q \} \) be a base over \(R \) of the Lie algebra \(T_0 G \) of \(G \). For every \(g \in G(n) \) there exists \(u = (u_1, \cdots, u_q) \in \bigoplus_q m \) such that

\[
g(x) = \sum_{i=1}^q u_i(x).A_i.
\]
Hence we may identify $G(n)$ with $\bigoplus m$.

Let G^r be the analytic Lie group of the r-jets of the elements of $G(n)$ and let X^r be the space of r-jets of the elements of $\bigoplus m$. The group action of $G(n)$ on $\bigoplus m$ induces, for each r, a well defined group action of G^r on X^r. One easily sees that this group action is analytic for each r.

For $f \in \bigoplus m$, let M_f be the \mathcal{C}-linear mapping:

$$M_f: \mathcal{C}_n^{p+q} \to \mathcal{C}_n^p,$$

where M_f is given by the $p \times (q + n)$-matrix with $A_1 f, \ldots, A_q f, \partial f/\partial x_1, \ldots, \partial f/\partial x_n$ as columns. It is easily seen that for $f \in \bigoplus m$ the mapping

$$\tilde{M}_f: \bigoplus_{q+n} \left(\frac{m}{m^{r+1}} \right) \to \bigoplus_p \left(\frac{m}{m^{r+1}} \right),$$

derived from M_f, is the tangent mapping at the identity of the mapping

$$G^r \ni \gamma \to \gamma \cdot j^r(f) \in X^r.$$

Theorem 1. Let $z \in X^r$. The following statements are equivalent:

(i) z is G-sufficient.

(ii) For any homogeneous jet w of degree $r + 1$ we have $m \cdot \text{Im} M_{z+w} \supseteq m^{r+1} \cdot \mathcal{C}_n^p$ (where $\text{Im} M_{z+w}$ is the range of M_{z+w}).

Proof.

(i) \implies (ii) Let w and w' be two homogeneous jets of degree $r + 1$. Since z is G-sufficient, there exist (g, τ) and $(g', \tau') \in G(n)$ such that $(g, \tau) \cdot z = z + w$ and $(g', \tau') \cdot z = z + w'$; hence $(g', \tau') \cdot (g, \tau)^{-1} \cdot (z + w) = z + w'$.

Consequently, if we put $\gamma = j^{r+1}((g', \tau') \cdot (g, \tau)^{-1})$, we have $\gamma \cdot (z + w) = z + w'$. We have thus shown that for any homogeneous jet w of degree $r + 1$ the \mathcal{C}^{r+1}-orbit of $z + w$ in X^{r+1} contains $\{z + w' \mid w' \text{ is a homogeneous jet of degree } r + 1\}$. Since the tangent mapping at the identity of the mapping $\mathcal{C}^{r+1} \ni \gamma \to \gamma \cdot (z + w) \in X^{r+1}$ is

$$\tilde{M}_{z+w} \bigoplus_{q+n} \left(\frac{m}{m^{r+2}} \right) \to \bigoplus_p \left(\frac{m}{m^{r+2}} \right),$$

derived from M_{z+w}, we have $\text{Im} \tilde{M}_{z+w} \supseteq \bigoplus_p \left(m^{r+1}/m^{r+2} \right)$, i.e., $m \cdot \text{Im} M_{z+w} + m^{r+2} \cdot \mathcal{C}_n^p \supseteq m^{r+1} \cdot \mathcal{C}_n^p$. From the Nakayama's lemma, we
conclude that $m \cdot \text{Im } M_{z+w} \supset m^{r+1} \cdot \mathcal{E}^p_n$.

