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ON GENERALIZATIONS OF ALTERNATIVE ALGEBRAS
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Let A be a noncommutative Jordan algebra in which
[z, 1, z,2) =0 for all x, ¥,z in A. In this paper the result
of Block [4] and Shestakov [13] that a simple finite dimensional
such algebra over a field of characteristic + 2 is either alterna-
tive or Jordan is extended to the infinite dimensional case
with idempotent. In the case of a noncommutative Jordan
algebra satisfying the weaker identity ([x, ¥1, ¥, ¥) =0 for
all z, ¥.in the algebra, a simple finite dimensional such algebra
is shown to be commutative, alternative, or an algebra of

degree two.

In §2 we consider in the first case, power associative
rings which satisfy (w, 2% 2)=2-(w,%,2) and ([z,¥],v,v) =
0, and in the second case, flexible rings satisfying (w, 22, z2) =
z-(w, 2, 2) + (2, z, [w, 2]). Under certain conditions the rings
are shown to be noncommutative Jordan or alternative respec-
tively.

Throughout this paper all algebras considered are assumed to
be algebras over a field of characteristic not two and all rings are
assumed to be 2-torsion free (i.e., if 2a¢ = 0 for & in R then a = 0).

1. Nearly alternative algebras. Let A be a nonassociative alge-
bra. Asis usual for z,%,2 in A we denote the associator (xy)z — x(yz)
by (x, %, 2) and the commutator zy — yx by [z, y]. A is flexible
if (x, ¥, x) = 0, alternative if (z, z, ¥) = (¥, z, £) = 0, and noncommu-
tative Jordan if (x, ¥, ) = (2% y, ) = 0.

An algebra A is called simple if A is not a zero algebra, and
the only ideals of A are the zero ideal and A itself. In case A =
AQ®: K is simple for every extension K 2 F then A over F is called
central simple.

We shall call a noncommutative Jordan algebra A nearly alter-
native if A satisfies the following identity for all z, ¥, z in A: '

(1'1) ([x, ?/], 2,2 =0.

Shestakov [13] called such an algebra “almost alternative.” However
we choose not to use that terminology since Albert [2] had prevxously
called other algebras by the name “almost alternative.”

THEOREM 1.1. If A is a simple nearly alternative algebra with
an idempotent e = 1 then A is commutative or alternative.
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Proor. It is shown by Shestakov [13] that if A is a noncom-
mutative Jordan algebra with idempotent ¢+ 1 satisfying ([z, ¥], 2, 2) =
0 then A has the following Peirce decomposition:

A= A1 + AlO + A1/21/2 + Ay + Ao ’
where
A, ={xcdlex =2¢=1x},1=0,1

and
Ajj={recAlex = iz, xe = ja}, 1 + j=1,1, 75 =0, %’1'

Shestakov also showed that multiplication of elements of the different
components is. given in the following chart:

A Ay A Ay 4
A A Av Ap 0 0
Aol 0 4, 4, A, A,
A | Ase Aw At A+ Au+ Ay Ay A
A | Ay A A, A, 0
4| 0 0 A Ay A,

that B=A,, + A, + 4,4, + A,A,, is an ideal of A, and that zy =
—yx for any z,y in A,; (4% j). Furthermore, if 4,, = A, = 0 then
xy = yx for all z, 9y in A, ,,,.

Before proceeding to the proof of the theorem, we. note the
following:

LemMmA 1.1. If A, =0 then A is alternative.

Proof. Since A is simple, the ideal B=0 or B=A. If B=0,
then A, = A4, =0 and A= A, + A,. This implies ¢ = 1, a contradie-
tion. Hence B= A4, and A, = A, A,, A, = A, A,. We prove A is
alternative by showing

(1.2) (%, ¥, 2) = &(o)(o(x), a(y), 0(z))

for all permutations o, with &(¢) =1 or —1 respectively for ¢ even
or odd. It suffices to show that (1.2) holds for all possible choices
of z, 9, z in the component subspaces. Since A is noncommutative
Jordan, it has been shown by Florey [5] that A satisfies the identity

(1.3) (w, %, 2) = +(w, 2, 2)
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for all #, w, 7z in A where z-y = oy + yx. A linearization  of .(1.3)
yields

(1.4 (w, -y, 2) = z+(w, Y, 2) + y-(w, @, 2) .
‘Now suppose x,, ¥, 2, € A,. Since y, = W, W,
(wu Yy z;) :"(xu wm'wou zl) = ’wlo'(xn 'wou‘ zl)- + wm'(wu Wiy z1) = 0.

