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An algebraic proof is given for a theorem of M. Sato.
The theorem gives criteria for the open orbit in a prehomo-
geneous vector space under a reductive group to be an affine
variety. The following conditions are equivalent:

1. O(G) the open orbit is an affine variety.

2. Gy the isotropy subgroup of X in O(@) is reductive.

3. There exists a semi-invariant form P of degree r = 2
such that grad P: V— V* is a dominant morphism of affine
varieties.

In 1965, Mikio Sato stated a theorem giving characterizations of
open affine orbits in real or complex vector spaces under the actions
of reductive linear Lie groups. The statement has not appeared
published in a European language, but appeared as a remark in
Japanese in [8]. “Let (G, V) be a prehomogeneous pair; assume
that G is a reductive real or complex algebraic group. The follow-
ing conditions are equivalent:

(i) Hy, the isotropy subgroup of X in the open dense orbit,
is reductive.

(ii) S, the union of singular G-orbits in V, is a union of hyper-
surfaces Z(P)U Z(P) U --- U Z(P,).

(iii) There exists a semi-invariant form P for G such that the
mapping grad P/P: V — Z(P)— V* is dominant.”

By a prehomogeneous pair (@, V) we mean an algebraic subgroup
G S GL(V) acting on V, a finite dimensional vector space over R or
C such that there is an open dense orbit O(G) in V; see [9]. A
proof of the theorem was not known. The result is striking in that
the conditions are superficially quite different; also they are entirely
algebraic whereas the theorem appears in the Sugaku article [8]
where the techniques are analytic. The theorem is restated and
provided with an algebraic proof. The author wishes to gratefully
acknowledge the observations and assistance of Takuro Shintani.
Let k be an algebraically closed field of characteristic 0. % shall
denote the multiplicative group % — {0}. V shall always denote a
finite dimensional k-vector space and V* shall be its k-dual. GCGL(V)
shall denote a closed algebraic subgroup defined over k. The
topologies used are always the Zariski topologies on the spaces. A

537



538 FRANK SERVEDIO

prehomogeneous pair (G, V) is defined as above with this modification.
Let k[V] denote the graded affine k-algebra of polynomial functions
on V. If Peck[V], reserve the notations “Z(P)” for the Zariski
closed subset of V consisting of zeroes of the function P and “U.”
for the Zariski open subset U, = V — Z(P). If P+ 0, Upis known
to be an affine algebraic variety defined over k, Zariski dense in V;
see [7]. Let “O(G)” denote the Zariski open orbit of G in V for a
prehomogeneous pair (G, V). G acts as a group of automorphisms
of k[V] by NP(X) = P(g™*X) for all geG, Pek[V] and XeV. P
is semi-invariant for G if there exists a y € k[G] which is a unit in
E[G] such that for all ge G, \,P = y(9)"*P. x:G—Fk is a rational
character. Define the morphism grad P: V— V* of the canonical
affine variety structures on V and V* by setting (grad P)(X) to be
the element of V* given by (grad PYX)(Z) = (D,P)(X), for all ZeV,
where D,: k[V]—E[V] is the k-derivation of degree —1 on the k-
algebra k[V]. E[V] is canonically isomorphic to the symmetric
algebra S, (V*) and in either desecription D, is defined by requiring
DY)=Y(Z) for all Ye V*. If a basis &% = {X,, .-+, X,} is chosen
in V and a dual basis &#* ={Y,,---,Y,} in V* such that Y (X,) =
0;;, then E[V] is naturally isomorphic to the polynomial algebra
E[Y, -+, Y,] and (grad P)(X) = 3r,0P/0Y(X)Y,, or in coordinates
(grad P)(X) = (0P/6Y(X), «++, 0P[dY (X)).

SATO’S THEOREM. Let (G, V) be a prehomogeneous pair such
that G is a reductive algebraic group containing k'I,. The follow-
ing are equivalent:

(1) O(G) is an affine variety defined over k.

