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The purpose of this paper is to settle two problems. The
first is Sorenson’s conjecture on whether every right cancella-
tive left amenable semigroup is left cancellative. The second,
posed by Argabright and Wilde, is whether every left amenable
semigroup satisfies the strong Fglner condition (SFC). We
first show that these two problems are equivalent, then prove
that the answer to both questions is no, through analyzing the
semidirect product of semigroups in relation to amenability
and cancellation properties. We conclude by investigating
further the properties of semigroups satisfying SFC, and
finally include some analogous results for left measurable
semigroups.

1. Introduction. For any semigroup S, let m(S) be the Banach
space of bounded realvalued functions on S with the sup norm. For
each s€ S we define a linear operator /[.,] on m(S) by «f(t) = f(st)
[:.f () = f(ts)]. A mean on S is a positive element of norm one in
the dual m(S)* of m(S). We say that pem(S)* is left [right] invariant
if p(2,f) = (O pl.f) = p(f)] for each f e m(S) and se€S. A semigroup
is said to be left [right] amenable if it has a left [right] invariant
mean, and we denote the set of left [right] invariant means on S
by Ms(S)[M.(S)]. When S is both left and right amenable we say
that S is amenable. For a detailed account of the properties of left
amenable semigroups, we refer to Day [2] and [3].

For any subset Ac S, let yx, denote its characteristic function,
i.e., y.(s)=11if s€A and y,(s) =0 if s¢ A. If A is finite, we use
|A| to denote the cardinality of A. As usual, for each s€S we
define sA = {st|te A} and s*A = {t € S|st € A}.

We define a relation R on any semigroup S by sRt for s, t € S if
there exists x€ S with sx = tx. If the intersection of finitely many
right ideals of S is always nonempty (as when S is left amenable),
then R is an equivalence relation, and the set S’ of equivalence classes
is a right cancellative semigroup with the induced multiplication.
More details are found in Granirer [7, p. 371]. When S’ exists, we
will refer to it as the right cancellative quotient semigroup of S.

Sorenson’s conjecture that every right cancellative left amenable
semigroup is left cancellative arose as a question of John Sorenson,
who proved the weaker result that every right cancellative left
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measurable (definition in §5) semigroup is left cancellative in his
thesis [16, p. 57] (see also [15]). The first discussion of this conjecture
is found in a paper of Granirer [8, p. 108].

If this conjecture were true, then for any left amenable semigroup
S, its right cancellative quotient semigroup S’ would actually be
cancellative and left amenable, and hence could be imbedded in an
amenable group (Wilde and Witz [19, Cor. 3.6]). Thus in some sense
the study of left amenable semigroups would essentially depend on
the study of left amenable subsemigroups of groups. Further interest
in the conjecture arose from the work of Argabright and Wilde on
the strong Felner condition.

In [4] Folner introduced the following necessary and sufficient
condition for a group S to be left amenable:

(FC) For each finite subset F' of S and ¢ > 0, there exists a finite
subset 4 of S such that [s4A\A| < ¢|A]| for each se F.

In his thesis [5] Frey showed that every left amenable semigroup
satisfies FC; however the converse is false since every finite semigroup
satisfies FC, though not every finite semigroup is left amenable. A
much simpler proof of Frey’s result was given by Namioka [13]
using the concept of strong amenability (see Day [3, §5]).

Continuing the search for a necessary and sufficient condition of
this type for left amenability in semigroups, Argabright and Wilde
[1] introduced the strong Fglner condition (SFC) and showed that
any semigroup satisfying SFC is left amenable.

(SFC) For each finite subset F' of S and ¢ > 0, there exists a finite
subset A of S such that |A\s4| < e¢|A| for each se F.

Argabright and Wilde also showed that if Sorenson’s conjecture
were true, then every left amenable semigroup would satisfy SFC.
However, the question of whether every left amenable semigroup
must satisfy SFC remained open. We will refer to this question as
the SFC problem. Further discussion on this problem and Sorenson’s
conjecture in relation to two conjectures of Granirer on extremely
right amenable semigroups is found in Rajagopalan and Ramakrishnan
[14].

