INVOLUTIONS FIXING CODIMENSION TWO KNOTS

CHAO-CHU LIANG

1. Involution. An m-knot (Σ^{m+2}, M^m) consists of an $(m + 2)$-homotopy sphere Σ^{m+2} and an m-homotopy sphere M^m differentiably (or piecewise linearly) embedded in it. A $(2n - 1)$-knot is called simple if $\pi_j(\Sigma - M) = \pi_j(S^1)$ for $j < n$. It is well known that each knot cobordism class contains a simple knot, [5] or [7].

Associated to each $(2n - 1)$-knot, we have Seifert matrices B, with $B + \varepsilon B'$ unimodular, where $\varepsilon = (-1)^n$ and B' denotes the transpose of B. For $n \geq 2$, the isotopy class of simple knot is completely determined by its Seifert matrices [8].

In [1, §11], Cappell and Shaneson used their algebraic K-theoretic obstruction groups to determine which knot cobordism classes admit semifree \mathbb{Z}_p actions fixing the knots. In §3 below, we will prove the following theorem from the viewpoint of [5] and [8].

THEOREM 1. A simple knot $(\Sigma^{2n+1}, M^{2n-1})$, $n \geq 3$, admits a p. 1. involution T fixing M^{2n-1} if and only if it has an associated Seifert matrix B of the form $B = A(A - \varepsilon A')^{-1}A$ for some matrix A with both $A + \varepsilon A'$ and $A - \varepsilon A'$ being unimodular.

We will also discuss the differentiable case in the last section.

2. A technical lemma. Recall that $\varepsilon = (-1)^n$.

LEMMA 2. Let A be an $(r \times r)$-matrix with both $A + \varepsilon A'$ and $A - \varepsilon A'$ being unimodular. Then the following system of equations has a unique solution for the pair of $(r \times r)$-matrices C_1 and C_2.

(1) \[C_1A + \varepsilon C_2A' = A + \varepsilon A' \]

(2) \[\varepsilon C_1A' + C_2A = 0. \]

Proof.

(3) \[(1)+(2)C_1(A + \varepsilon A') + C_2(A + \varepsilon A') = A + \varepsilon A'. \]

Since $A + \varepsilon A'$ is unimodular, (3) becomes

(4) \[C_1 + C_2 = I, \text{ the identity} \]

(5) \[(1)-(2)C_1(A - \varepsilon A') - C_2(A - \varepsilon A') = A + \varepsilon A'. \]

Since $A - \varepsilon A'$ is unimodular, (5) becomes
\(C_1 - C_2 = (A + \varepsilon A')(A - \varepsilon A')^{-1} \).

From (4) and (6), we have
\[C_1 = A(A - \varepsilon A')^{-1} \quad \text{and} \quad C_2 = -\varepsilon A'(A - \varepsilon A')^{-1}. \]

3. Proof of Theorem 1. If a simple knot \((\Sigma^{2n+1}, M^{2n-1})\), \(n \geq 3\), admits a p.l. (or differentiable) involution \(T\) fixing \(M^{2n-1}\), then it is easy to see that \(\Sigma_1 = \Sigma/T\) is a \((2n + 1)\)-homotopy sphere, and \((\Sigma_1, M)\) is again a simple knot. Let \(Y\) be the closure of \((\Sigma_1 - M \times D^2)\), and \(V^{2n} \subseteq Y\) be an \((n-1)\)-connected Seifert manifold for \((\Sigma_1, M)\) with \(\partial V = M \times e^{i\theta}\), (we consider \(S^1 = \{e^{i\theta}\}\), [5], [7]. Lifting \(V\) to \(\Sigma\), we have two equivariant Seifert manifolds \(V_1\) and \(V_2\) with \(TV_1 = V_2, \partial V_1 = M \times e^{i\theta}\), and \(\partial V_2 = M \times e^{i\varepsilon}\), [9]. We then cut \(X = \text{closure of } (\Sigma - M \times D^2)\) along \(V_1\) to get a manifold \(W\).

\[
(*) \quad \begin{array}{ccc}
V_{1+} & W_1 & V_2 \\
W_2 & V_{1-} & W
\end{array}
\]

We see immediately that \(W_1\) is the manifold obtained from \(Y\) (in \(\Sigma_1\)) by cutting it along \(V\) and \(W_2 = TW_1\). Let \(\{e_1, \ldots, e_r\}\) be a basis for \(H_nV_{1+}\), and \(\{f_1, \ldots, f_r\}\) a basis for \(H_nW\) determined by the Alexander duality (in \(\Sigma\)). Similarly, viewing \(\{e_i\}\) as a basis for \(H_nV\), we have a basis \(\{d_i\}\) for \(H_nW_1\) by using the Alexander duality in \(\Sigma_1\). Let \(A\) and \(B\) be the Seifert matrices associated to \((\Sigma_1, M)\) and \((\Sigma, M)\) respectively (with respect to the basis \(\{e_i\}\)) [5], [7].