(1) O(G) is equal to U,, for P a monzero semi-invariant form
of degree r = 2 for G. i

(2) For XeOG), Gy ={geG|9gX = X}, the subgroup fizing
X in G, is a reductive closed subgroup of G.

(8) There exists & nonzero form P of degree r =2 in k[V]
semi-invariant for G such that grad P: V— V* is a dominant
morphism.

(8') There exists a nonzero form P in E[V] of degree » = 2
semi-invariant for G such that grad P/P: V —V*, X1—1/P(X) (grad P)
(X) is & dominant rational mapping.

REMARKS AND EXAMPLES. (a) The condition that grad P: V— V*
is a dominant morphism is equivalent to the condition that the forms
oP/6Y,;; 1 =1, ---, n be algebraically independent over k.

(b) LeEMMA. For a form Pek[V], grad P V—V* is a
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dominant morphism of affine algebraic varieties if and only if
grad P/P: V— V* is a dominant rational mapping.

Proof. The proof is straightforward in view of the fact that
the dominance of the rational mapping is equivalent to the algebraic
independence of the rational functions 0P/0Y,/P; ¢+ =1, -+, n

This lemma enables us to conclude immediately that (8) and (3")
are equivalent.

(¢) The theorem as stated in the Sugaku article [8], contains
a “non-fatal” error. Statement “(ii)” lacks the requirement that m,
the number of hypersurfaces, be greater than 1 or if m =1, that
the degree of the form P, be greater than 1.

(d) ExamMpLES. (i) If G =GI(V) and dim V = 2, then all
statements (1), ---, (8') are false; if dim V = 1, then all statements
are true with G =%, Gy =1, and P= Y

(ii) Let R=Y*+ Y?+ «.- + Y? be a quadratic form on k*,
G = k'I,-O(n) where O(n) is the orthogonal group of R. Then all
statements of the theorem are true. (1) and (1') are applications of
Witt’s theorem; Gy = O(n — 1) a reductive group and grad R gives
a linear isomorphism since R is a nondegenerate quadratic form.

(iii) For V =k and G = k'I,-Sp (4) x O(8) there is a semi-
invariant form P for G of degree 4. With X = (X, X,, X,) and
X, ek, PX) =[X, X,} + [X;, Xi]* + [X,, X,]? where [, ] is the skew
bilinear form on k' defining the symplectic group, Sp(4). In this
case we have

(1) O(G@) is not affine.

0
(1) O@) S Us; in fact X=|9 ) 0|e U, but GX, the G-orbit
0

QQoocor

0
0
1
0
c

in Up. O(G)C Up — GX.

of X has codimensio

n 2
100
(2) For X = g % g € 0(@), Gy is a unipotent algebraic group
000
of dimension 2.

(8) grad P is not a dominant morphism. The closure of the
image of grad P has codimension 2 in V*. See [8], page 141.

Proof of Sato’s theorem. (1) 4if and only #f (1’). Only “Q1)
implies (1)’ needs justification. Since O(G) is open in V and is an
affine variety, by the result in [5], V — O(G) is an algebraic set of
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pure codimension 1. Since k[V] is a unique factorization domain,
V — O0(@) = Z(P) by [7]. Thus O(G) = U, for some P+ 0 in K[V].
Clearly P must be G-semi-invariant, and P must be a form since
k'I,cG. The form P must have degree » = 2; for if » =1, we
may assume P=Y, and then U, ={XeV|Y(X)=0}. Z(Y,)=
{Xe V]|Y(X) = 0} is a G-invariant subspace of codimension 1. Since
G is reductive there exists a complementary G-invariant subspace,

a line Z(Y, ---,Y, on appropriate choice of basis < But
Z(Yy +++, Y,) N Uy, is nonempty unless dim V = 1, where the theorem
has been verified. However, Z(Y,, ---, Y,) N Uy, being nonempty

contradicts O(G) = Us;.