(ii) \Rightarrow (i)

(a) Let w_1, \ldots, w_k be homogeneous jets of degree $r+1, \ldots, r+k$ respectively and put $z' = \sum_{i=1}^k w_i$. Let $t_0 \in [0,1]$. By hypothesis,

$$m \cdot \text{Im } M_{z+t_0w_1} \supset m^{r+1} \cdot \mathcal{E}^p_n.$$

Hence we have

$$m^{r+1} \cdot \mathcal{E}^p_n \subset m \cdot \text{Im } M_{z+t_0w_1} \subset m \cdot \text{Im } M_{z+t_0z'} + m^{r+2} \cdot \mathcal{E}^p_n.$$

Nakayama's lemma implies

$$m^{r+1} \cdot \mathcal{E}^p_n \subset m \cdot \text{Im } M_{z+t_0z'}.$$

Then the range of the mapping $\mathcal{E}^{r+k} \ni \gamma \mapsto \gamma \cdot (z + t_0z')$ contains all $r+k$-jets $z + z''$, where z'' is an $r+k$-jet in a neighborhood of t_0z' such that $j^r(z'') = 0$. In particular, there exist $t_1 < t_0 < t_2$ such that for all t' and $t'' \in [t_1, t_2]$, there exists $(g, \tau) \in \mathcal{G}(n)$ such that $j^{r+k}((g, \tau) \cdot (z + t'z')) = z + t''z'$. Since $[0,1]$ is compact, it follows that there exists $(g, \tau) \in \mathcal{G}(n)$ such that $j^{r+k}((g, \tau) \cdot (z + z')) = z + 0 \cdot z' = z$.

(b) Let $f \in \bigoplus_p m$ such that $j^r(f) = z$, we must prove that there exists $(g, \tau) \in \mathcal{G}(n)$ such that $(g, \tau) \cdot f = z$. We have

$$m^{r+1} \cdot \mathcal{E}^p_n \subset m \cdot \text{Im } M_{j^{r+1}(f)}.$$

Hence

$$m^{r+1} \cdot \mathcal{E}^p_n \subset m \cdot \text{Im } M_{j^{r+1}(f)} \subset m \cdot \text{Im } M_f + m^{r+2} \cdot \mathcal{E}^p_n.$$

Nakayama's lemma implies

$$m^{r+1} \cdot \mathcal{E}^p_n \subset m \cdot \text{Im } M_f.$$

It follows from a result of J. C. Tougeron [2, Théorème VIII 3.6] that there exists $N \in N$ such that $j^N(f)$ is G-sufficient. If $N \leq r$ the proof is finished. Suppose $N > r$. By (a), there exist $(g_i, \tau_i) \in \mathcal{G}(n)$ and $\phi \in m^{N+1} \cdot \mathcal{E}^p_n$ such that

$$z = (g_i, \tau_i) \cdot j^N(f) + \phi; \text{ hence }$$

$$z = (g_i, \tau_i) \cdot [j^N(f) + (g_i, \tau_i)^{-1} \cdot \phi].$$

Since $\phi \in m^{N+1} \cdot \mathcal{E}^p_n$, $(g_i, \tau_i)^{-1} \cdot \phi \in m^{N+1} \cdot \mathcal{E}^p_n$. But $j^N(f)$ is G-sufficient, consequently there exists $(g_2, \tau_2) \in \mathcal{G}(n)$ such that

$$j^N(f) + (g_i, \tau_i)^{-1} \cdot \phi = (g_2, \tau_2) \cdot f.$$

Hence
Let \(f \in m \). We say that \(f \) is \(r \)-determined if \(j^r(f) \) is \(C^\infty \)-sufficient (i.e., \(G \)-sufficient with \(G = \{e\} \)).

From Theorem 1 we deduce the following two results of J. N. Mather [1], stated as follows in [3, Theorem 2.6 and Corollary 2.10]:

Theorem 2. Let \(f \in m \) and \(I_f \) be the ideal generated in \(\mathcal{E}_n \) by the partial derivatives of \(f \). If
\[
m^r \subset m \cdot I_f + m^{r+1},
\]
then \(f \) is \(r \)-determined.

Theorem 3. Let \(f \in m \) be \(r \)-determined. Then
\[
m^{r+1} \subset m \cdot I_f.
\]

REFERENCES

Received February 10, 1977.