In §2 we show that the SFC problem and Sorenson’s conjecture
are equivalent, in other words every left amenable semigroup satisfies
SFC if and only if every right cancellative left amenable semigroup
is left cancellative. This result follows directly from Theorem 2.2
which completely characterizes the semigroups which satisfy SFC as
those left amenable semigroups whose right cancellative quotient
semigroups are left cancellative.
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A counterexample to Sorenson’s conjecture is constructed in §3
(3.5). In fact we exhibit a right cancellative amenable semigroup
which neither is left cancellative, nor satisfies SFC. This shows that
the answer to both Sorenson’s conjecture and the SFC problem is still
no, even if we replace left amenable by amenable. However, since
all the counterxamples we have been able to find by our method are
infinitely generated, the question is still open for finitely generated
semigroups. The counterexample is obtained via an investigation of
the semidirect product of semigroups in relation to amenability and
cancellation properties. Several other examples and results on this
topic are included in §3.

In §4, some properties of the class of semigroups satisfying SFC
are described, following the work of Day ([2] and [3]) on left amenable
semigroups.

Section 5 describes related results by Sorenson on left measurable
semigroups, and concludes with a glance at semidirect products of
left measurable semigroups.

2. Equivalence of the SFC problem to Sorenson’s conjecture.
After a simple lemma, we give a complete characterization of semi-
groups which satisfy SFC in Theorem 2.2. One direction of this
theorem was proved by Argabright and Wilde [1]. From this charac-
terization it will be obvious that Sorenson’s conjecture and the SFC
problem are equivalent (Corollary 2.3). Further results on the class
of semigroups satisfying SFC are found in §4.

LEMMA 2.1. Let S’ be the right cancellative quotient semigroup
of a semigroup S. If S’ is mot left cancellative then there exist
r,s,teS with rs = vt but sx +# tx for each x€S.

Proof. Since S’ is not left cancellative, there exist 7, s, ¢, €S
with 7s,y = 7ty for some y €S, but sx # tx for each x€S. Now
let s = s,y and t = tyy.

THEOREM 2.2. A semigroup S satisfies SFC if and only if S is
left amenable and its right cancellative quotient semigroup S’ is left
cancellative.

Proof. Suppose S is left amenable and S’ is left cancellative.
Then S’ is left amenable since it is a homomorphic image of S, and
hence must satisfy FC (Frey [5] or Namioka [13, Thm. 3.5]). Clearly
for left cancellative semigroups, the conditions FC and SFC are
equivalent, thus S’ satisfies SFC. Argabright and Wilde showed that
this implies that S also satisfies SFC [1, Thm. 5]. This direction of
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the proof is contained in Argabright and Wilde [1].

Now suppose S satisfies SFC. Then S is left amenable [1, Thm.
1], so assume S’ is not left cancellative. By Lemma 2.1 there exist
r,8,t€S with rs = ¢t but sx # tx for each x€S. By SFC we can
find a finite subset A C S such that |A\rA| < 1/5|A|, |A\sA| < 1/5]|A]|,
and |A\tA]| <1/5|A|. Now |ANs'A|=|s(ANs"4)|=sANA|l>
4/5|A| since | A\sA| < 1/5|A|, and similarly |ANtA| > 4/5|A|. Thus
|[ANs?ANt*A| > 3/5|A| and hence |A\(sT'A Nt'A)| < 2/5|A|. This
implies that |s(A\(sT*ANt'4))| < 2/5|A|, and since [sA| > 4/5|A| we
must have [ANs(EA)| = |s(sTTANtTA)| = |s(ANsTTANtTA)| >
2/5]1A|. '

Let B=(ANst*A) U ANILs'A). Clearly |B| > 2/5|A|. We
have BC A, and for each y € B there exists y, € B\{y} with ry = ry,.
To see this suppose ye€ AN s(t'A). Then y = sx for some z€S,
where tx e A N t(s*A). Let y, = tx. Clearly y,€ B, y, + ¥, and ry =
7y, by our choice of r,s, and t. A similar argument applies for
ye ANt(s*4). Thus we must have |rB| = 1/2|B|.

Now we see that [rANA| < |r4| = |r(A\B) + |*B| = |A\B| +
1/2|B| = |A| — 1/2|B| < 4/5| A| since |B| > 2/5|A|. This shows that
|A\rA| > 1/5|A|, but A was chosen so that |A\rA| < 1/5|A|. Thus
S” must be left cancellative.

COROLLARY 2.8. Ewery left amenable semigroup satisfies SFC
if and only if every right cancellative left amenable semigroup 1is
left cancellative.

Proof. This follows immediately from the theorem above, by
noting that if S is right cancellative and left amenable, then S = S’.

3. The counterexample, semidirect products and amenability.
For any semigroup U we let End (U) denote the set of endomorphisms
of U. We use the notation Inj(U), Sur (U), and Aut (U) to denote
the subsets of End (U) consisting respectively of injective endomor-
phisms, surjective endomorphisms, and automorphisms.