(2) 4mplies (1). Since Gy is a closed subgroup of G acting on
G by right translation and since Gy is reductive, Mumford’s theorem
enables us to conclude that the quotient variety G/Gy is an affine
variety; see [4]. However, the action of G on the image of the
orbit mapping Gor: XG — O(@) is isomorphic

gl——»gX

to the action of Gy on G by right translation and thus is a quotient
morphism in the sense of [1]. Hence, G/G; = O(G). Therefore,
0O(G) is affine.

(1) implies (2). As above, G/Gy = O(G). With G reductive
and k& of characteristic O, and O(G) affine, Theorem 3.5 in [2] allows
us to conclude that G, is reductive.

The equivalence of (3) and conditions (1) and (2) is seen more
easily if the following lemmas are established. First, fix some nota-
tion. Let AeHom,(V, W), “A*” shall always denote the transpose
of A. Thus A* ¢ Hom, (W*, V*) is defined by the requirement that
(A*Y)X) = Y(AX) for all XeV and all Ye W*.

LEMMA 1. There is a k-linear isomorphism T:V — V* such
that T* =T and an automorphism i:G— G of order 2 over k
such that for all ge G, and for all XeV, T(gX) = (i(9)*)*T(X).

Proof. There is a k = C version of this in [9], Lemma 1.1 on
page 135. One can justify the result for k& by proving Lemma 2
below and then using it to obtain the result for G, whose Lie
algebra is L by imitating the techniques used in [10].

LEMMA 2. Let L be a reductive algebraic Lie subalgebra of
LGL(V), the Lie algebra of GL(V). There is a k-linear isomor-
phism T: V. — V* such that T = T* and a Lie algebra automor-
phism v of L of order 2 such that for all AeL, for all XeV,



A THEOREM OF M. SATO 541

T(AX) = —i'(A)*T(X).

Sketch of proof of Lemma 2. L = 7 x L' where 7 is an algebraic
torus and L’ is the derived subalgebra of L, k-split semi-simple; see
[3]. For 7, send elements of ¢ to their negatives and specify i’ on
L’ by sending each root to its negative and extend on a system of
canonical generators of L’ as described in [6]. T is specified by
sending each element of a basis of weight vectors of L’ in V to
its correspondent in a dual basis of V*. This suffices to verify

Lemma 2.

LEmMMA 3. If P is a semi-invariant form in k[V] for G, then
Jor all ge@, for all X, UecV, grad P(gX)(gU) = yx(9) grad P(X)(U).
Equivalently, for all ¢ge@G, for all XeV, x(gg*'grad(P)=
grad P(gX).

Proof. Let t be transcendental over k. grad P(X)(U) is the
coefficient of ¢ in the Fk[t]-polynomial P(X + tU); see [11]. The
identity y(¢)P(X + tU) = P(g(X + tU)) = P(gX + tgU) establishes the
lemma,

Let G* = {g*|geG}. From Lemma 1, it follows that (G*, V*)
is a prehomogeneous pair. Let O(G*) be the open orbit in V*. Since
k is algebraically closed and T* = T, there exists a choice of basis
<z =1{X, -+, X,} such that T<# = {TX,, ---, TX,} is the dual basis
to &%, namely (TX,)(X;) = 0,; for 2,5 =1, ---, ». Such a basis .
will becalled an orthogonal basis. Any change of basis by an
orthogonal transformation results again in an orthogonal basis. As
above, let &#* ={Y, -+, Y,} denote the dual basis of <Z.

LemmA 4. For (G, V) prehomogeneous with G reductive and P
a semi-invariant for G, there exists am orthogonal basis <& for V
with X, € 0(G@) and ¢ = 0 such that grad P(X,) = ¢Y, if and only if
grad P: V— V* is a dominant morphism.