Hence (4,, A, A,) alternates. We show that the remaining thirty six
associators with A, in any position alternate.
By the Peirce multiplication chart and ﬂex1b111ty,

(Au A, A) = (Aw Ay A) = (4, An, A) = (A, 4, 4) = (4, A, A,) -
= (4y Ay A) = (A4 A}, 4) = (A A, A) = (4, A, A)
=0.

Again from flexibility and the multiplication chart each of the asso-
ciators(4,, A, A.0), (Ay, Aw, Ay), (4, 4, Ay), and (4, A,, Ay)alternates.

Now suppose @, € A, Y. %0 € Ay Linearizing (1.1) and the flexible
law (x, ¥, ) = 0, we obtain

(1.5) (Iz, 9], 2, w) + ([2, 9], w, 2) = 0
and
(1.6) (@, 'y, 2+ (2,9, 2)=0.
Then
(@1 Yior 210) = (%15 Yior [3, zlo]) - "(?/10: L1y Z10) = (zm’ @1y Yio)

= ([e, le]! Ty Yuo) = — (2100 Yios R

Also  —(2y Yoy ) = “(é/lo; By 2i) = —([e, Yo, -;1’1; 20) = Wiy %y %) =
— (%4 Z:i0» Yo) by (1.5) and (1.6). This shows (4, 4,, 4,,) alternates.
In the same manner (A4,, A,, A,) alternates. Therefore every associator
with A, or in an analogous manner with A, in any position alternates.

We have reduced the proof to the case -in which z, ¥, zeA; +
Ay i,7=0,1,¢+ 7 =1. Again using (1.5) and (1.6),

@iy Yo 265) = @3, Y [0, 2,]) — 55, Yoo [, 25)

= —(Ysss Tiiy [0 205]) + GWass %13 [, 203])
i(le, 2isls %ijy Yis) — J(le, 2i5ly ®isy Yis)
—(%s5y Zijs [e:_?ltj]) + j(xii! %5 e, y”])
= —(@uj, Zuiy Yii) = (yti’:ziir ) . '

Il

Il

Also
(Zisy @igs Yig) = Ule, 23l Bagy Yii) — I, 205), %ags Yis)
= — ([, Zesly Yusr 213 + GCUe; 2, Yo, 713)
= ~(2ijs Yij» Tis) -
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Combining these results yields (A4,;, 4;;, A,;) alternates. The case
z,y€A,;; and z€ A;; is proved in a similar manner. Thus (4,;, 4;;,4;,)
alternates and the lemma is proved.

We are now in a position to complete our main result. Assume
A is not alternative. By the simplicity of A, the ideal B must be
A or the zero ideal. We found by Lemma 1.1 that B = A implied
A was alternative. Thus we are left with B =0 from which it
follows that 4, = A, =0and A=A4,+ 4,,,,; + A, We next observe
that [z, A4,/,,.] =0 for all x in A. For if x€A,7=0,1,y€A,,,.,
then (zx, ¢, ¥) = —(y, ¢, x) by flexibility implies (xe)y — x(ey) = —(ye)x +
y(ex) so that xy = yx. Shestakov [13] has proved zy = yx for =z, y
in Ai/z 1/2¢

Next we show that xy = yx for zx,ycA,,7=0,1. McCrimmon
[8] has shown that D = (A,,,4,,.), + A,/ + (A,4./,). is an ideal of 4
where A is a noncommutative Jordan algebra and A=A4,+ A4,,, + A.,.
In our case A,.=A,5,.. If D=0 then 4,,,,=0 and e=1, a
contradiction. If D= A then A, = (4,,4.,). and A, = (4,,4, ).
Let 2,y A4,,7=0,1. Then z = (uw),, ¥y = (2t); where u, w, 2, t€ A,),.
In a flexible ring the equation

(1'7) [x'y, Z] = W'[y, Z] + [wy z]'y

holds [13]. Thus 2[uw, 2t] = [u-w, 2t] = u-[w, zt] + [u, 2t]-w. But
zte A, + A, implies [w, 2t] = 0 and [u, 2] = 0 since [A,,.. 4] = 0.
Hence 2[uw, zt] = 0 and 2y = yx in 4,7 =0,1. A is therefore com-
mutative, and the theorem is proved.

