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This paper discusses relations between a closed, convex
set in a locally convex space and its normal cones and barrier
cone in the dual space. Results of Wu and de Andrade on the
Gauss map and spherical image of a convex hypersurface in
a Hilbert space are generalized to the topological vector
space situation, and additional information is obtained on
the relation of the interior of the spherical image and bar-
rier cone to the size and shape of the given convex set.

1. Introduction. Suppose K is a closed, convex set with a
smooth boundary M and a nonempty interior in a finite- or infinite-
dimensional inner product space. Let X be the unit sphere of the
space. The “Gauss map” 7v: M — 23 associates to each point z,e M
the outer unit normal vector, 7(x,), to M at x,. The outer unit
normal can be characterized as the unit vector u = ¥(x,) which is
uniquely determined (when M is smooth) by the condition

a1.n e — 2, uy =0 for all ze K.

If M is not smooth, it is customary to call all (nonzero) vectors u
satisfying (1.1) “normal” to M at x,, and the Gauss map becomes a
multivalued function associating to each x,¢ M the set 7(x,) of all
unit vectors satisfying (1.1). The “spherical image” of M (or of K)
is Y(M), the image in 3 of M under 7.

In a number of recent papers, [31, 9, 30, 1, 2], several authors
have studied properties of the spherical image and the relation of
these to properties of M. Wu [31, 30] has treated the finite di-
mensional case and de Andrade [1, 2] considered the Hilbert space
case.

It is the purpose of this note to point out the relation between
these results — especially those of de Andrade — and certain funda-
mental theorems in the general theory of convex sets and functions
in topological vector spaces: In particular, the Bishop-Phelps theorem,
the theorems of James on weak-compactness and reflexivity, and the
theorems of Moreau and Rockafellar on the relation between con-
tinuity properties of a convex functional and the size of the level
sets of its convex conjugate function. With the help of these general
theorems, we are able to obtain very simple proofs, not only of the
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theorems of Wu and de Andrade, but of the natural generalizations
of these theorems to Banach spaces and locally convex topological
vector spaces.

The most significant geometric distinction between the finite and
infinite dimensional cases is that, in the finite-dimensional case, if K
is unbounded, it contains a half-line; in the infinite-dimensional case,
there always exists an unbounded K which contains no half-line.
Section 3 below is devoted primarily to generalizations of de Andrade’s
characterization [2] of the three possibilities (M bounded, M un-
bounded but bounds no half-line, M bounds a half-line) in terms of
the spherical image of M. In §5, we carry the analysis further by
noting relationships between the interior of the spherical image of
M and properties of the intersection of M and K with hyperplanes
and halfspaces. We incidentally obtain the generalization (see Theo-
rem 3.1.2 and Corollary 5.2.4) of the result of Wu [30] and de
Andrade [1] that the interior and the closure (relative to the unit
sphere %) of the spherical image are convex. (Wu gives a three-
dimensional example in which the spherical image itself is not con-
vex.) The proofs of the results of §§3 and 5 are given in §§4 and
6 respectively; these proofs usually consist of pointing out the ap-
plicability of the relevant general theorem on convex functions.

Throughout, the transition from the functional analytic state-
ment to the geometric statement is based on the elementary observa-
tion that the spherical image can be identified with the normalized
set of all linear functionals which attain their supremum on K.

2. Notation and terminology.

2.1. Let E and E’ be two real linear spaces which are placed
in duality by a bilinear form {(x, "> (x € E, ' ¢ £’) which separates
points of K and of E’ [7, Chap. IV; 17, Chap. 5]. We assume,
whenever a topology is needed but not specifically described, that
E or E' is provided with a topology compatible with the duality (so
that E' or E may be identified with the dual space of E or E',
respectively). The weakest and strongest such topologies (on H,
for example) are the weak topology o(H, E’') and the Mackey topology
(K, E’'). We will also refer to the strong topology, B(E’, E), on E’.
When E is a Banach space, the SB(E’, E) topology is the same as the
norm topology on the dual E’; it is not, in general, compatible with
the duality. When the topology A(E’, E) on the dual of a locally
convex space F is compatible with the duality of K and E’, then F
is called semireflexive. A Banach space is semireflexive if and only
if it is reflexive. )

For SC E, ¢l (S) and int (S) denote the closure and interior of
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S, respectively, relative to the topology in question. In a Banach
space, these symbols unmodified always refer to the norm topology.