From [5], we know that \(A\) represents the map \(H_nV_{1+} \to H_nW_1\) with respect to the bases \(\{e_i\}\) and \(\{d_i\}\), also the map \(H_nV_2 \to H_nW_2\) with respect to the bases \(\{T_*e_i\}\) and \(\{T_*d_i\}\). The matrix \(-\varepsilon A'\) represents the map \(H_nV_2 \to H_nW_1\) with respect to the bases \(\{T_*e_i\}\) and \(\{d_i\}\), also the map \(H_nV_{1-} \to H_nW_2\) with respect to the bases \(\{e_i\}\) and \(\{T_*d_i\}\). The matrix \(B\) represents \(H_nV_{1+} \to H_nW\) with respect to the bases \(\{e_i\}\) and \(\{f_i\}\), and \(-\varepsilon B'\) represents \(H_nV_{1-} \to H_nW\) with respect to the bases \(\{e_i\}\) and \(\{f_i\}\). All the maps here are induced by inclusions. Finally, let \(C_1\) and \(C_2\) denote the matrices represent the maps \(H_nW_{1-} \to H_nW\) and \(H_nW_2 \to H_nW\) with respect to the appropriate bases respectively. From (*), we have the following equation:

\[B = C_1A, \quad -\varepsilon B' = C_2(-\varepsilon A'), \quad C_1(-\varepsilon A') = C_2A. \]

These, together with the fact that \(A + \varepsilon A' = B + \varepsilon B' = \text{intersection form on } H_nV, \) [5], give us the two equations in Lemma 2. Also,
we have proved in [9] that both $A + \varepsilon A'$ and $A - \varepsilon A'$ are unimodular. Thus it follows from Lemma 2 that $B = C, A = A(A - \varepsilon A')^{-1}A$.

Conversely, given a knot $(\Sigma^{2n+1}, M^{2n-1})$ with its Seifert matrix B satisfying the condition in Theorem 1, we can construct a simple knot (Σ, M) with an $(n - 1)$-connected Seifert manifold V and associated Seifert matrix A, [5]. Then we construct the 2-fold branched covering of (Σ, M) to obtain a simple knot (Σ_2, M) as in [4], [9], [12]. If we are in the $p.l.$ category, then both Σ and Σ_2 are the standard sphere S^{2n+1}. Both (Σ, M) and (Σ_2, M) have the same Seifert matrix, hence they are actually equivalent, [8]. The involution T is given by the covering translation for the branched covering.

4. Free involutions. Since the study of knots invariant under free involutions on spheres is very similar to that of knots fixed under involutions, [9], [10], the following theorem can be proved in a similar fashion.

THEOREM 1'. A simple knot $(\Sigma^{2n+1}, M^{2n-1})$, $n \geq 3$, admits a free $p.l.$ involution T leaving M invariant if and only if it has an associated Seifert matrix B of the form $B = A(A - \varepsilon A')^{-1}A$ for some matrix A with both $A + \varepsilon A'$ and $A - \varepsilon A'$ being unimodular.

5. The differentiable case. Let T denote a differentiable involution on Σ^{2n+1} fixing M^{2n-1}, $n \geq 3$. We want to study the relation between the differentiable structure of Σ and $\Sigma_1 = \Sigma/T$. If $\Sigma_1 \neq S^{2n+1}$, then we may view (Σ_1, M) as the connected sum of (S^{2n+1}, M) and Σ_1 along a disk disjoint from the Seifert manifold V and M. We then construct the 2-fold branched covering (Σ_3, M) of (S^{2n+1}, M) with branched point set M. By the uniqueness of differentiable structure of the cyclic branched covering ([2] or [4]), it is easy to see that $\Sigma = 2\Sigma_1 + \Sigma_3$, where the sum denotes the connected sum in the group of homotopy spheres Γ_2^{2n+1}, [6].

In the case n is odd, we let Σ_0 denote the generator of $bP_{4k} = \{y \in \Gamma_{4k-1} \mid y$ bounds parallelizable manifolds$\}$. Then we have the following proposition.

PROPOSITION 3. $\Sigma = 1/8(\text{index } (A + A'))\Sigma_0 + 2\Sigma_1$.