Suppose that U and T are semigroups with a homomorphism
0: T— End (U). In general we will write p, for the endomorphism
o(a) for each acT. We define the semidirect product of U by T
(with respect to o) as the semigroup S of ordered pairs (u, a) for
e U and ae T, with the operation (u, a)(v, b) = (up,(v), ab). It is
easy to check that this operation is associative, hence S is indeed a
semigroup. We write S=U >§ T, and refer to U and T as the factor

semigroups.
This product is a natural generalization of the usual semidirect
product of groups (see Gorenstein [6] for example). Its extension
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to semigroups has already been considered from various aspects
(Hofmann and Mostert [11, D.4.1], Wells [17], among others), although
not in the context of amenability as far as we know.

The counterexample to Sorenson’s conjecture is constructed by
taking the semidirect product of two cancellative amenable semigroups
in such a way that the semidirect product is right cancellative, left
amenable, but not left cancellative. In Lemmas 3.1 and 3.2, and
Proposition 8.4 we assemble the information needed to show that
the example given in 3.5 actually has the desired properties.

The rest of this section contains other results and examples
which examine how amenability of the semidirect product is related
to amenability of the factor semigroups.

LEMMA 3.1. If U and T are semigroups with a homomorphism
o: T — End (U) such that o(T) ¢ Inj(U), then S =U x T 1is not left
p

cancellative.

Proof. Suppose a€T and u,ve U with u # v such that p,(u) =
0.(v). Then (u, @) # (v, @) but (u, a)(u, @) = (u, a)(v, a).

LemMmA 3.2. If U and T are right cancellative semigroups
with a homomorphism p:T —End (U), then S=U X T 1is right
I

cancellative.

Proof. Suppose there exist a,b,ceT and u, v, we U such that
(u, @)(w, ¢) = (v, b)(w, ¢). Then ac = bc implies @ = b, and wo,(w) =
P, (w) = vo,(w) implies w = v. Thus (u, @) = (v, b).

Given a homomorphism p: T — End (U), for each a € T we define
a linear operator P, on m(U) by P,g(u) = g(0.(u)) for gem(U) and
uwe U. Each P, induces a linear operator P} on m(U)* given by
Piy(g) = ¥(P.g) for yem(U)* and gem(U).

LemMMA 8.3. If U and T are left amenable semigroups with a
homomorphism p: T — Sur (U), then there exists ¢ € Ms(U) such that
P¥o = ¢ for each acT.

Proof. For each 4 € M/ (U) and @ € T we have P*yr € Ms(U) since
0. is a homomorphism of U onto U (this follows from the proof that
a homomorphic image of a left amenable semigroup is also left amena-
ble, given in Day [2, p. 515]). Moreover, since p: T — Sur (U) is
a homomorphism, the map a — P} is a representation of T in the
set of linear mappings on M/ (U). Since Ms(U) is compact and convex
in the weak*-topology and since T is left amenable, by the fixed
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point theorem (Day [3, Thm. 6.1]) there exists ¢e M/ (U) with
P¥¢ = ¢ for each acT.

PRrROPOSITION 3.4. If U and T are left amenable semigroups with
a homomorphism p: T — Sur(U), then S =U X T s left amenable.
P

Proof. By the lemma above we can choose ¢ € Ms(U) such that
P¥¢ = ¢ for each acT. For each fem(S) define fem(T) by fla) =
#(f,), where f,em(U) is defined as f,(u) = f(u, @). Choose v e M/(T)
and define pem(S)* by u(f) = v(f). It is easy to see that p is a
mean, and moreover we claim that g is left invariant. For (v, b) €
S and a € T we have («,,,,f). = Py, ;. since for any w € U, (4,,,,)f.(%) =
Zwn (U, @) = f(00y(w), ba) = f,.(v0,(w)) = Py, fra(u). Thus (4,,nf)a) =
d(Pylofra) = ¢(fra) = 4f(a) since Pfé = ¢ and ¢ is left invariant on
U. Hence ((nf) = W Zunl) = W 4F) = W(f) = p(f) since v is left
invariant on 7. Thus p¢e M/(S), showing that S is left amenable.

COUNTEREXAMPLE 3.5. Let U be the free abelian semigroup
generated by the elements {u;|7 = 0, 1, 2, ---}, and let T be the infinite
cyclic semigroup with generator {a}. We define po: T — Sur (U) by
. (u;) = w,_, if © =1 and p,(u,) = %,. Since U and T are cancellative
abelian semigroups, by Lemma 3.2 and Proposition 3.4, the semigroup
S =U x T is right cancellative and left amenable. However, since

0.(u,) = U, = 0.(%,) we have o(T) ¢ Inj(U), and hence S is not left
cancellative.