We next consider a noncommutative Jordan algebra A which
satisfies the following identity for all z, y in A:

1.8) ([, yl, v, ) = 0.

LEMMA 1.2. If A is a noncommutative Jordan algebra which
satisfies (1.8) then the identity

(x-y, 2, w) + (x, ¥, 2°w) = x-(¥Y, 2, W) + Y-(x, 2, W)

(1.9) + 2+ (x, y, w) + w-(x, Y, 2)

holds wn A.

Proof. We use the Teichmiiller identity
(1.10) (x, yz, w) = (zy, 2, w) + (x, ¥, 2w) — (¥, 2, w) — (¥, ¥, 2)w

and flexibility to obtain (x, ¥-2, w) = (%, ¥z, w) + (x, 2y, w) = (z, Y2z, W) —
(w, 29, ) = (z¥, 2, w) + (x, ¥, 2w) — x(y, 2, w) — (%, Y, W — (W2, Y, ¥) —
(w, 2, yz)+w(z, ¥, )+ W, 2, Y)r = (@-9, 2, w) + (&, Y, 2-w)—w-(%, Y, 2)—
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x-(y, 2, w). Next we apply (1.4) to (z, ¥, z-w) to get y-(x, 2z, w) +
2oz, Y w)= (29, 2, w) + @, Yy, 2-W) =-(¥, 2 w) + Y- 2 0w+
z+(x, y, w) + w-(x, ¥, 2) and the lemma is proved.

We now follow a process similar to that of Shestakov [13] to
classify a central simple finite dimensional noncommutative Jordan
algebra satisfying (1.8).

THEOREM 1.2. If A is o simple finite dimensional noncommu-
tative Jordan algebra satisfying identity (1.8) then A is alternative,
commutative, or an algebra of degree two.

Proof. By considering A over its centroid and taking a scalar
extension, we see that it is enough to prove the theorem when the
base field F' is algebraically closed. Then by the known classification
of central simple noncommutative Jordan algebras [8] A has one of
the following forms:

(1) A is a Jordan algebra;

(2) A is a quasiassociative algebra, i.e., 4 is isomorphic to B
as vector spaces, where B is a complete matrix algebra over F, \ #
1/2 in F, with multiplication (xy), = (@-¥)z + 1 — N)(¥-2)z;

(8) A is an algebra of degree one or two.

Assume A is not commutative, i.e., Case 1 does not hold. Suppose
Case 2 holds. The identity ([, %], ¥, ¥) = 0 implies

([z, ylw)y — =, y]¥* =0
in A. Then

[, 9l = @4 — W2)s = M2y + L — Nyx — Ay — (1 — Nz-y
= (2N — D, yl5 -

We have in B,

@x — DIMM#, 9152y + A — Ny-2, yla) -y + A — My-[Me, yle-y
+ @ = Ny-[e, yls] — M, yls-y* — @ — NyPe[x, yls} = 0.

This yields N —1)[M[x, yls ¥+ ML —N)y [z, ¥z -y + A =My [z, y]z- ¥+
A = A9z, yle-Me, yls-9* — A — M)y - [, y]s] =0 which becomes
@ = DM = Dz, 99+ 1 — MMy [, ylz+ 201 —Ny-[2, yls-¥]=
0 or 2x — 1AM — D[w, yls-9* + ¥*-[2, ¥]s — 2y-[v, yls-y] = 0. If A=
0,1 then [x, y]B'y2 + yz'[x’ y]B - 2y‘[x’ y]B'y = 0. With the elements
X = €, Y = €y, 2 = €, from the usual matrix basis we have [e,, €,]- ¢k +
e [e ey] — 256, e,] €x=0 and (—6,5)* €5 — 2655+ (—€15)* €+ €55 (—€5) =
0 implies ¢, = 0, a contradiction.
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Kleinfeld and Kokoris [6] have shown there are no simple non-
commutative Jordan algebras of degree one over a field F' of charac-
teristic 0. Kokoris has classified the nodal noncommutative Jordan
algebras over a field of characteristic p #= 2 [7]. - Block’s proof that
there -are no nearly alternative such algebras [4] applies to our case
as well.