2.2. We recall some terminology from the theory of convex
sets and convex funections (ef. [11; 12; 26; 27]). Let (¥, E') be a
dual pair as described above, and let K be a closed, convex subset
of E. An internal point of K is a point z€ K such that every
half-line in F emanating from z contains a point of K distinet from
x; this is sometimes described by saying that K is radial or absorb-
ing at 2. The set of all internal points of K is the core of K,
denoted by cor (K). We define bd (K) = K\cor (K). The recession
cone (or asymptotic cone) of K, denoted by 07K, is the set of all
y € F such that, for every x € K, the half-line x + Ay (\ = 0) belongs
to K; 0*K is a closed, convex cone which always contains at least
the 0 of K, and it can be alternatively characterized by

0°K={ycE: K+ yC K)

[209; 27, §8]. By definition, 07K == {0} if and only if K contains a
halfline. The indicator function 6 of K is the extended real-valued
function which is zero on K and +c on F\K; this function is con-
vex (since K is) and lower semi-continuous (since K is closed). We
say that K is a convex body if the interior of K is not empty (with
this definition, a convex body is not necessarily bounded).

The barrier cone of K, denoted by bar (K), is the set of all
elements of E’ which, when considered as continuous linear func-
tionals on E, are bounded above on K; it is a convex cone in E'
containing the 0 of E’. Clearly, K is bounded if and only if
bar (K) = E’. The normal cone to K at =z, (x,€ K) is the set of
'€ B’ such that (& — x,, ') < 0 for all x ¢ K; it coincides with the
subdifferential of 6, at x, that is, the set

00,(x,) = {&' € B’: for all x € K, 6x(x) = dx(x,) + {x — x, ')},

and hence we denote it by 00.(x,) (cf. [11, §9]). For x,¢ K, 00,(x,)
is empty; for z,€ K, 00x(x,) is a o(E’, E)-closed, convex cone in E’
containing 0, and 9d.(x,) = {0} for every «,ccor (K). For z,cbd(K),
the nonzero elements (if any) of dd,(x,) are precisely the supporting
Junctionals of K at xz, that is, the nonzero 2’ € K’ satisfying

(xy, &'y = sup Kz, 2"): 2 € K},

and z, is a support point of K if and only if 8d.(x,) contains non-
zero elements. The set of all supporting functionals of K, together
with the zero functional, is thus
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00x(K) = 00g(bd (K)) = L!{ 00x() .

Clearly, 90(K) < bar (K).
The polar (in E') of K< FE is

K° = {x"eE': {z,2'> =1 for all x€ K}.
Analogously, the polar (in E) of CS E' is
°C={xecE:{x,2’> =<1 for all v’ €C}.
If C is a convex cone in E’, this is equivalent to
°C={xecE:{(x,2) <0 for all ' C}.

The basis for much of what follows is the known fact that
°[bar (K)] = 0*K [29, Theorem 2A(d)}; that is, ¥ €0*K if and only
if <y, 2> £0 for all ' c¢bar (K). (De Andrade’s Lemma 1 [1, 2] is
a Hilbert space version of this result.)

2.8. To relate the above notation with that used by de Andrade
[2], we assume that F is a Banach space, let 3’ be the boundary
of the unit ball in the dual space E’, set M = bd (K), and define a
multi-valued map v: M — 3’ by

wx) ={x’ e B2’ €3 and —a' €0 (%)}
= 3" N [—00x(x)] .

If K is a convex body, then M is precisely the topological boundary
of K and y(x) is nonempty for every x <M (support theorem for
convex bodies [12, page 64]). If, {furthermore, M is smooth, then
v(z) is the normalized linear functional which determines the unique
supporting hyperplane to K at z, and if E is Hilbert space, the
direction of y(x) is normal to this hyperplane and points from =z
towards the interior of K.

Since 00,(M) is a cone in E’' (it contains all positive multiples
of its elements) and v(M) = 3’ N [—0dx(M)], the topological properties
of 30x(M)\{0} relative to K’ are precisely analogous to the properties
of v(M) relative to 2’. Furthermore, in a Hilbert space, a cone C
which is not a line is convex if and only if CN X is geodesically
convex. Thus, unless M consists of two parallel halfplanes, the
convexity properties of 00,(M) and its closure are precisely analogous
to the geodesic-convexity properties of y(M). (Cf. [4, Theorem
28.13].)

3. Relations between K, bar (K) and 00,[bd (K)].

3.1. de Andrade’s result [2, Theorem A] can be formulated as
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a correspondence between properties of the boundary M of a convex
body K in a Hilbert space and properties of 96,.(M):

M is bounded if and only if 86,(M) is the entire space; M is
unbounded and bounds no half-line (i.e., 0*K = {0}) if and only if
30(M) is dense and has empty interior; M is unbounded and bounds
a half-line if and only if 66,(M) is contained in a halfspace.