Thus S is indeed a counterexample to Sorenson’s conjecture, and
by Theorem 2.2, S is also a left amenable semigroup which does not
satisfy SFC. Corollary 3.11 will show that S is actually amenable
since U and T are amenable, which shows that Sorenson’s conjecture
is still false when left amenable is replaced by amenable. We have
not been able to construct a finitely generated counterexample by
the method above, which raises the question of whether Sorenson’s
conjecture holds for finitely generated semigroups.

REMARK 3.6. We give three examples of semidirect products of
left amenable semigroups to illustrate the role that the condition
0: T—Sur(U) plays in Proposition 3.4. The first example shows that
the condition is not necessary to ensure left amenability of U >: T,

but examples (ii) and (iii) show that some condition is needed since
neither o: T— End (U) nor p: T — Inj (U) is sufficient.

(i) Let U be any semigroup with at least two elements, includ-
ing a zero element 0, and let T be the trivial semigroup {1}. Define
0:€End (U) by p(u) =0 for each ue U. Then for any u,veU.
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we have (u, 1)(v, 1) = (0, 1), thus U x T is left amenable, but since
0
U has at least two elements p, ¢ Sur (U).

(ii) Let T be any amenable semigroup, and U any amenable
semigroup of at least two elements and containing an identity e.
We define p: T— End (U) by p,(v) = ¢ foreachac T and uec U. We
have (u, a)(v, b) = (ue, ab) = (u, adb) for any (u, a), (v, b)e U >< T. Thus
if u, ve U with u = v, we see that (u, a)(U >< ) N (v, a)(U >< T) = ¢,
which shows that U >< T is not left amenable

(iii) Let U be the nonnegative integers under addition, and let
T be the infinite cyclic semigroup with generator {a}. Define p: T —
Inj (U) by p.u) = 2u for each uec U. Now we see that

(O? a)(U X T) = «uy a’j)lu even , .7: 2, 39 "'}

and

(lya)(UXT):{(u:aj)lu Odd, j=2,3,"'}.

Thus (0, a)(U x T)N (1, a)(U X T) = ¢, which shows that U x T is
0 0 o
not left amenable.

REMARK 8.7. Suppose S=U x T. Then we may add a two-

sided identity to either U or T (or both) and extend the homomorphism
0 in such a way that S contains a two-sided ideal of the new semi-
direct product obtained. Let U° be the semigroup obtained by adding
a two-sided identity e¢ to U. Then by defining 0" T'— End (U°) by
oy(u) = o,(u) for we U and pi(e) = e for each aecT, we see that
(U° X T)(u, a)(U° >< T)c S for each (u,a)eS. Similarly if 7° is
the sermgroup obtamed by adding a two-sided identity 1 to T, we
define o, = p, for each ac T and o} = identity homomorphism on U.
Once again we have (U X ) w, a)(U X T°) < S for each (u, a)eS.

This remark will be useful in the propositions which follow,
since it is well-known (Mitchell {12, Thm. 9] for example) that if A
is a subsemigroup of B containing a two-sided ideal of B, then A
is left [right] amenable if and only if B is left [right] amenable.

PROPOSITION 3.8. If S =U X T s left amenable, then U and T
are left amenable. (

Proof. The map o¢: S — T defined by o(u, @) = @ is a homomor-
phism from S onto 7T, which shows that T is left amenable.
To show that U is left amenable, by Remark 3.7 we may assume
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without loss of generality that 7' has an identity 1 and that p, is the
identity map on U. For each f e m(U) define f~em(S) by f~(u, a)=
f(u). Notice that for each ve U we have (/f)” = 4,nf~ since
(4w, @) = 4,f(u) = f(vu) = f~(vu, @) = 4,,nS~(u, a). Choosing ve
Ms(S), we define pem(U)* by p(f) =v(f~). Actually pe M/(U)
since p is clearly a mean, and §(4,f) = V(4f)) = V(w0 f™) = V() =
#(5).