. 2. Generalizations of nearly alternative rings. In this section
we consider rings more general than nearly alternative rings. We
shall call a power associative ring R an F ring if R satisfies the
following identities:

2.1) (w, 2% 2) = 2+ (w, z, 2).
(2.2) (lz, 9, v, ) =0.

That an F ring is a weaker concept than a nearly alternative
ring is shown by an example due to Anderson [3] of a power associative
algebra satisfying (2.1) and (2.2) which is not flexible; hence not
noncommutative Jordan. We are able to prove, however, that a
flexible F' ring is noncommutative Jordan.

LEMMA 2.1. In a flexible F ring the following equations hold:

(@Y, 2, w) + (2, ¥, 2°w) = x-(y, 2, w) + y-(x, 2, W)

(2:3) + z-(x, ¥, w) + we(, Y, 2)
(2.4) [x, (x, 2, )] = 0
(2.5) @, y, x) = oz, x, y) — (x, , 2Y) .

Proof. Property (2.3) is proved in Lemma 1.2 using only (2.1)
and flexibility. For property (2.4) we use the Teichmiiller identity
(1.10) twice to get (zy, z, w) + (z, ¥, 2w) — (x, Yz, w) — %(Y, 2, W) —
(x, ¥, Hw = 0 and (wz, ¥, x) + (w, 2, yx) — (W, 29, ) — Wz, Y, T) —
(w, 2, ¥)x = 0. Add these equations to obtain by flexibility

(w; Y, [z: w]) - (wr [Z, y]’ (B) + ([Q?, ?/], %, ’LU) - [(l?, (y’ Z,V’MJ)]

(26) + [w, (z, ¥, w)] = 0.

Let z=2,9y =2, w =19 in (2.6). Then it. follows that (z,.«, [z, ¥]) —
W, Iz, =], ) + (=, 2], 2, ¥) — [», (=, =, ¥)] + [y, (2, 2, 2)] = 0, and
[wy (x, &, y)] = 0.

To prove property (2.5), let y =2, w = 2,2 =y in.(2.3). Then
(-2, Y, ) + (2, ¥, Y- 2) =2+ (2, Y, ®) + 2(2, Y, ) + Y- (%, %, )+ £:(z, ¥, Y)
becomes
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2.7 2% 9, ) + (%, 2, Yy-x) —x-(x,2,y) =0.

But property (2.4) implies z-(z, z, ¥) = 2x(x, x, ¥), and (x, z, [z, ¥]) = 0
implies (z, x, xy)=(x, x, yx). Hence (2.7) becomes 2(«% ¥, )+ 2(x, z, 2y)—
2x¢(x, z, y) = 0. Since R is 2-torsion free, (2% ¥, z) = a(x, x, ¥) —
(x, z, 2Y).

THEOREM 2.1. A flexible F ring is @ nmonmcommutative Jordan
ring.

Proof. Since R is power associative (z,x, 2*)=0. Partially line-
arize (x, z, 2*) = 0 to get
(2.8) (%, %, xy) + (x, 2, yox) + (@, ¥y, 2°) + (¥, &, *) = 0. .
This implies u
(2.9) 2, x, zy) + (¥, z, 2°) = (@, ¥, z) .

Subtracting (2.5) from (2.9) gives 3(z, z, zy) — z(x, z, ¥) + (¥, x, *) =
0 or

(2'10) (xz’ &, y) = 3({17, 2, wy) - x(w’ z, y) .

Now property (2.3) with z=y =2z, w =y gives 2(z% z, ¥) + 2(x, %, xy) =
6x(x, z, ¥) which becomes

(2.11) (%, x, ¥) = a(x, 2, ¥y) — (v, @, 2Y) .
Subtracting (2.11) from' (2.10) gives 4x(z, #, y) — 4(x, 2, y) = 0 or
(2.12) o x(x, 2z, ) = (7, %, 2Y) .

Substitute (2.12) in (2.5) to get («* y, ) = 0. The theorem is thus
proved.
" We next consider flexible rings which satisfy the identity

(2.13) (w, 2%, 2) = x-(w, %, 2) + (, x, [w, 2]) .