This result continues to be valid precisely as stated in any
reflexive Banach space (cf. Theorem 3.1.3 and its corollary below),
and it follows from James criterion for reflexivity that it is wvalid
only in reflexive spaces (when K has nonempty interior; Theorem
3.1.5 below). Now in a reflexive space, the weak compactness of a
bounded K implies 06.(M) = bar (K); and, more generally, in a
Banach space, 00(M) is dense in bar (K) (Bishop-Phelps theorem,
see below). Hence the content of the above assertion is essentially
unchanged by replacing 96,(M) by bar(K), and in this form we
obtain the broadest and simplest generalization (all proofs are given
in the next section):

3.1.1. THEOREM. Let (H, E') be a dual system of wvector spaces
with topologies compatible with the duality. Let K be a nonempty,
closed, comvex subset of K, and set M = bd (K). Then

(a) K is bounded if and only if bar (K) = E'.

(b) OTK = {0} 1f and only if bar (K) 1s contained in a closed
homogeneous half-space of E' (i.e., a set of the form {x": {x, z'> < 0}
Jor some x,c K).

(¢) O0tK = {0} if and only if bar (K) vs dense in E'.

(¢)) 0*K = {0} and K is unbounded if and only if bar (K) is a
proper dense subset of E’'. In this case, bar (K) has empty interior.

This result together with the Bishop-Phelps theorem on sup-
porting functionals and James criterion for weak compactness yield
immediately the following correspondence between properties of K
and properties of 0d,.(M):

3.1.2. THEOREM. In addition to the hypotheses of the preceding
theorem, assume that E is complete. Then

(a) 00.(M) = E' 1f and only +f K is o(E, E')-compact.

If in addition, either K is a convex body or K is a Banach space
(with dual E'), then the B(E', E)-closure of 06(M) is convexr and

(b) 0*K = {0} +f and only if 06,(M) is contained in o closed,
homogeneous half-space of E'.

(¢) 0K = {0} if and only i1f 00,(M) is dense in E'. If non-
empty, the interior (relative to any topology compatible with the
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linear structure of E’) of B(E', E)-cl[bar (K)] is convex.

The hypothesis following (a) appears to be essential for (¢), since
(i) in any incomplete normed linear space there exists a bounded,
closed, convex set K with 80,(M) not dense in E’ [5, Theorem 3],
and (ii) there exists a closed, convex set with empty interior (in a
complete, metrizable, topological vector space) with no supporting
functionals [23; 12, page 166].

We now take K to be the dual X’ of a Banach space X and
take E’ to be the “original” space X; then we are able to replace
bar (K) by 00x(M) in the assertions of Theorem 3.1.1 and thus obtain
a precise generalization of de Andrade’s Theorem A [2]:

3.1.3. THEOREM. Let K be a o(X’, X)-closed (“weak*-closed”),
nonempty convexr set im the dual X' of o Banach space X. Let
M = bd (K) and 00,(M) be the subset of X containing points which
generate supporting functionals of K. Then cl[0d.(M)] is convex
and

(a) K 1is bounded if and only if 36 (M) = X.

(b) O0*K # {0} +f and only if 00 (M) is contained in a closed,
homogeneous half-space of X.

(¢) K is unbounded and 0*K = {0} +f and only if 00.(M) is
dense in X but is not equal to X. In this case, int [06.(M)] = @.

3.1.4. COROLLARY. If K is a closed, convex subset of a reflexive
Banach space E, then conclusions (a) to (¢) of Theorem 3.1.3 hold
with X replaced by E' (00,(M) < E’).

As the next theorem shows, the validity of conclusion (¢) de-
pends essentially on the reflexivity of the space in question.

3.1.5. THEOREM. (a) Suppose E is a quasi-complete [7, Chap.
III, §2, No. 5], locally convex Hausdorff topological wvector space
with dual E'. Then 06,(M) = E' for every monempty, bounded,
closed, convex set K C K 1f and only if E is semireflexive.

(b) Suppose K is a closed, convex body in « Banach space E.
Then 06 ,(M) = E' 1f and only if E is reflexive and K is bounded.

4. Proofs of theorems of § 3.

4.1. On Theorem 3.1.1. Conclusion (a) is well-known; cf. [7,
Chap. IV, §2, No. 4]. As pointed out above, 0*K = °[bar (K)]. By
the bipolar theorem [7, Chap. IV, §1, No. 3; 12, page 68], (0*K)° =
°[bar (K)]° is the o(E’, E)-closure of the convex set bar (K), and is
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also (by convexity) the closure of bar(K) in any topology com-
patible with the duality [7, Chap. IV, §2, No. 3]. Conclusions (b)
and (¢) follow immediately.

