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l Involution* An m-knot (Σm+2, Mm) consists of an (m + 2)-
homotopy sphere Σm+2 and an m-homotopy sphere Mm differentiably
(or piecewise linearly) embedded in it. A (2n — l)-knot is callsd simple
if πό(Σ — M) = π/S1) for j < n. It is well known that each knot
cobordism class contains a simple knot, [5] or [7].

Associated to each (2n — l)-knot, we have Seifert matrices B,
with B + eBr unimodular, where ε = (—l)n and Br denotes the trans-
pose of B. For n ^ 2, the isotopy class of simple knot is completely
determined by its Seifert matrices [8].

In [1, §11], Cappell and Shaneson used their algebraic ίΓ-theoretic
obstruction groups to determine which knot cobordism classes admit
semifree Zp actions fixing the knots. In §3 below, we will prove
the following theorem from the viewpoint of [5] and [8].

THEOREM 1. A simple knot (Σ2n+1, M2n~ι), n ;> 3, admits a p. 1.
involution T fixing Λf271"1 if and only if it has an associated Seifert
matrix B of the form B = A(A — eAr)~ιA for some matrix A with
both A + εAr and A — εAr being unimodular.

We will also discuss the differentiate case in the last section.

2. A technical lemma* Recall that ε = ( — 1)*.

LEMMA 2. Let A be an (r x r)-matrix with both A + εA' and
A — εAf being unimodular. Then the following system of equations
has a unique solution for the pair of (r x r)-matrices Cx and C2.

(1) C,A + εC2A' = A + εAf

(2) εCU' + C2A = 0 .

Proof.

(3 ) (l) + (2)Cί(A + εA') + C2(A + εA') = A + εA! .

Since A + εA' is unimodular, (3) becomes

(4) Ct + C2 = I, the identity

(5 ) (l)-(2)C ι(il - εA') - C2(A - εA') = A + εA'.

Since A — εA' is unimodular, (5) becomes
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(6 ) C1-C2=(A + εA')(A - εA'Γ .

From (4) and (6), we have

Ct = A(A - εA')"1 and C2 = -εA\A - εA')"1 .

3* Proof of Theorem 1* If a simple knot (Σ2n+\ M2"'1), n ^ 3,
admits a p.l. (or differentiate) involution T fixing M2n~\ then it
is easy to see that Σ1~ ΣjT is a (2n + l)-homotopy sphere, and
(Σί9 M) is again a simple knot. Let Y be the closure of (Σx — M x D2),
and F2 w g Γ be an (n — l)-connected Seifert manifold for (Σlf M)
with dV= M x ei0, (we consider S1 = {eiθ}), [5], [7]. Lifting V to J ,
we have two equivariant Seif ert manifolds VΊ and V2 with
y2, 3FX = M x ei0, and dV2 = M x eί5Γ, [9]. We then cut X = closure
of ( I - M x D2) along Vx to get a manifold W.

( * )

We see immediately that Wx is the manifold obtained from Y (in Σx)
by cutting it along V and W2 = TWX. Let {β̂  , er} be a basis for
HnV1+, and {/w -- ,/r} a basis for iϊΛTΓdetermined by the Alexander
duality (in I'). Similarly, viewing {βj as a basis for HnV9 we have
a basis {dt} for ίί^ΐfΊ by using the Alexander duality in Σx. Let A
and β be the Seifert matrices associated to (Σ19 M) and (Σ, M) respec-
tively (with respect to the basis {βj) [5], [7].

From [5], we know that A represents the map HnV1+ —• HnWx

with respect to the bases {βj and {dj, also the map Hn V2 —* Hn W2

with respect to the bases {T^βJ and {Γ^dJ. The matrix — εAf repre-
sents the map HnV2 —> HnWx with respect to the bases {T*et} and
{dt}9 also the map Hn Fx_ —> Hn W2 with respect to the bases {βj and
{ΓfcCii}. The matrix B represents HnV1+—»HnW with respect to the
bases {βj and {/J, and — εβ' represents iί% Ft_ —> iί% TF with respect
to the bases {βj and {/J. All the maps here are induced by inclusions.
Finally, let Cλ and C2 denote the matrices represent the maps Hn Wί —>
HnW and HnW2—>HnW with respect to the appropriate bases respec-
tively. From (*), we have the following equation:

B -εB' = C2(-εA'), C^-eA') = C2A .

These, together with the fact that A + εA' = B + εl?' = intersection
form on HnV, [5], give us the two equations in Lemma 2. Also,
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we have proved in [9] that both A + εA' and A — εA' are unimodular.
Thus it follows from Lemma 2 that B = C,A = A(A - εAT'A.