Proof. For a basis <& let the n x 1 matrix of coordinates or
basis coeflicients for X e V be denoted by X ., the n x n matrix of
AcEnd, (V) be denoted by A . and the 1 x n matrix of dual basis
coefficients of Y e V* be denoted by Y,. Note that Y(4X)=
Y.A.X,. For an orthogonal basis <&, Y5 = (T'Y),. The
conditions of Lemmas 1 and 3 give i(¢)X = T'¢"*TX and

grad P(gX)5m* = (y(¢)T'¢g~** grad P(X))., .

Hence if <7 is an orthogonal basis and X, € O(G) and grad P(X,) =
c¢Y, = ¢TX, with ¢ = 0, then
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grad P(gX,)57* = () X)e = ci(@aXm -

Since ¢ is an automorphism of G and X, € O(G), the first column of
coordinate functions of G in basis <& are algebraically independent.
Hence the coordinate funetions of grad P are algebraically indepen-
dent.

Conversely, if grad P is dominant, then the rational mapping
grad P/P: V— V* has the property that grad P/P(O(G)) contains a
Zariski open subset U of V* such that ks Uc U. Hence by the
proposition below grad P/P(O(G)) contains a vector Y, which may
be completed to an orthogonal basis. Let X, be such that

1 grad P

X)=Y,.
T p &)

Since O(G) < Uy,

Y(x) =1 %(Xlxxa ~1.

r
Now complete {X,} to an orthogonal basis for V.

PROPOSITION. Let U be a Zariski open subset of V such that
k'UcU, and let R be a mondegenerate quadratic form on V. Then
U contains an orthogonal basis with respect to R.

Proof. UnN Uy, is open and nonempty. Therefore there is an
X, eUN Uz such that R(X,) =1. Let Y, = R(X,, ) be the linear
(polynomial) function on V given by the symmetric bilinear form
associated to R. Z(Y, is the closed subset of V with underlying
point set equal to the vector space Y. R,(=R restricted to Y,) is
a nondegenerate quadratic form. Consider UN Uz N Z(Y,). If the
latter is nonempty choose X, as above in the choice of X, for this
vector space Yi. If UN U, N Z(Y,) is empty, then Z(Y)c Z(R) U S,
where S=V — U. Z(Y, is an irreducible closed set. Hence
Z(YycS=ZR, ---, R,), where R;, 1 =1, --+, m are forms in k[ V].
Equivalently the following inclusion of ideals holds;

(YI)D(RI’ ] Rm) .

It is clear now that an X; could be chosen, as was X, for which
(Y)2(R, -+, R,) so that UnN UzN Z(Y,) is not empty. Proceed
inductively until an orthogonal basis is chosen in V.

In characteristic 0, it is well known that if a closed algebraic
subgroup of GL(V) has a reductive Lie algebra, then that subgroup
is reductive; see [4], Proposition 3.31 and [3].
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(3) wmplies (2). For this part of the proof we use the Lie
algebras of GI(V), G and G; which we denote by LGL(V), L and
L, respectively. These are algebraic Lie algebras over k. We show
Gy reductive by showing L reductive. LX = {AX]|A € L} is canoni-
cally isomorphic to the tangent space of the orbit GX at X. Hence
L,={AcL|AX =0}. For XeO(G), L, has codimension n in L
since the dimension of the orbit O(G) = GX is n. We use the
following criterion of reductivity for algebraic Lie algebras.

LEMMA 5. Let LC LGL(V) be an algebraic Lie subalgebra. L
1s reductive if and only if the trace form restricted to L x L is
nondegenerate.

Proof. See [3].