The first part of (c¢’) is obvious from (a) and (c). If any convex
set B (in particular, bar (X)) has nonempty interior, then its interior,
int (B), is equal to the interior of its closure, int [cl (B)] [12, page
59]. (In particular, if int[bar (K)] # @, then int [cl(bar(K))] <
bar (K); this is de Andrade’s Lemma 2 [2] and Lemma 3 [1].) Thus
if el[bar (K)] = E' and int[bar (K)] # @, then int [bar (K)] = E' =
bar (K), so K is bounded. This completes the demonstration of (c’).

4.2, On Theorem 3.1.2. If K is o(FE, E')-compact, then every
continuous linear functional assumes its maximum on K and thus is
a supporting functional; therefore, 06 (M) = E’. Conversely, James
[15; 14; ef. 10, Ch. 1; 12, page 157] has shown that if every con-
tinuous linear functional assumes its maximum on a closed, convex
set K, then K is weakly compact. This completes the proof of (a).
(This remains valid if E is only quasi-complete.)

To prove (b) and (c), we use the following facts; Proposition
4.2.1 is a corollary of Theorem 8.1.1, while Proposition 4.2.2 follows
from the Bishop-Phelps theorem. We use the notation of Theorem
3.1.1.

4.2.1. PROPOSITION. (a) If 0*K =+ {0}, then 36x(M) is contained
wn o half-space of E'.

(b) If 00,(M) is dense in E’, them 0tK = {0}.

(¢) If 06x(M) ts dense im E’ and has a monempty interior,
then K s bounded.

4.2.2. PROPOSITION. Suppose that E is complete and either K
has nonempty interior or E is normable. Then the polar of 36.(M)
is the recession cone of K:

°[oo(M)] = 0*K .

Proof. Under these hypotheses, a theorem of Bishop and Phelps
[5, Theorem 2; 24, Corollary 1; 12, page 165] asserts that 00(M) is
B(E', E)-dense in bar (K). Thus

00 (M) < bar (K)
< B(E', E)-closure of 0d.(M) (Bishop-Phelps)
C o(E', E)-closure of d0,(M) (since B(E', E)2 o(E', E))
C (°[06x(M)])° (bipolar theorem).
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Thus °[00x(M)] = °[bar (K)] = 0*K.

Conclusions (b) and (¢) of Theorem 3.1.2 now are obvious.

The B(E', E)-closure of 90,(M) is convex since, by the Bishop-
Phelps theorem, it coincides with the B(E’, E)-closure of the convex
set bar (K). The last assertion of 3.1.2 follows from the fact that
in any topological vector space, the interior of a convex set is con-
vex [6, Chap. II, §2, No. 6].

4.3. On Theorem 3.1.3. The Bishop-Phelps theorem which was
used in the proof of Lemma 4.2.2 has a dual version which asserts
that if K is a weak*-closed, convex subset of the dual X’ of a
Banach space X, then the set of points in X which generate sup-
porting functionals of K is norm-dense in the set of points in X
which generate functionals bounded above on K [25]. Thus Theo-
rem 3.1.3 can be proved just as Theorem 3.1.2 was proved. (In
comparing Theorem 3.1.3 with Theorem 3.1.5, note that X’ with the
o(X', X) topology is semireflexive.)

4.4. On Theorem 3.1.5. Conclusion (a) is a consequence of James
theorem on weak compactness (see Theorem 3.1.2(a)) and well-known
characterizations of semireflexive spaces. Cf. Kothe [20, §24, 4
(8)] and Klee [19], where it is shown, in fact, that if E is not semi-
reflexive, then given any nonzero z’' ¢ E’, there exists a closed,
bounded, absolutely convex set K such that 2’ is not a supporting
functional of K.

To prove (b), it suffices to show that if 06,(M) = E’ for a con-
vex body K in a Banach space E, then FE is reflexive. But James
criterion again implies that K is weakly compact. By translation,
since int (K) # @, so is the unit ball of E, and hence £ is reflexive.
Cf. James [13].

5. Further discussion of int [bar (K)] and the case 0K == {0}.

5.1. The analysis of the case in which M = bd (K) bounds a
half-line —i.e., 0YK = {0} — can be carried further than was done
above or by de Andrade, for there is a relationship between the
interior of cl[bar (K)] (or ¢l [06(M)]) and the size of 0" K.

We recall the definition of a base of a cone C in a linear space
E [12, §5C]: This is a convex subset B < C with the property that
for every nonzero x €C, there is a unique )\ > 0 such that Mz e B.
A set B is a base of C if and only if there exists a linear func-
tional ¢ on K which is strictly positive on C\{0} and such that B =
{xeC: ¢(z) = 1}.