Proof. We first note that $A + A'$ is a unimodular, symmetric, even matrix, hence its index is divided by 8, [6]. According to the remark in the preceeding paragraphs, we only have to determine the differentiable structure of Σ_3, the 2-fold branched covering of (S^{4k-1}, M).
We push the Seifert manifold V into D^{4k}, a disk having S^{4k-1} as its boundary; then use V as the branched point set to construct a 2-fold branched covering N of D^{4k} with $\partial N = \Sigma_3$. Proposition 5.6 in [4, §4] tells us that the intersection form on $H_{2k}(N)$ is given by $A + A'$. All we have to do now is to show that N is parallelizable. The Seifert manifold V^{4k-2} has the homotopy type of a wedge of r copies of S^{2k-1}, hence we may represent each of the basis element of $H_{2k}^*(V)$ by an embedded $(2k - 1)$-sphere S_i. Each S_i bounds a 2k-disk D_i in D^{4k}. Let x denote the covering translation in the 2-fold branched covering N over D^{4k}. Then $Q_i = xD_i \cup (-D_i)$ represent a basis for $H_{2k}(N)$, [4, p. 155]. N has the homotopy type of a wedge of r copies of S^{2k}, represented by the Q_i's. Then the argument used in Lemma 4 (i) of [12] shows that the normal bundle of each Q_i in N is stably trivial. Thus N is parallelizable, and it follows that $\Sigma_3 = 1/8(\text{index } (A + A'))\Sigma_6$.

In particular, we see that Σ_6 does not admit an involution T fixing a codimension 2 simple knot M with $1/8(\text{index } (A + A')) = \text{even integer}$. In contrast, if G is a free differentiable involution acting on Σ^{4k-1} leaving M invariant, and A a Seifert matrix for the equivariant knot complement $(\Sigma - M \times D^3)/G$; then we proved in [10] that $1/8(\text{index } (A + A')) = \sigma(G, \Sigma) = \text{the Browder-Livesay index de-suspension invariant}$, [11]. But we know that Σ_6, the generator of bP_8, admits a free involution G with $\sigma(G, \Sigma_6) = 0$, [3], [11, p. 63]. Thus (G, Σ_6) admits an unknotted invariant S^6, [11], which implies $1/8(\text{index } (A + A')) = 0$.

In the case n is odd, we know that $bP_{4k+2} = \mathbb{Z}_2$ or 0, [6]. Recall that $\Sigma_1 = \Sigma/T$, where the involution T fixes a simple knot M in Σ^{4k+1}. Then we have the following proposition.

Proposition 4. $\Sigma = 2\Sigma_1$.

Proof. As in Proposition 3, we only have to determine the differentiable structure of Σ_1, the 2-fold branched cover of (S^{4k+1}, M). The proof of Proposition 3 shows that Σ_3 bounds a 2k-connected parallelizable manifold N^{4k+2} with intersection form $A - A'$. Then the argument in [5, p. 256-257] enables us to embed N in S^{4k+3} in such a way that (S^{4k+3}, Σ_3) is a simple knot with Seifert manifold N and Seifert matrix A (see [4, p. 153] and [5, p. 256]). We know from [7, p. 544] that the Kervaire invariant of N is the Arf invariant of A. Since $A + A'$ is a symmetric, even, unimodular matrix, Lemma 2 in [11, p. 36] shows that the Arf invariant of A is zero. Hence Σ_3 is the standard sphere.

The author wishes to thank the referee for pointing out Proposition 4 to him.
REFERENCES

Received January 1977. Partially supported by the University of Kansas General Research Fund.

UNIVERSITY OF KANSAS
LAWRENCE, KS 66045
Thomas Robert Berger, *Hall-Higman type theorems. V* .. 1
Frank Peter Anthony Cass and Billy E. Rhoades, *Mercerian theorems via spectral theory* ... 63
Morris Leroy Eaton and Michael David Perlman, *Generating O(n) with reflections* ... 73
Frank John Forelli, Jr., *A necessary condition on the extreme points of a class of holomorphic functions* .. 81
Melvin F. Janowitz, *Complemented congruences on complemented lattices* ... 87
Maria M. Klawe, *Semidirect product of semigroups in relation to amenability, cancellation properties, and strong Fø lner conditions* 91
Theodore Willis Laetsch, *Normal cones, barrier cones, and the “spherical image” of convex surfaces in locally convex spaces* 107
Chao-Chu Liang, *Involutions fixing codimension two knots* 125
Joyce Longman, *On generalizations of alternative algebras* 131
Giancarlo Mauceri, *Square integrable representations and the Fourier algebra of a unimodular group* .. 143
John Robert Quine, Jr., *Tangent winding numbers and branched mappings* ... 161
Louis Jackson Ratliff, Jr. and David Eugene Rush, *Notes on ideal covers and associated primes* .. 169
H. B. Reiter and N. Stavrakas, *On the compactness of the hyperspace of faces* ... 193
Walter Roth, *A general Rudin-Carlson theorem in Banach-spaces* 197
Mark Andrew Smith, *Products of Banach spaces that are uniformly round in every direction* ... 215
Roger R. Smith, *The R-Borel structure on a Choquet simplex* 221
Gerald Stoller, *The convergence-preserving rearrangements of real infinite series* ... 227
Graham H. Toomer, *Generalized homotopy excision theorems modulo a Serre class of nilpotent groups* .. 233
Norris Freeman Weaver, *Dehn’s construction and the Poincaré conjecture* ... 247
Steven Howard Weintraub, *Topological realization of equivariant intersection forms* ... 257