REMARK 3.9. The left invariant mean g on U constructed in the
above proof has the property P}u = p for each aeT. To see this,
choose any w € U and notice that for fem(U) we have (4 P,f)" =
Zipgur,af ™, since if (v,b)e U X T we have (4P, f)(v,b) = 4P,f(v) =
P.f(uv) = f(0.(w)0.(¥)), and Zipym,af~ (@, B) = F~((0. (), @)(v, b)) =
F(0.(u)0,(v), ab) = f(0.(w)0,(v)). Thus pu(P.f)= (4, P.f)=v(4.P.f))=
Yo, f™) = V() = pu(f).

ProposITION 8.10. If U and T are right amenable semigroups
with a homomorphism p: T — End (U), then S=U x T 1is right

amenable.

Proof. Choose ¢ € M.(U) and ve M.(T). For each fem(S) we
define f e m(T) by the formula f(a) = ¢(f,), where f, e m(U) is defined
by f.(u) = f(u, @) for each a €T and we U. Now we define p € m(S)*
by p(f) = v(f) for each fem(S). Itis easy to ch_eck that for (v, b) €
S we have (s(nf)a=+p,wf e and hence o, pf=2f. Thus pleqnf)=
V(ew,nf) = Y(epf) = p(f). Since g is also a mean on S, we see that
S is right amenable.

COROLLARY 3.11. If U and T are amenable semigroups with o
homomorphism p: T — Sur (U), then S =U X T is amenable.
0

Proof. This is immediate from Propositions 3.4 and 3.10.

PropPoOSITION 38.12. If S=U X T s right amenable then T 1is

right amenable, and if in additiopn 0: T — Aut (U) then U is right
amenable also.

Proof. As before T is a homomorphic image of S and hence right
amenable. Now suppose p: T — Aut(U). By Remark 3.7 we may
assume that T has an identity 1 and that p, is the identity map on
U. For fem(U) we define f¥em(S) by fY(u, a) = f(0:'(w)), where
oz denotes the inverse automorphism to p,. Now for each ve U, we

have (z,.f)"(u, @)= f(07 (u)v) = f (0 (0,(v))) = F ¥ (wp.(v), @) = 2o, ] ' (4, @).
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Choosing v € M.(S) we define e m(U)* by pu(f) =v(fV). It is easy
to see that g is a right invariant mean on U.

COROLLARY 3.13. If S=U x T s amenable then T is amenable,
0
and if in addition o: T — Aut (U), then U is also amenable.

Proof. This is immediate from Propositions 3.8 and 3.12.

REMARK 3.14. We give two examples to show that the condition
0: T — Aut (U) in Proposition 3.12 cannot be replaced by either p: T'—
Sur (U) or p: T — Inj(U). Example (iii) shows that we cannot
replace p: T — Aut (U) in Corollary 3.13 by p: T — End (U).

(i) We construct a right amenable semigroup S =U X T where
0: T —Sur (U), but U is not right amenable. Let U bep the free
semigroup on the generators {u;|t=10,1,2, ---}, and let T be the
infinite cyelic semigroup generated by {a}. We define p: T — Sur (U)
by ©0.(u;) = u,_, for + = 1 and p,(u,) = u,. Since U is clearly not right
amenable, all that remains to be shown is that S is right amenable.
Actually we show that S satisfies the “right-sided” version of the
strong Fglner condition: (SFC,) For any finite subset FFc S and
€ > 0, there exists a finite subset A C S with |A\As| < €| A| for each
seF.

Thus suppose F' is a finite subset and ¢ > 0. Then there exists
an integer N such that

{(0un(u), @) |(u, a’) € F} C{(uf, a*)|1 < j, k = N} .

Choose M so that 2N/M < ¢, and let 4 = {(uy, a"*")|1 < m, n < M}.
Then for each (u, a’) € F' it is easy to check that

{(ug, a*™™)IN+ 1= m,n < M}cC A(u, a?) ,

which shows that |A\A(u, ¢®)| < 2NM = 2N/M)M* < €| A|.

(ii) We construct a right amenable semigroup S =U X T where
0: T —Inj(U), but U is not right amenable. Let U be the gemigroup
generated by the elements {u;, v;|1 =1, 2, ---} with the relations
WV = VjU; = Ul; = Ujh; = U if 7 < 7, and ww; = v;u;, = v,0; = V;0, =
v; if 7 < 4. Notice that for each ¢, the semigroup generated by
{w;, v;} is the free semigroup on two generators, and hence Uu, N
Uv, = ¢. This shows that U is not right amenable.