Theorem 5.1.1 lists necessary and sufficient conditions, in terms
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of the “size” of a base of 0"K, for cl[bar (K)] to have a nonempty
interior. The proof uses known general results (due primarily to
Moreau and to Rockafellar) on the relation between the interior of
a cone and the base of its polar cone, as well as the polarities dis-
cussed in §§2 and 4:

07K = °bar (K) = °cl [bar (K)]
and
(0*K)° = cl [bar (K)] .

(As before, we work with a dual pair (E, E') with topologies com-
patible with the duality, and ¢l denotes the closure with respect
to such a topology; for a convex set such as bar (K), it is inde-
pendent of the particular compatible topology used.) Proofs are
given in §6.

5.1.1. THEOREM. Let K be a closed, convex subset of E with
0K = {0}. Then
(a) The following are equivalent:
(i) corlel[bar (K)]] # @;
(ii) B(E', E)-int [cl [bar (K)]] # ©@;
(iii) O0*K has a bounded base.
(b) The following are equivalent;
(i) int[elbar (K)]] # @;
(ii) O*K has a o(E, E')-compact base;
(iii) 0*K 4s locally compact.
(¢) The following are equivalent:
(i) o(&', E)-int [cl [bar (K)]] = O);
(i) 0*K 4s finite dimensional and has o bounded base.

5.1.2. COROLLARY. Suppose E is a semireflexive, locally convex
topological vector space with topological dual E’, and K is a closed,
convex subset of E, with 0" K=-{0}. Then the following are equivalent:

(i) cor{eclbar (K)]] # @&;

(ii) P&, E)-int [cl [bar (K)]] = @;

(iii) O0"K has a bounded (and hence weakly compact) base.

If, in addition, E is complete and either K has nonempty interior
or E is normable, then cl[odx(M)] = cl[bar (K)], and so “bar (K)”
may be replaced by “06(M)” in (1) and (ii).

As in Theorem 3.1.3 and Corollary 3.1.4, this result is immedi-
ately applicable to weak*-closed, convex subsets of the dual of a
Banach space and to closed, convex subsets of a reflexive Banach
space.
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If the interior of bar (K) is nonempty, then int [cl [bar (K)]] =
int [bar (K)]. The following example shows, however, that 5.1.1 and
5.1.2 are not true if in them we replace the interior of the closure
of bar (K) in (i) or (ii) by the interior of bar (K), because the latter
interior may be empty.

5.1.8. ExAMPLE. Let K, be an unbounded, closed, convex subset
of a Hilbert space H, with 07K, = {0} (see, e.g., de Andrade [2]).
By Theorem 8.1.1, bar (K,) is dense in H, and has an empty interior.
Let H be the Hilbert space direct sum H, R of ordered pairs
(z, N), with x € H,, » € R; we identify the dual of H with H. Define

K={x,NeH:xc K, » = 0}.

Then 0K = {(0,\)€ H:0 = M€ R}, bar (K) = {(v, ) € H: v € bar (K,)},
0= preR, and cl [bar (K)] = (0*K)° = {(v, p) e H: ve H,, p =< 0}. Thus,
although 0*K is finite-dimensional and has a bounded base, int [bar (K)]
is empty.

5.2. The following theorem describes the strong interior of
bar (K) directly in terms of the intersection of K with halfspaces.
It is proved in the same way as Theorem 5.1.1 and, in fact, is a
generalization of Theorem 5.1.1(a), since the latter can be obtained
by applying Theorem 5.2.1 to 0K in place of K and using bar (0*K) =
(0*K)° = cl [bar (K)] (in any topology compatible with the duality).
In a semireflexive space, it asserts that v’ €int [bar (K)] if and only
if the intersection of K with any halfspace {x: {x, ') = a} is bounded.
The corollary is a generalization of de Andrade’s condition (d) [2]
for K to be a “pseudograph” (cf. [30, Lemma 4]).

It is convenient to use the following notation: If v € K, we
denote by [v' = «a] the halfspace

[Vza]l={zeE: (x,v)=a};

[v/ > a], [v/ = a], etc., have analogous meanings.

5.2.1. THEOREM. Let K be a monempty, closed, convexr subset of
E. Suppose 0 = v'€ E'. Then the following are equivalent:

(i) o' eB(E', E)-int [bar (K)];

(ii) o' ecor [bar (K)];

(iii) For all real a, KN [v' = a] is bounded;

(iv) There exists a real B such that
Kn[v > B] is nonempty and bounded.