THEOREM 2.2. If R is a.simple flexible ring which satisfies
identity (2.13) and e += 1 is aw tdempotent of R such that (e, ¢, R) =
0 then R is alternative.

_ Proof. Since (¢, ¢, B) = (R, ¢, ¢) = (¢, B, ¢) = 0, R has Peirce de-
composition into the direct-sum R=R, + R,, + R, + R, where R, =
{reRlex = xe = 1} for ¢=0,1, and R;; = {xcR|ex = ix, x6 = ju}

for i,j =0,1,%+ j. We first determine the multiplication -table.of
the decomposition as
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R, R, R, R,
Rl R1 RID O 0
Rm 0 Rm R1 Rlo
ROl ROI RO RlO 0
R, 0 0 R, R,

Linearize identity (2.13) to get

(w, -9, 2) = x+(w, ¥, 2) + y-(w, x, 2) + (2, ¥, [w, 2])
+ (9, 2, [w, 2]) .

Flexibility clearly implies R, R, = R,R, = R,R, = 0 and R,;R; < R,
RzRij - Ri.’i for 7:’ .7 = 0, 1’ 1 j- For Ty Y, € Rn (xu Y. 6) = -—(6, Y1 x1)
implies (2,9,),, = 0 and (y.2,),, =0 or R R, C R, + R,. But (v, ¥.-¢, €)=
yl'(xu e, 6)-[-6'((171, Y 6)+(1/1, ¢, [xn 6])+(6, Yy [wu e]) implies 2(:1711 Y 6) =
e+ (%, Yy, €) or 2(my)e — 2.y, = e- [(x,y)e — x.y,]. Hence (z,9,), =0
and R,R, C R,. In a similar manner R,R, & R,. Again by flexibility,

(2.14)

(@, Yoy €) = — (€, Yo, %) and 2.y, € R, + R,. Also (v, ¢, ¥) = —(¥o 6, 7,)
implies x,9, = yx,. Applying (2.14) yields (., ¢-¥,, €) = e-(x,, Y, €) +
Yor (%, €, €) + (€, Yo [%1, €]) + (Yo &, [2,, €]) or e-(2,, ¥y €) = 0. This gives
(#.yo), = 0. Again by (2.14), (¥, 6-2,, 6) = €-(Yy @, €) + 2, (Yo 6, €) +
(e, %, [Yor €]) + (%, ¢, [¥0, €]) Which implies 2(y,, x, €) = ¢-(¥, ., €) OF
2(yow)e — 2y, = e-[(yr.)e — yox,]. This gives (y.,), = (.9,), = 0 and
RR,= R,R, = 0. Therefore R, R, are orthogonal subrings. Now by
identity (2.14), (e, %y €, Y1) =% (e, €, Y1)+ 6+ (6, Ty, Yi0) + Ty, 6, le, v+
(6, P10 [e, ym]) O %Y1 — e(xmym) = e'[wmym - e(xm?/w)] — LYo + ByYo —
e(xy,). This becomes z,y,, = e[,y — e(®W)] and 2,y € Ry We
have R,,R, < R,. Similarly R, R, < R,. In the case R, R,, apply
(2.14) to obtain (¢, %y €, Yo) =%1° (e, €, Yu)+6°(€, Tioy Yor) +{(Ti0s €, [€, Yurl) +
(6, L109 [e; ym]) or (wwym) - e(wmyox) =e- [xmyos - e(xwyox)] — XY + Q(wtoym)-
This becomes z(wmym) - 23(517101/01) = e’[xmym - e(xmym)]’ and T10Y o eR1 +
R, Apply (2.14) once more to obtain (e, ¥, e, ,) = Yo (6, €, Ty,) +
e-(€, Yoy Tro)+(Yaus &, [, 2u0])+(€, Yur, [e, 2,0]) Which becomes e- (¢, Yo, %)=
0 since (Yo, €,%.0) = — (10,€,Y0:) =0. Thus e (5, Y0, €)=¢" [(xm?/on)e—'wmym] =
0 and (%, Yo = 0. It follows that R R, < R, and R, R, S R, In
a similar manner using flexibility and identity (2.14) the multiplication
chart is verified.