Let. T be the infinite cyclic semigroup generated by {a}, and
define p: T— Inj (U) by 0,(4;) = u;y, and p,(v;) = v;1,. To see that
S =U x T is right amenable we show that S satisfies SFC, as in
examplg (i) above. Suppose F'c S is a finite subset and ¢ > 0. Let
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N = sup {n|(u, a™) € F for some u € U}, and choose M so that N/M <
e. Letting A = {(u, a*)|1 £ k < M}, we see that for each (u, a®) e F
we have A(u, a”) = {(u,, **")|1 < k < M} since u,p,(u) = u, for all
ue U. Also since n < N we have |A\A(u, a")| < N = (N/M)|A| <
e|lAl.

(iii) We construct an amenable semigroup S =U x T with

©0: T — End (U), such that U is not right amenable, hence not ;,menable.
Let U = {u, v} where ' =vu =u and v* = uv =v. We choose T
to be the trivial semigroup {1}, and define po: T — End (U) by
0. (%) = p,(v) =u. Clearly U is not right amenable since Uu N Uv = g.
However (u, 1)(v,1) = (v, 1)(u, 1) which shows that S is abelian and
hence amenable.

4, Semigroups satisfying SFC. From the counterexample con-
structed in 8.5 we know that the class of semigroups satisfying
SFC is a proper subset of the class of left amenable semigroups.
In this section we examine some of the properties of this class,
generally following the line of results established for left amenable
semigroups (see Day [2] and [3]).

REMARK 4.1. By Lemma 2.1 and Theorem 2.2, in order to show
that a particular left amenable semigroup S satisfies SFC, we need
only show that whenever 7s = ¢ for some 7, s, t€S, there exists
xeS with sx = tx.

PrOPOSITION 4.2. If S 1is a semigroup satisfying SFC with «
subsemigroup T such that p(yr) > 0 for some pe Ms(S), then T also
satisfies SFC.

Proof. T is left amenable since g(y,) > 0 (Day [2]). Suppose
a,b,ceT with ab = ac. Since S satisfies SFC there exists x € S with
bx = cx. Since p(xy) > 0 and #(x,s) = 1, T N «S is nonempty. Hence
we can pick de€ T N xS, and we have bd = ¢d. This shows that T
satisfies SFC by Remark 4.1.

It is not true, however, that every left amenable subsemigroup
of a semigroup satisfying SFC must satisfy SFC. For example,
consider a semigroup obtained by adding a two-sided zero to another
semigroup which is left amenable but does not satisfy SFC.

A subset T S is said to be left thick if for every finite subset
F c S there exists a € T such that Fa c T. Clearly any subset con-
taining a left ideal of S is left thick. Mitchell [12, Thm. 7] showed
that a subset T of a left amenable semigroup S is left thick if and
only if p(y;) =1 for some pe M/(S).
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PROPOSITION 4.3. If T s a left thick subset of S such that T
satisfies SFC, then S satisfies SFC.

Proof Let F Dbe a finite subset of S and ¢ > 0. Choose ¢ > 0
such that 26/(1 — 0) <e. Since T is left thick there exists acT
such that FacT. Choose a finite subset BCT such that |B\aB| <
0|B| and |B\saB| < d|B| for each s€ F. Now we see that

B|
|aB\saB| < 23| B| < 25[__|i__]|3| < ¢|aB| .
1 —9)|B]|
This proposition extends a result of Rajagopalan and Ramakrishnan
[14, Thm. 22]. The next two results are stated without proof since
their verification is routine.

PROPOSITION 4.4. A finite direct product of semigroups which
satisfy SFC also satisfies SFC.

PROPOSITION 4.5. A directed union of semigroups which satisfy
SFC also satisfies SFC.

PROPOSITION 4.6. If U and T are semigroups which satisfy SFC
with a homomorphism p: T — Aut (U), then S =U X T satisfies SFC.
o

Proof. S is left amenable by Proposition 3.4. Suppose there
exist (u, @), (v, b), and (w, ¢) €S =U X T with (u, a)(v, b) = (u, a)(w, ¢).
Then up,(v) = wo,(w) implies p;’(u)vP: 02" (w)w, and hence there exists
ye U with vy = wy. Also ab = ac implies there exists de T with
bd = cd. Since p, is surjective and p,0; = 0,0, we must have o, = p,.
Thus we see that (v, b)(0;'(y), d) = (vy, bd) = (wy, cd)=(w, ¢)(0:'(¥), d)=
(w, ¢)(057'(¥), d). By Remark 4.1 we have shown that S satisfies
SFC.

Examples 3.5 and 3.6 (iii) show respectively that the condition
©0: T — Aut (U) in the proposition above cannot be replaced by either
o0: T—Sur (U) or p: T — Inj(U).

