ANOTHER NOTE ON EBERLEIN COMPACTS

Ernest A. Michael and Mary Ellen Rudin
ANOTHER NOTE ON EBERLEIN COMPACTS

E. MICHAEL AND M. E. RUDIN

An Eberlein compact is a compact space that can be embedded in a Banach space with its weak topology. It is shown that: If \(X \) is compact and if \(X = M_1 \cup M_2 \) with \(M_1 \) and \(M_2 \) metrizable, then \(\bar{M}_1 \cap \bar{M}_2 \) is metrizable and \(X \) is an Eberlein compact. This answers a question of Arhangel’iskii.

1. Introduction. An Eberlein compact, or EC, is a compact space\(^1\) which can be embedded in a Banach space with its weak topology. For background and various properties of these spaces, the reader is referred to [1] or the authors’ preceding note [3].

Since every metrizable space can be embedded in a Banach space with its norm topology, every metrizable compact space is clearly an EC. The purpose of this note is to prove the following stronger result, thereby answering a question of A. V. Arhangel’iskii.

Theorem 1.1. If \(X \) is compact, and if \(X = M_1 \cup M_2 \) with \(M_1 \) and \(M_2 \) metrizable, then \(\bar{M}_1 \cap \bar{M}_2 \) is metrizable and \(X \) is an EC.

In contrast to Theorem 1.1, a compact space which is the union of three metrizable subsets need not be an EC, or even a Fréchet space\(^2\) (see [2, Example 6.2]\(^3\)). However, it was shown in [5] that a compact space which is the union of countably many metrizable subsets must at least be sequential (a property somewhat weaker than being a Fréchet space).

2. Proof of Theorem 1.1. We first show that \(M = \bar{M}_1 \cap \bar{M}_2 \) is metrizable. For \(i = 1, 2 \), let \(\mathcal{V}_i \) be a \(\sigma \)-discrete—hence \(\sigma \)-disjoint—base for \(M_i \). For each \(U \in \mathcal{V}_i \), choose an open set \(\phi_i(U) \) in \(X \) such that \(\phi_i(U) \cap M_i = U \). Let \(\mathcal{U} = \{ \phi_i(U) \cap M : U \in \mathcal{V}_i, i = 1, 2 \} \). Then \(\mathcal{U} \) is easily seen to be a \(\sigma \)-disjoint \(1-m \) hence point-countable \(1-m \) base for \(M \). Since \(M \) is compact, it must therefore be metrizable by a result of A. S. Miščenko [4].

Since \(M \) is compact and metrizable, it has a countable base \((B_n) \). For each pair \((m, n) \) such that \(\bar{B}_m \cap \bar{B}_n = \emptyset \), pick an open \(F_\sigma \)-set

\(^1\) All spaces in this paper are Hausdorff.

\(^2\) \(X \) is a Fréchet space if, whenever \(x \in \bar{A} \) in \(X \), then \(x_n \to x \) for some \(x_n \in A \).

\(^3\) Every EC is a Fréchet space by a theorem of Eberlein and Šmulian (see [1, Theorem 4.1]).
$V_{m,n}$ in X such that $B_m \subset V_{m,n}$ and $V_{m,n} \cap B_n = \emptyset$. Let \mathcal{F} be collection of all such $V_{m,n}$.

Let $Y = X - M$. Then Y is the union of the two disjoint, open metrizable subsets $X - \bar{M}_1$ and $X - \bar{M}_2$, so Y is metrizable. Since Y is open in X, it therefore has a σ-disjoint base \mathcal{W} such that $\bar{W} \subset Y$ for all $W \in \mathcal{W}$. Clearly each $W \in \mathcal{W}$ is an open F_σ in X.

Finally, let $\mathcal{G} = \mathcal{F} \cup \mathcal{W}$. Then \mathcal{G} is a σ-disjoint, separating (in the sense of [3, Definition 1.3]) cover of X by open F_σ-sets, so X is an EC by a characterization of H. P. Rosenthal (see [6, Theorem 3.1] or [3, Theorem 1.4]).