That B = R,, + R, + R,R, + R,R, is an ideal of R follows from
flexiblity and the multiplicative properties of the subrings. If B=
0,R,=R,=0 and R=R,+ R, a contradiction. B = R implies
RmRm:Ru Rleo:Ro’ and (Ru Ru Rx) =0 since (xu Y1y zl) = (xu Yio* Yors z1)=
'!/m'(xu Yors zx) + 1/01'(‘”1: Y10y zl) + (ymy Yo [mu zx]) + (you Yi0s [xu ZJ) or
(xu Y1 z1) = —([xu zl]; Yous ?/10) = 0. Slmllarly (Rm R, Ro) = 0.
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For alternativity, we first comsider (R,, R,, R,. We observe
that for x,, € Ry, (., %10, €) = —(&, %10y &) implies xf, = 0 and (2, + ¥,0)'=
0 implies Y,y = —¥Y.&,. Therefore (¥, Yip 21) = —(2i0y Yoy ¥,) implies
(x{ym)zw = _(zloylo)xl and (xu %10 ylo) = (xlzm)ym = _‘(’!/mzlo)xl = (zmym)xl =
(1) Yoy Z10)e  AlSO (21gy 1y Yso) = —2:(T:W00) = (@Y10)%0 = (T1y Yoy 210) = —
(zm; Y10r x1)- Therefore we have (mu Yo zw) = _(zm; Y10y w1)=(zlo, &, yw):
— (Y100 Tyy 210) = W10y 210y X)) = — (X5 Zior Yio)s and (R, R,, R,) alternates.
Similarly (B,, R, R,) alternates.

That all other associators with at least one R, in any position
alternate follows from the chart, flexibility, and (R, R, R, = 0.
Likewise we can see that all associators involving at least one R, in
any position alternate.

It remains to verify (R,;, R;;, R;;) and (Rj;, R.;, R;;) with 4, j =
0,1, ¢ # j alternate. Letting x,, ¥, 2, € R, and applying (2.14) we
obtain (mm, Y6, zm) = 'ym'(mmy ¢, zw) + 6'_(11310, Y10y zw) + (yloi e, [xloy zlo]) +
(€, Yior [%10y 20]) Which becomes (#,Y10)210 — %10 (Y10210) = Yo (— Do) +
e'[(xmyw)zm_wm(ymzw)]+2y10(x10z10)_2e[y1o(wmzm)] OF (Z1Y10)%10— L1o(Y10%10) =
28:0(Y10210) — Yo (Tue?y0).  Since R is a direct sum, (2,410)20 = — (1621010
and xm(ymzm) = —ym(wmzm)- This implies (xw; 210 ?/10) = (xmzm)'!/w -
L1(210Y10) = — (Ze®10)Y10 + 210 (@1¥10) = —(Bioy Tigy Yuo)  AlSO (Yo Xioy 200) =
(ymwm)zm - ym(xmzlo) = ”“(xmym)zm + wm(?/mzm) = _(mm, ) zw)- We have
(@100 Y109 Z10) = — 210y Y10y T10) = — Y10y Tr0s Z10) = R0y a9 Y10) = — L1y 210y Yi0) =
(¥0» Z1» @) This proves (R, Ry, R,) and similarly (R, Ry, Ry
alternate. Lastly, let x,, 9,, € Ry, 2, € By. It follows that (2., Y. %10)=
— (@100 Yior Zo) = — @Y% = Yr10)20 = Wror Troy Z0r) = — Ry L0y Y10)-
Also by (2-14); (6, L10° 2oy 7/10) = 9010'(6, Zo1 ym) + 201'(6, %109 ym) + (xm 2oty
[e, Y:0D) + (2o @ios [€, Y1) Which becomes 0 = 2o+ (Ziols0) + (F10r Zory Y10) +
(zou 1o 1/10)- But %o ® (xwym) = 0 since T16Y10 € Rox and (xm’ 2oy ?/10) =
—(Zo1y T10p Y0)- We therefore have (@100 Yior ,zm) = —(Zuy Y10y %10) =
(Y109 Zass xm) = — (@10 oty Yio) = (Zors %100 Yw) = — (Y0 Z10r %y). This shows
that (R,, R, R.) and by a reversal of subscripts that (B,, Ry, R,)
alternate. The theorem is proved.