Conversely, given a knot (Σ2n+1, Λf2*"1) with its Seifert matrix B
satisfying the condition in Theorem 1, we can construct a simple
knot (Σl9 M) with an (n — l)-connected Seifert manifold V and associ
ated Seifert matrix A, [5]. Then we construct the 2-fold branched
covering of (Σ19 M) to obtain a simple knot (Σ29 M) as in [4], [9],
[12]. If we are in the pΛ. category, then both Σ and Σ2 are the
standard sphere S2n+ι. Both (Σ9 M) and (Σ29 M) have the same
Seifert matrix, hence they are actually equivalent, [8]. The in-
volution T is given by the covering translation for the branched
covering.

4* Free involutions* Since the study of knots invariant under
free involutions on spheres is very similar to that of knots fixed under
involutions, [9], [10], the following theorem can be proved in a
similar fashion.

THEOREM Γ. A simple knot (Σ2n+\ M2n~ι), n^Z, admits a free
pΛ. involution T leaving M invariant if and only if it has an
associated Seifert matrix B of the form B = A(A — εA')~ιA for some
matrix A with both A + εA' and A — εA' being unimodular.

5* The differentiable case. Let T denote a differentiable involu-
tion on Σ2n+1 fixing M2n~\ n^Z. We want to study the relation
between the differentiable structure of Σ and Σ^ = Σ/T. If Σ1 φS2%+\
then we may view (Σί9 M) as the connected sum of (S2n+\ M) and
2Ί along a disk disjoint from the Seifert manifold V and M. We
then construct the 2-fold branched covering (ΣΛ, M) of (S2n+1, M)
with branched point set M. By the uniqueness of differentiable
structure of the cyclic branched covering ([2] or [4]), it is easy to
see that Σ — 2Σ1 + Σ3, where the sum denotes the connected sum
in the group of homotopy spheres Γ2%+1, [6].

In the case n is odd, we let Σo denote the generator of bPik =
{y 6 jΓ4fc_! I y bounds parallelizable manifolds}. Then we have the
following proposition.

PROPOSITION 3. Σ = l/8(index (A + A'))ΣQ + 2ΣX.

Proof We first note that A + A' is a unimodular, symmetric,
even matrix, hence its index is divided by 8, [6]. According to the
remark in the preceeding paragraphs, we only have to determine the
differentiable structure of ΣZ1 the 2-fold branched covering of (S4*"1, M).
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We push the Seifert manifold V into D4k, a disk having S4^1 as its
boundary; then use V as the branched point set to construct a 2-fold
branched covering N of D4k with dN = Σ3, [4, §4]. Proposition 5.6
in [4] tells us that the intersection form on H2k(N) is given by
A + A!. All we have to do now is to show that N is parallelizable.
The Seifert manifold V4k~2 has the homotopy type of a wedge of r
copies of S2k~\ hence we may represent each of the basis element of
HM-^V) = r copies of Z by an embedded (2fc — l)-sphere St. Each
Si bounds a 2&-disk Dt in D4k. Let x denote the covering translation
in the 2-fold branched covering N over D4k. Then Qt = xDt U ( - D<)
represent a basis for H2k(N), [4, p. 155], N has the homotopy type
of a wedge of r copies of S2k, represented by the Q/s. Then the
argument used in Lemma 4 (i) of [12] shows that the normal bundle
of each Qt in N is stably trivial. Thus N is parallelizable, and it
follows that Σz = l/8(index (A + A'))Σ0.

In particular, we see that Σo does not admit an involution T
fixing a codimension 2 simple knot M with l/8(index (A + A')) = even
integer. In contrast, if G is a free differentiate involution acting
on I41*'1 leaving M invariant, and A a Seifert matrix for the equi-
variant knot complement (Σ — M x D2)/G; then we proved in [10]
that l/8(index (A + A')) = σ(G, Σ) = the Browder-Livesay index de-
suspension invariant, [11]. But we know that Σ\f the generator of
6P8, admits a free involution G with σ(G, Σ7

0) = 0, [3], [11, p. 63].
Thus (G, Σl) admits an unknotted invariant S5, [11], which implies
l/8(index (A + A')) = 0.

In the case n is odd, we know that bPik+2 = Z2 or 0, [6]. Recall
that Σί = ΣjT, where the involution T fixes a simple knot M in
Σ4k+ί. Then we have the following proposition.

PROPOSITION 4. Σ = 2Σ,.

Proof. As in Proposition 3, we only have to determine the
differentiate structure of Σif the 2-fold branched cover of (S4k+1, M).
The proof of Proposition 3 shows that Σ3 bounds a 2fe-connected
parallelizable manifold N4k+2 with intersection form A — A'. Then
the argument in [5, p. 256-257] enables us to embed N in S4k+3 in
such a way that (S4k+3, Σ3) is a simple knot with Seifert manifold N
and Seifert matrix A (see [4, p. 153] and [5, p. 256]). We know
from [7, p. 544] that the Kervaire invariant of N is the Arf invariant
of A. Since A + A! is a symmetric, even, unimodular matrix, Lemma
2 in [11, p. 36] shows that the Arf invariant of A is zero. Hence
2*3 is the standard sphere.

The author wishes to thank the referee for pointing out Proposi-
tion 4 to him.
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