3. Concluding remarks.

(3.1) The proof of Theorem 1.1 actually establishes the following somewhat sharper results.

(a) If X is regular, and if $X = \bigcup_{n=1}^{\infty} X_n$ with each X_n having a σ-disjoint base, then $\bigcap_{n=1}^{\infty} \bar{X}_n$ has a σ-disjoint base.

(b) If X is compact, and if $X = \bigcup_{n=1}^{\infty} X_n$ with each X_n metrizable, then $\bigcap_{n=1}^{\infty} \bar{X}_n$ is metrizable.

(c) If X is compact, and $X = X_1 \cup X_2$ with X_1 and X_2 having σ-disjoint bases, then X has a σ-disjoint, separating collection of open F_σ-subsets.

Observe that not every EC satisfies the conclusion of (c), as can be seen from the space of all points in $\{0,1\}^{\omega_1}$ which have at most two nonzero coordinates.

(3.2). Somewhat in the spirit of Theorem 1.1, one can show that if $X = \bigcup_{i=1}^{n} X_i$, and if each X_i is an EC, then X is an EC: In fact, X is then the image under the obvious perfect map of the topological sum $\sum_{i=1}^{n} X_i$, and this sum is clearly an EC, so X must be an EC by [1, Theorem 2.1] (see also [3, Theorem 1.1]).

REFERENCES

5. A. Ostaszewski, Compact σ-metric spaces are sequential, Proc. Amer. Math. Soc. (to appear.)
Received May 20, 1977. The second author was partly supported by N. S. F. grant MPS-73-08825.

University of Washington
Seattle, WA 98195

And

University of Wisconsin
Madison, WI 53706
George E. Andrews, *Plane partitions. II. The equivalence of the Bender-Knuth and MacMahon conjectures* .. 283

Lee Wilson Badger, *An Ehrenfeucht game for the multivariable quantifiers of Malitz and some applications* .. 293

Wayne C. Bell, *A decomposition of additive set functions* .. 305

Bruce Blackadar, *Infinite tensor products of C*-algebras* ... 313

Arne Brøndsted, *The inner aperture of a convex set* .. 335

N. Burgoyne, *Finite groups with Chevalley-type components* 341

Richard Dowell Byrd, Justin Thomas Lloyd and Roberto A. Mena, *On the retractability of some one-relator groups* .. 351

Paul Robert Chernoff, *Schrödinger and Dirac operators with singular potentials and hyperbolic equations* ... 361

John J. F. Fournier, *Sharpness in Young’s inequality for convolution* 383

Stanley Phillip Franklin and Barbara V. Smith Thomas, *On the metrizability of \(k_\omega \)-spaces* ... 399

David Andrew Gay, Andrew McDaniel and William Yslas Vélez, *Partially normal radical extensions of the rationals* ... 403

Jean-Jacques Gervais, *Sufficiency of jets* .. 419

Kenneth R. Goodearl, *Completions of regular rings. II* .. 423

Sarah J. Gottlieb, *Algebraic automorphisms of algebraic groups with stable maximal tori* .. 461

Donald Gordon James, *Invariant submodules of unimodular Hermitian forms* 471

J. Kyle, *\(W(T) \) is convex* .. 483

Ernest A. Michael and Mary Ellen Rudin, *A note on Eberlein compacts* 487

Ernest A. Michael and Mary Ellen Rudin, *Another note on Eberlein compacts* 497

Thomas Bourque Muenzenberger and Raymond Earl Smithson, *Fixed point theorems for acyclic and dendritic spaces* 501

Budh Singh Nashier and A. R. Rajwade, *Determination of a unique solution of the quadratic partition for primes \(p \equiv 1 \pmod{7} \)* 513

Frederick J. Scott, *New partial asymptotic stability results for nonlinear ordinary differential equations* .. 523

Frank Servedio, *Affine open orbits, reductive isotropy groups, and dominant gradient morphisms; a theorem of Mikio Sato* 537

D. Suryanarayana, *On the distribution of some generalized square-full integers* 547

Wolf von Wahl, *Instationary Navier-Stokes equations and parabolic systems* 557