In the case of a finite dimensional algebra A we can prove the
following:

THEOREM. If A is a simple flexible finite dimensional power
associative algebra over an algebraically closed field F of charac-
teristic + 2, 8 which satisfies (w, 2%, 2) = z-(w, , 2) + (2, x, [w, 2]) and
e #1 18 an idempotent of A them A is noncommutative Jordan.

Proof. Oehmke [9, 10] has shown that a simple, flexible, stable,
finite dimensional power associative algebra over an algebraically
closed field of characteristic =2, 8 is a noncommutative Jordan algebra.
We show A is stable, i.e., 4,4,,&A,, and A4,,A,S A, for 1 =0, 1.
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Since A is power associative, 4 = A4, + A,,, + A, where A, =
{fxrecAlex + ve = i}, Also- A A, = AA, =0, 4,4, A, for 1=0,1,
A1/2A1/2 - A + Ao: and A Al/z g A1/2 -+ Ai—u Al/ZAz & A1/2 + A1—z fOI‘
2 =0,1.

By flexibility (e, #,,,, ¢) = 0 implies e(x,/.€) "(exl,;)e, and 2, =
ex;/; + %,.¢ implies ex;,, = e(ex,,) + €(®,.) OT ex,) = e(ewlxg) + (ex )e.
Hence ei,j,€ A,,; and z,,,6€ 4,,,.

Next we consider 4,4,,. By identity (2.14), for rEA,YcA,,,
(x, Yee,e) =y-(x,¢,0) +e-(x,y,e) + (¥, ¢ [z, €]) + (¢, ¥, [, ¢]) and
(x, ¥, e) = e-(x, y, e), i.e., (x,Y,e)€A,,,. We also have (x,¢-¢, y) =
2, e, y) = 2¢-(x, ¢, ¥) + 2(¢, ¢, [%, y]). Therefore (x, ¢, ¥), = (=, 6, ¥), =0
and (z, ¢, ¥) € A,,,. Again by (2.14), (¢, x-¢, y) = x-(¢, ¢, ¥) + €-(¢, 2, ¥) +
(z, e, [e, ¥]) + (e, x, [e, y]). Since A is a direct sum and (z, e, [¢, ¥])
A, ., it follows that

(2.15) 2e, 7, )y = [o+(6, &, Y + (& 2, e, ¥ -

Apply the Teichmiiller identity (1.10) to get

(2.16) (e, w, ey) = —(ex, ¢, Y) + (¢, xe, y) + e(z, ¢, Y) + (¢, %, €)Y
and

(2.17) (e, %, ye) = —(ex, ¥, €) + (¢, 2y, €) + e(x, Y, e) + (¢, @, Ye .

But the A, components of (2.16) give: (e, x, ey), = (e, %, ¥), and those
of (2.17) give (e, x, ye), = [(¢, v, y)e], = 0. Substituting these results
in (2.15) yields 2(e, =, ¥), = [%-(e, e, W), + (e, x, ey), — (e, z, ye),. This
becomes

(2.18) (e, @, Y)o = [z-(e, & )], -

Now consider [ac' (e, ¢, Y)» As'in [4], (e, e, y) = xy — (ac, e, ) —
x(ey) + (w, e, ey) + e(yz) + (e, Y, x) — ef(ey)x] — (e, ey, ). All terms on
the right side except the first and third are in 4,,. Therefore

(2.19) [x-(e, &,.9)] = (xy)y — [90(61/)]0 .
Substitute (2.19) into (2.18) to get
(2.20) (e, %, )y = (xY)o — [2(ew)], -

Identity - (2.20), expanded .becomes (xy), = [e(@y)]s = (x¥), — [x(ey)],.
Since [e(zy)], = 0 it follows that [x(ey)], = 0, and since (x, ¢, ¥) € 4./,
it follows that (xy), — [z(ey)], = 0. We ‘have therefore (xy), = 0 or
AA,,, S A Identity (2,20) becomes (¢, z, ¥), = 0 and by flexibility
(¥, %,€), =0. Thus [(yx)els — (yz)y = 0. This gives 4,,4, S A,.. In
a. 51m11ar__ manner AA S Ay A, A, ; A,; and A is stable. The
theorem is therefore proved.
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