If we weaken the condition (iv) to the condition that the in-
tersection of K with a nonsupporting hyperplane [v' = a] is bounded
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and nonempty, then we can still conclude, in many cases, that o'
(or —v’) is an interior point of bar (K) (see Theorem 5.2.2 below).
Some extra hypotheses are necessary, however, for if K is a line
or a cylinder, then the intersection of K with certain hyperplanes
[+' = a] may be bounded, although =+’ ¢ bar (K). We shall see that,
at least in semireflexive spaces, if we rule out this cylindrical pos-
sibility, then the boundedness and nonemptiness of KN [v' = a] for
a nonsupporting hyperplane [v' = ] implies v’ € int [bar (K)] or —2' ¢
int [bar (K)]).

We shall say that a hyperplane properly supports K if it is a
supporting hyperplane which does not contain K. We then have
the following extension of Theorem 5.2.1:

5.2.2. THEOREM. With the hypotheses of Theorem 5.2.1, each of
the conditions (i) to (iv) of that Theorem implies each of the fol-
lowing equivalent conditions:

(v) There exists a real o such that the hyperplane [v = al
does mnot properly support K and KN [v = a] ts nonempty and
bounded.

(vi) There exists a real a such that [v' = a] does not properly
support K and M N [v = a] s nonempty and bounded.

Suppose, in addition, that E is semireflexive (with dual E'), and
0" K is not a one-dimensional linear subspace of E. If some nonzero
v € B’ satisfies one of the conditions (v) or (vi), them either v or
— ' satisfies each of the conditions (i) to (iv) of Theorem 5.2.1.

This theorem will be proved with the help of the following
proposition, which completely describes the recession cone of K in
the case that KN |[v' = a] is compact (in the weak topology of a
semireflexive space, this is equivalent to K N [v' = a] being bounded),
and which indicates the role played by 0*K being a one-dimensional
subspace.

5.2.8. PROPOSITION. Let K be a closed, convex subset of E. Sup-
pose there exists a monzero v €K and a real «, such that the
hyperplane [v' = a,] does not properly support K and KN [v' = a]
18 monempty and compact. Then KN [v' = a] is compact for every
real a and

(a) v s bounded on K if and only if K is compact.

(b) v is mot bounded above on K if and only <f (0VK)N
[v =1] = @. In this case, (0YK)N][v' = 1] 1s compact and is a
base for the cone (0YK) N [v = 0].

(¢) The following are equivalent:

(1) v is unbounded above and unbounded below on K;
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(ii) (O*K)Nn[v' =11+ @ and OTK)n|[v = — 1] # @;

(iii) 0*K is a one-dimensional subspace of K.
If any one of these conditions (i)-(iii) holds, K 1is “cylindrical” with
cross sections parallel to KN[v' = 0] and generators parallel to 0*K:
Given a nonzero h 07K, each x€ K has a unique representation
x=2x,+ ah for ,e KN[v'=0] and aecR. Furthermore, bar (K)
18 the hyperplane which annihilates 0*K: ‘

bar (K) = {&' ¢ E': {x, > = 0 for all x€0*K}.

The following corollary follows from the preceding results to-
gether with special facts about the subdifferentials of convex func-
tions in Banach spaces.

5.2.4. COROLLARY. Suppose K, X, and X' satisfy the hypotheses
of Theorem 3.1.3, so that 36(M) < bar (K) & X. Then int [bar (K)] =
int [00,(M)], this is a convex set, and the following are equivalent
for any momzero ve X:

(i) wveint [06,(M)];

(ii) For some real a, KN [v = a] is nonempty and bounded
If (i) holds and —wv¢bar (K), then (0FK)N[v = — 1} 78 a bounded
base of 0*K. Furthermore, (i) and (ii) imply that for all real B

(iii) Kn[v' = B] is bounded.

On the other hand, if (iii) is satisfied for some real B such that
the hyperplane [v' = B] does not properly support K, and if 0*K is
not @ one-dimensional subspace, then either v or —v satisfies (i) and

(ii).
6. Proofs of results of § 5.

6.1. On Theorem 5.1.1. On (a): For any closed, convex set, the
core is the same as the strong interior [29; 21, §8e]; thus (i) = (ii).
The equivalence (ii) — (iii) follows from the polarity of bar (K) and
0fK [29, Corollary TF; 16, Theorem 3.8.4]. On (b): The equivalence
(ii) = (iii) is valid for any closed, convex cone [18; 12, §13C], while
(i) = (ii) follows again from the polarity of bar(X) and 0*K [22;
21, §8f, Exemple] and the fact that int [bar (K)] = int [cl [bar (K)]].
On (c): Again this is a special case of a general result on polar
cones and follows from a theorem of Moreau [21, §8¢g] on the equiva-
lence of the weak continuity of a convex function and the finite
dimensionality of the level sets of its convex conjugate.