PROPOSITION 4.7. If S =U x T satisfies SFC, then U and T also
satisfy SFC.

Proof. U and T are left amenable by Proposition 3.8. Moreover,
Remark 3.7 combined with Propositions 4.2 and 4.3 shows that we
may assume that 7' has an identity 1 and that p, is the identity map
on U.- Suppose uv=wuw for u, v, we U. Then (u, 1)(v, 1)=(u, 1)(w, 1),
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hence there exists (y, a) € S with (v, 1)(, @) = (w, 1)(¥, @). From this
we see vy = wy, which shows that U satisfies SFC.

Now suppose ab = ac for a, b, ce T. Then (u, a)(u, b) = (u, a)(u, ¢)
for any u € U, thus there exists (v, d) € S with (u, b)(v, d) = (u, ¢)(v, d).
Hence we have bd = c¢d, showing that T satisfies SFC.

The question of whether homomorphic images of semigroups
satisfying SFC also satisfy SFC is still open. An answer to this
would be particularly interesting in view of the corresponding results
for left amenable semigroups (yes, Day [2]) and left measurable
semigroups (no, Sorenson [16]).

5. Left measurable semigroups. For any semigroup S it is
easy to see that a mean pem(S)* is left invariant if and only if
P e-14) = (Y for each AC S and s€S. We say that a mean ¢
m(S)* is left reversible invariant if p(x,.) = #(x,) for each AcCS
and s€ S, and denote the set of left reversible invariant means on
S by RMs(S). If a semigroup S has a left reversible invariant mean
we say that S is left measurable. This term arises from the obvious
one-to-one correspondence between RM/(S) and the set of left measures
on S, i.e., the set of finitely additive measures » on S such that
MS) =1 and AM(s4) = \(A) for each s€ S and AcS. Clearly every
left measurable semigroup is left amenable since any left reversible
invariant mean is left invariant, and also for left cancellative semi-
groups the conditions are equivalent. The terms right reversible
invariant and right measurable are defined analogously.

Sorenson investigated the properties of left measurable semigroups
in his thesis [16]. In particular he showed that every left measurable
right cancellative semigroup is left cancellative [16, 3.1.7]. The proof
that follows in Theorem 5.1 is not the one that Sorenson gave,
although he noticed that this type of proof was possible [16, remarks
on p. 57].

THEOREM 5.1. If S s a left measurable semigroup, then its
right cancellative quotient semigroup S’ is left cancellative.

Proof. Suppose S’ is not left cancellative. Then by Lemma 2.1
there exist 7, s, t€-S such that rs = ¢ but sx # tx for each z€S.
Let & = {AcCS|sANtA = ¢}). Then <& +#* ¢ since {x} € .<Z for each
xeS. If we partially order <& by inclusion, it is easy to see that
&7 is chainable, thus by Zorn’s lemma let A be a maximal element
in &Z. For each x e S\A we have either sxetA or tx € sA since sx #
tx and A is maximal. Thus we may write S=AUS,US; where
sS,ctA and tS,csA. If pe RM/(S), we must have p(y,) = p(Yes) =
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1(Xss,) = t(Xs,) and similarly p(x,) = p(Xs,), which shows that p(X,) =
1/3. However, rs = r¢ implies that #(() = £(res) = #Nieavear) =
21(x4), and hence p(x,) = 0. By this contradiction we see that S’
must be left cancellative.

COROLLARY 5.2. If S s left measurable and right cancellative,
then S 1s left cancellative.

Proof. If S is right cancellative then S = §'.
COROLLARY 5.3. Ewery left measurable semigroup satisfies SFC.

Proof. This follows immediately from Theorems 2.2 and 5.1.

It is not true that every semigroup which satisfies SFC is left
measurable, since any semigroup with a zero element obviously
satisfies SFC, but cannot be left measurable if it has more than one
element.

We now state some of the properties of left measurable semigroups
obtained by Sorenson.

(i) The homomorphic image of a left measurable semigroup is
not necessarily left measurable [16, Example 1, §3.1].

(ii) A left ideal of a left measurable semigroup need not be
left measurable [16, Example 2, §3.1].

(iii) A right ideal of a left measurable semigroup is left meas-
urable [16, 3.1.2].

(iv) A finite direct product of left measurable semigroups is
left measurable [16, 3.1.4].

(v) A directed union of left measurable semigroups is left
measurable [16, 3.1.5].

The next lemma is useful in proving Propositions 5.5 and 5.6,
which look at the semidirect product in relation to left measurability,
following the pattern of results established in §3 and §4 for amenable
semigroups and semigroups satisfying SFC respectively.