UNIVERSITÉ LAVAL
QUEBEC, G1K 7P4, CANADA
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane partitions. II. The equivalence of the Bender-Knuth and MacMahon conjectures</td>
<td>George E. Andrews</td>
<td>283</td>
</tr>
<tr>
<td>An Ehrenfeucht game for the multivariable quantifiers of Malitz and some applications</td>
<td>Lee Wilson Badger</td>
<td>293</td>
</tr>
<tr>
<td>A decomposition of additive set functions</td>
<td>Wayne C. Bell</td>
<td>305</td>
</tr>
<tr>
<td>Infinite tensor products of C*-algebras</td>
<td>Bruce Blackadar</td>
<td>313</td>
</tr>
<tr>
<td>The inner aperture of a convex set</td>
<td>Arne Brøndsted</td>
<td>335</td>
</tr>
<tr>
<td>Finite groups with Chevalley-type components</td>
<td>N. Burgoyne</td>
<td>341</td>
</tr>
<tr>
<td>On the retractability of some one-relator groups</td>
<td>Richard Dowell Byrd, Justin Thomas Lloyd and Roberto A. Mena</td>
<td>351</td>
</tr>
<tr>
<td>Schrödinger and Dirac operators with singular potentials and hyperbolic equations</td>
<td>Paul Robert Chernoff</td>
<td>361</td>
</tr>
<tr>
<td>Sharpness in Young's inequality for convolution</td>
<td>John J. F. Fournier</td>
<td>383</td>
</tr>
<tr>
<td>On the metrizability of k_ω-spaces</td>
<td>Stanley Phillip Franklin and Barbara V. Smith Thomas</td>
<td>399</td>
</tr>
<tr>
<td>Partially normal radical extensions of the rationals</td>
<td>David Andrew Gay, Andrew McDaniel and William Yslas Vélez</td>
<td>403</td>
</tr>
<tr>
<td>Sufficiency of jets</td>
<td>Jean-Jacques Gervais</td>
<td>419</td>
</tr>
<tr>
<td>Completions of regular rings. II</td>
<td>Kenneth R. Goodearl</td>
<td>423</td>
</tr>
<tr>
<td>Algebraic automorphisms of algebraic groups with stable maximal tori</td>
<td>Sarah J. Gottlieb</td>
<td>461</td>
</tr>
<tr>
<td>Invariant submodules of unimodular Hermitian forms</td>
<td>Donald Gordon James</td>
<td>471</td>
</tr>
<tr>
<td>$W_\delta(T)$ is convex</td>
<td>J. Kyle</td>
<td>483</td>
</tr>
<tr>
<td>A note on Eberlein compacts</td>
<td>Ernest A. Michael and Mary Ellen Rudin</td>
<td>487</td>
</tr>
<tr>
<td>Another note on Eberlein compacts</td>
<td>Ernest A. Michael and Mary Ellen Rudin</td>
<td>497</td>
</tr>
<tr>
<td>Fixed point theorems for acyclic and dendritic spaces</td>
<td>Thomas Bourque Muenzenberger and Raymond Earl Smithson</td>
<td>501</td>
</tr>
<tr>
<td>Determination of a unique solution of the quadratic partition for primes $p \equiv 1 \pmod{7}$</td>
<td>Budh Singh Nashier and A. R. Rajwade</td>
<td>513</td>
</tr>
<tr>
<td>New partial asymptotic stability results for nonlinear ordinary differential equations</td>
<td>Frederick J. Scott</td>
<td>523</td>
</tr>
<tr>
<td>Affine open orbits, reductive isotropy groups, and dominant gradient morphisms; a theorem of Mikio Sato</td>
<td>Frank Servedio</td>
<td>537</td>
</tr>
<tr>
<td>On the distribution of some generalized square-full integers</td>
<td>D. Suryanarayana</td>
<td>547</td>
</tr>
<tr>
<td>Instationary Navier-Stokes equations and parabolic systems</td>
<td>Wolf von Wahl</td>
<td>557</td>
</tr>
</tbody>
</table>