6.2. Proof of Corollary. The first part of Corollary 5.1.2 is
immediate, since the S(E’, E) topology on E’ is compatible with the
duality if E is semireflexive. The last assertion of 5.1.2 follows
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from the fact that under its hypotheses, B(E’, E)-cl[00x(M)] =
B(E’, E)-cl[bar (K)] = cl[bar (K)] by the Bishop-Phelps theorem (cf.
the proof of Proposition 4.2.2) and the semireflexivity of E.

6.3. On Theorem 5.2.1. The implications (i) = (ii) and (iii) = (iv)
are obvious. If (ii) holds, we choose «, < sup {{z, v'>: x € K} to con-
clude that KN [v = a,] is nonempty and bounded, by Theorem 4C
of [29] applied to the indicator function of 6, of K; by Corollary
4D of [29], KN[v' = a] is bounded for all a. (Cf. the proof of
Theorem 5.1.1 above and the proof of Corollary 7F in [29].) Thus
(ii) = (iii). Suppose (iv) holds. Since KN [v' > Bl = Uess KN [V = ],
it follows that for all a sufficiently close to 8 with a> 8, KN
[v" = a] is nonempty and bounded. We can choose such an a so
that sup {{z, v>:x€ K} > @, and then (i) (and (ii)) follow directly
from Theorem 7A(a) and Theorem 4C of [29].

6.4. On Proposition 5.2.3. We first prove the following general
result, which will be applied to the weak topology on a semireflexive
space E in proving Theorem 5.2.2.

6.4.1. LEMMA. Suppose K is a nonempty, closed, conver subset
of E and 0+ v €¢E'. Then KN[v = a] is bounded (or compact)
Jor every real a if and only if there exists a hyperplane [v = o]
which does not properly support K such that KN [v = a,] is non-
empty and bounded (or compact, respectively). If this ts the case
and if v is bounded on K, then K is bounded (or compact, re-
spectively).

Proof. The first assertion, on the boundedness (or compactness)
of the cross-sections KN [v"' = a] is easily verified. Suppose v’ is
bounded on K, so there exists 8 > 0 such that KS [—-8 < v < B].
Suppose K is unbounded; then there exists a convex neighborhood
U of 0 such that, for any increasing, divergent sequence {\,} of
positive reals, there exists z,€ K\(\,U). Since |{z,, v">]| < B for all
n, we may assume, by going to a subsequence if necessary, that
{{x,, v'>} converges, say to B,, with |8, =< B. Since KN[v' = B,] is
bounded, we may choose xz,€ K with (x, v'>) = 8, B,; let 5, be a
number strictly between B, and B,. We may assume {(z,, v') lies
between B, and B, for every n. Let

— :82 _ /80 — :80 _ 82 .
<$m ’U’> - Bo :30 - <xm ’I)’>

Then 0 < 7, <1, so

Na
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(1 - 77n)xo + 7.2, € Kn ['UI = ;82]

for every n = 1. Since K N [v = B,] is bounded, there exists » > 0
such that

for every m = 1; hence there exists g > 0 such that %,x,epU for
all n =z 1. Now 7' < (B + [B))/|8, — Bil, so

x%€y<’8 + 8] )U
IIBO - Bl]
for every n = 1. This contradicts the unboundedness of {x,}.
A similar argument shows that if KN [v = B.] is compact, then
any net in K contains a convergent subnet.

Proof of Proposition 5.2.3. Assertion (a) follows from Lemma
6.4.1. Suppose v’ is not bounded above on K. Then there exists a
positive number k, such that, for every integer m = 0, there is an
z,€ K with {z,v>=2n+k =n+ {x,v)>. For n=1, let 7, =
1%, — %, v (50 0<%, =£1) and 2z, = (1 — 9,)x, + 7.x,; then z,€ KN
[v/ =k, +1]. Because KN[v =k, + 1] is compact (by Lemma 6.4.1)
we can find subnets {w;}, {0;}, and {y,} of {z.}, {%.}, and {x,}, re-
spectively, such that w, = 1 — p,)x, + 0;¥;, and {w;} converges to
some (nonzero) h € K with (h, v') =14k, Since p,— 0, 0,y; converges
to h —x, and therefore h —x,€ 0" KN[v' = 1] [28, equation (2.2) and
Theorem 2A(e)]. This proves (b) in one direction; the other direction
is obvious. Suppose next that ¥’ is not bounded above or below on
K. Then (b) shows that there exist he(0*K)N[v'=1] and ke (0"K)N
|[#'= —1]. If for some such h and k, h+ k& were not zero, then the
two-dimensional cone with vertex at a point z,€ KN [v' = 0] and
generated by xz,+h and x,+% would be a subset of K with unbounded
intersection with KNJ[v' = 1], in contradiction to the hypothesis and
Lemma 6.4.1 (for all x>0, z,+A+Nh-+rke KN[v' =1]). It follows
that 0*K is a one-dimensional subspace. We have thus shown that in
(e), (i)=(ii)=(iii). If (iii) holds, then 0*KZ[v' = 0] since KN[v' = «,]
is bounded. Hence there exists he(0*K)N[v' = 1], from which it
follows that ¢’ is not bounded above or below on K. Thus (iii)=(i).
The “cylindrical” structure of K follows immediately. Consider now
bar (K); we know cl[bar (K)] = (0*K)° = (0*K)' ={x’'e B": {z, ') = 0
for all x € 07K} since 0*K is a subspace. Choose h€0"K (h %= 0) and
z' ecl[bar (K)] = (0*K)'. For any x € K, there exists x,€ KN[v' = 0]
and @€ R such that x = x, + @h. Then {(x, ') = {(x, '> + alh, 2" =
{#,, 2'>. Since K N[v = 0] is bounded, %' is bounded on K N [v" = 0],
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and therefore x' is bounded on K. Thus bar (K) = cl[bar (K)] =
(0T K)*.