LEMMA 5.4. A mean p is left reversible invariant on a semigroup
S if and only if p is left invariant and p(y,) =1 for each s€S,
where Z, = {t e S|s st} = {t}}.

Proof. Suppose peRM/(S) and seS. It is clear from the
definition of Z,, that by using a Zorn’s lemma argument we may
write S\Z, = A, U A,, where A, NA,=¢ and sd, = sd, = s(S\Z,).
This implies that p(x.) = t(Xs) = A5z, and also that p(Yisz,) =
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L(Aa) + £(Xs). From this we see that (Ywss,) = 0, and hence
#(tz,) = 1.

Now suppose that e Ms(S) and p(),,) = 1 for each s€S. For
any set AC S we have s7'(s4A)\A c S\Z,, and hence 2(X(-1tana) = 0.
Thus £(X.a) = £Ne160) = LXa) + £ Qe—1ana) = £(X4), Which shows
that g is left reversible invariant on S.

The first part of this proof is given by Sorenson in [16, 2.3.2].

Notice that for a left amenable semigroup S to be left measurable
it must be “almost” left cancellative, in the sense that Z, must be
left thick in S for each seS.

PROPOSITION 5.5. If U and T are left measurable semigroups
with & homomorphism p: T — Aut (U), then S =U X T 1is left meas-
urable.

Proof. Recall that in §3 we defined P,: m(U)—m(U) by P,f(u)=
f(0.(w)), which induced a linear operator Py on m(U)*. Since p,¢
Aut (U), it is straightforward to show that P} maps RMs(U) onto
itself, and since RM/(U) is compact and convex with respect to the
weak*-topology (Sorenson [16, 1.1.10]), once again we apply the fixed
point theorem (Day [3, Thm. 6.1]) to obtain a left reversible invariant
mean ¢ on U such that P}¢ = ¢ for each acT.

For each fem(S) define f,e m(U) by f.(w) = f(u, a), and define
Ffem(T) by fla) = ¢(f.). Choosing ve RM/(T), we define p e m(S)*
by p(f) = v(f). From the proof of Proposition 3.4 we know that
€ M/(S), thus by Lemma 5.4 we need only show that p(y, ) =1
for each (u,a)eS. After noting that Z,. = {(v, b)|ve Z,-1,, and
be Z,}, we see that (xz, ,)» = Xzp=t ifbe Z,, and (Y2, ) =0if be Z,.
Since ¢(sz;’(u))=1 by Lemma 5.4, we see that ¥, , =2%z. Now we
have p(¥z,.) = Y(Az) =1 by Lemma 5.4, as desired.

It is not possible to replace the condition p: T'— Aut (U) int his
proposition by either o: T'— Sur (U) or p: T —Inj(U), as is shown
by the Examples 8.5 and 3.6(ili) respectively.

PROPOSITION 5.6. If S =U X T s left measurable, then U and
I
T are left measurable.

Proof. Let ve RM/(S). To see that U is left measurable, we
define pte m(U)* as in Proposition 3.8 by p(f) =v(f~), where f~ € m(S)
is defined by f~(u, @) = f(u) for each fem(U). In the proof of
Proposition 3.8 we saw that g€ Ms(U), hence it suffices to show that
t(Xz,) = 1 for each we U. First consider the set Z ., for some
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fixed a€T. Now we have ()z)~ Z Az(py a0 SIDCE if ve Z, there
exists w # v with uv = ww. Then for any b € T we have (o,(u), a)(v, b)=
(0.(w), a)(w, b) which shows that (v, b) ¢ Z(, (), for eachbeT. Now
we have 1 = u(x,,) = Y (Xz,)") Z YUAz(piua) = 1 by Lemma 5.4.

Similarly, to see that T is left measurable we define + e m(T)*
by +4(g) = v(g"), where g" € m(S) defined by g"u, a) = g(a) for each
gem(T). After checking that + is a left invariant mean, we see
that ¥(Xz,) =1 for each a €T, since (Yz)" = Xz, for any ue U.

Combining the appropriate version of Lemma 5.4 for right rever-
sible invariant means with Propositions 3.10 and 3.12, analogous
arguments yield the following results:

PROPOSITION 5.7. If U and T are right measurable semigroups
with @ homomorphism p:T — End (U), then S =U X T s right
°
measurable.

PrOPOSITION 5.8. If S =U X T 1is right measurable and o: T —
0
Aut (U), then U and T are right measurable.
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