The trace form is nondegenerate when restricted to L. We need
show that the trace form restricted to L, is nondegenerate for
XecO(G). We show that Ly can be defined under the trace form as
the subspace orthogonal and complementary to a subspace of L of
codimension n. As above, choose an orthogonal basis where X, € O(G)
and grad P(X,) = ¢Y,, ¢ # 0. Since grad P(¢X) = y(g9)g** grad P(X),
we see that Ly = Lgmapyy Where Lgapr = {A€ L|A* grad P(X) =0
in V}. grad P is dominant implies that grad P(X,) lies in the open
orbit O(G*) in V* and hence Luapx, is also of codimension » in L.
Hence Ly, = Lgapxy. With the basis chosen as above, AX, = 0 if
and only if 4, =0 for ¢ =1, ---, »n if and only if Trace AE,; =0
for j=1,.--,n where E,; is the n x n matrix with first row
0, +-,0,1,0,---,0) with 1 in the jth place and other rows zero if
and only if Trace AE|; = 0 where E); = E,; modulo the annihilator
of L under the trace form and Ej;eL. Let M, be the subspace
spanned by Ej; in L. The criterion L, = L, implies immediately
that Ly N My, = 0. Hence Ly, is reductive.

(1) implies (3). We assume that O(G) = U,. Recall that the
dual pair (G*, V*) is a prehomogeneous vector space with a cor-
responding form Q € k[ V*] of degree r; Lemma 1 gives this. grad P
sends G orbits to G* orbits; i.e., grad P(GX)=G* grad P(X) for
all XeV. Lemma 3 implies this easily. Let R be the quadratic
form associated to the k-vector space mapping T: V — V* of Lemma
1, so that R(X) = T(X)(X). We may choose an X, e O(G) N U, and
assume that P(X,) =1 and that X, is a member of an orthogonal
basis <. Then P=Y '+ Y/ 'P, + .-« + Y,P,_, + P, with P,e
k[Y, ---, Y,] of degree 7. We compute easily that grad P(X)) =
rY, + P,. Since <7 is an orthogonal basis, @ = X7 + X7'Q, + -+ +
X.Q._., + Q, where Q,€k[X,, ---, X,] is of degree 7 and is the cor-
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respondent of P,.. Thus @, is P, with Y replaced by X. We establish
that Q(grad P(X,)) = 0. For any geG,

Q(grad P(¢9X))) = Q(x(g)g™" » grad P(X))) = (9 Qg™ * (*Y, + P)) .
It suffices to compute Q(g * (Y, + P)).

Qgx(rY, + P)) = Xi(g* (Y, + P))
+ XiHgx(rY, + P))Qugx(rY, + P)) + -+ + Q(gx(rY, + P))
= (gXI)T(,'”Yl + P) + (gXL)Tﬁl(TYL + Pl)gQ1<7'Y1 + P)
+ e 4 QY. + P)

= (39.X) Y, + P) + (5 0uX.) Y, + P)QOY, + P)

i=1

+ o0 +9Q(rY, + P)
= (rgu + 39, X(P)) + (rgu + 3, 0.X(P)) 9QY, + P)
oo 4+ 9Q(rY + P .
The latter is a nonzero polynomial expression of the type
rgh + 9578,.(9) + -+ 4 9.8.(9) + Si(9)

with S,(¢) polynomial expressions in the coordinate functions g,, with
(1, m) = (1, 1). This polynomial cannot be the zero polynomial, since
otherwise g,, is algebraically dependent on the g,,, with (1, m) = (1, 1)
and this contradicts that the point X, €O(G). This completes the
proof of the theorem.

A description of all prehomogeneous pairs (G, V) over k with G
acting irreducibly on V is being sought. The examples such as (iii)
with Sp (2n), n = 2, are the only ones known where there exists a
semi-invariant P and the condition O(G) & U, maintains. We have
shown that grad P(O(®)) is contained in a proper G-invariant closed
subvariety of Uy in V*. In general grad P restricted to Z(P) fails
to have the property of being a dominant mapping to Z(Q) even
when the conditions of the theorem hold; an example is G = k*-
SL(n) x SL(n) acting on k™" with (¢, g, 9.)X = ¢g. Xg;* and P =
determinant.
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