6.4.2. REMARKS. (a) If the subspace v’ = 0] in Proposition 5.2.3
is semireflexive, then the conclusions (a) to (¢) hold in the weak
topology if KN [v = «,] is assumed nonempty and bounded.

(b) It is easy to prove the following partial converse: Suppose
K is a closed, convex subset of a locally convex space E. If 0K
is a one-dimensional subspace of FE, then there exists a nonzero v’
in the dual space E’ of E such that, for every real number «, K N
[v" = @] is nonempty and bounds no half-lines.

6.5. On Theorem 5.2.2. First we show that (v) and (vi) are
equivalent. For any convex set C, if bd (C) is bounded and non-
empty, then C is the convex hull of bd(C) [3, 1.7.7(c)]; thus C is
bounded if and only if bd (C) is bounded and nonempty. Applying
this to KN [v' = a] and M N[v" = a] in the hyperplane [+ = ], and
using the fact that [cor (K)]N[v = a] is a subset of the core rela-
tive to [v' = a] of K N [v' = ], we see that (v) and (vi) are equivalent.

Clearly, (iv) of 5.2.1 implies both (v) and (vi). To prove the
converse, we establish the following general result (with only the
usual assumptions on E and K):

6.5.1. LEMMA. Suppose v' € bar (K) satisfies (v) or (vi) of 5.2.2,
and 0K = {0}. Then o' € B(E', E)-int (bar (K)].

Proof. Since v' ebar(K), there exists Ye¢ R such that K <
[v/ < 7]. Since KN|v = «a] is bounded and 0*K = {0}, K & [v' = «].
Hence [v' = «] intersects K but does not support it, and hence a < v
and K N[v" > «a] is nonempty. From the fact that KN[v' = aj is
bounded, it follows that 0"K &£ [v" = 0], so there exists z,c0"K
(="°bar (K)) such that {x, v'> = — 1. It is easy to verify that

Knv>alS (BN =a]) + [a -7, 0),,
where
[ — 7, 0)x, = Axg: ¢ — 7 < AW < 0}

Since the sum of two bounded sets is bounded, KN [v > «| is
bounded. This verifies the lemma, by 5.2.1(iv) and ().

We now return to the proof of Theorem 5.2.2. Suppose that E
is semireflexive and 07K is not a one-dimensional subspace of E, and
that ¢ € E’ satisfies (v). By Proposition 5.2.3 (applied to E with
the o(E, E') topology, in which the closed, bounded sets are compact),
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either v'ebar (K) or —v' ebar (K). If both v'c€bar (K) and —v'¢
bar (K), then, by 5.2.83(a), K is bounded and weakly compact,
bar (K) = E, and trivally ¢’ eint [bar (K)]. If only one of v’ or —v’
belongs to bar (K), then by 5.2.3(b), 0*K = {0}, so Lemma 6.5.1
implies v’ € B(E', E)-int [bar (K)] or —v' € B(E’, E)-int [bar (K)].

6.6. On Corollary 5.2.4. Since bar (K) is the effective domain
of the support function 6%: X — R,

o¥(x) = sup {{z, '>: 2’ € K},

and 00,(M)(=06,(K)) is the domain of the subgradient 06%: X —
(subsets of X’) of o%,

00%(x) = {2": 0%(y) — 0%(w) = (y — =, «") for all ye X}
= {a': x € 06 (x')}

the fact that int[bar (K)] = int [0dx(M)] follows from known facts
about convex functions and their subgradients on Banach spaces (cf.
[28, page 57; 8]). Being the interior of a convex set, int [bar (K)]
is convex. The rest of the corollary follows directly from the
preceding results.
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