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The covering relationship between ideals (B c C and
there exist no ideals between B and C) is studied, and,
surprisingly, due to an interesting interplay between the
concepts, quite a few new results concerning Bourbaki as-
sociated primes are found. Then, most of the results are
generalized to submodules of an an arbitrary A-module.

The covering relationship between ideals has proved to be a
useful and important tool in many investigations in commutative
algebra. For example, a result in a classical paper of Grobner [2,
§6] says that an M-primary ideal Q in a local ring (A, M) is
irreducible if and only if Q has a unique cover. (See also [9, p. 248].)
(Other examples include most papers where one of the following
concepts is considered: the length of an ideal, a minimal basis of
an ideal, or the Hilbert-Samuel polynomial of an ideal.) However,
the authors know of no paper where the subject itself has been
studied. We do such a study in §2 of this paper, and some quite
interesting results are obtained. Also, it turns out that there is an
interesting interplay between the covering relationship and Bourbaki
associated primes, so results concerning one of the concepts imply
corresponding results concerning the other concept. Therefore in
§3, using the results of §2, quite a few new results concerning
Bourbaki associated primes of an ideal in an arbitrary ring are
obtained. (In particular, all the results hold for prime divisors of
an ideal in a Noetherian ring, and many are new even in this case.)
That many new results are obtained is somewhat surprising, since
the subject of Bourbaki associated primes has certainly previously
been deeply investigated.

To briefly describe the results in §2, let B a C be ideals in a
ring A. Then we say that C covers B in case there are no ideals
D of A such that BaDaC. In this case, C/B ~ A/M, for some
maximal ideal M, and to emphasize the role of M we say that C un-
covers B. With this terminology, it is first shown in §2 that an
ideal 7 in A ikf-covers some ideal if and only if MI Φ I (2.3), so if
A is either quasi-local or an integral domain, then every nonzero
finitely generated ideal M-covers some ideal (2.4). Some other
corollaries of (2.3) are given in (2.5)-(2.10), among which is a descrip-
tion of an ideal which M-covers a unique ideal — a result which is
sort of dual to the above mentioned result of Grobner. Next it is
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shown that if an ideal C M-covers B and / is any ideal in A, then
either C f]I M-covers B Π / or C + I M-covers B + I (2.13). Conse-
quences of this are given in (2.14)-(2.16), among which are: if C+I
M-covers B + I, then C + J M-covers B + J, for all ideals J £ I
(2.14.1); if d is a regular element in A, then either C: dA = B: dA
or C: dA M-covers £: cίA (2.14.4); and, if dl is M-covered (d regular),
then either dA or J is M-covered (2.16). (2.17) gives a form of a
converse of part of (2.13) for Noetherian rings, and §2 is closed by
showing, in particular, that if C covers B in a local ring R, then,
for all ideals I in R, C + /• covers B + Γ, for all large e (2.20).

Section 3 is concerned with Bourbaki associated prime ideals P
of an ideal / (P = I: xA, for some x e A). The first result shows
that if M is maximal, then M is a Bourbaki associated prime of I
if and only if I is M-covered (3.2). Using this, a number of addi-
tional corollaries of (2.3) are given, among which are: if MI Φ J,
then MI is an intersection of ideals lying immediately below I and
having Mas a Bourbaki associated prime (3.3); and, every ideal in a
ring is an intersection of ideals having a maximal ideal as a Bourbaki
associated prime (3.5). In (3.10) it is shown that a finitely generated
prime ideal P in a ring A is a Bourbaki associated prime ideal of an
ideal B if and only if BAP is a covered ideal. Corollaries of this which
correspond to results in §2 are given in (3.11)-(3.14), among which
are: if P is a Bourbaki associated prime of B and is either finitely
generated or a maximal ideal in A, then, for each ideal / in A, P
is a Bourbaki associated prime of either B + J (for all ideals J £ I)
or B Π K (for all ideals K 2 /) (3.11); moreover, if P is not a
Bourbaki associated prime of B + dA (d regular), then P is a
Bourbaki associated prime of B: dA (3.12.3); and, if P is a Bourbaki
associated prime of dl (d a, regular element), then P is a Bourbaki
associated prime of either dA or I (3.13). In (3.15) it is shown that
if P is a prime divisor of an ideal B in a Noetherian ring A, then,
for all ideals I £ P, P is a prime divisor of B + /% for all large e.
Corollaries of this are given in (3.15)-(3.19), among which is: if P
is a prime divisor of (0), then, for all ideals / Q P, P is a prime
divisor of 1% for all large e (3.16.1).

In §§4 and 5, we briefly indicate how the results in §§2 and 3
can be generalized to, respectively, the module-covering relation-
ship between submodules of an arbitrary A-module ^ C and to
Bourbaki associated primes of submodules of €̂C It turns out that
most of the results in §§2 and 3 can be generalized to this case. (The
main reason for doing the ring and module cases separately is that
the notation and arguments are a little simpler in the ring case,
and once this case is known, the module case follows quite readily.
A secondary reason is that a few of the results for the ring case
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do not have a natural generalization to modules.) It should be
mentioned that results analogous to those in this paper have been
obtained for Noetherian lattice modules in [4].

Finally, in §6 a few remarks are made concerning the more
restrictive condition (than being covered) of a sheltered submodule
of an A-module.

2* Notes on ideal covers* All rings in this article are assumed
to be commutative with an identity. The undefined terminology is,
in general, the same as that in [5]. In particular, BczC means the
set B is properly contained in the set C. Also, if B is an ideal in
a ring A, then possibly B = A, but if B is a prime ideal in A, then
BaA.

In this section we prove a number of results concerning the
covering relationship between ideals in a ring. We begin by recalling
the following definition.

DEFINITION 2.1. Let B, C, and M be ideals in a ring A. Then
it is said that C M-covers B if B c C, M is maximal, and C/B = A/M
(as vector spaces). It is said that C covers B, if C iV-covers B for
some maximal ideal N in A, and that B is covered, if some ideal
covers B.

The following remark lists a few immediate equivalences of the
definitions.

REMARK 2.2. Let BczC, and M be ideals in a ring A such that
M is maximal. Then the following statements hold:

(2.2.1) C covers B if and only if C/B is a nonzero simple A-
module, or, equivalently, if and only if there does not exist an ideal
I in A such that BalaC.

(2.2.2) [9, Corollary 1, p. 237]. C Af-covers B if and only if
MC £ B and C = B + cA, for some ceC, $B.

(2.2.3) C Af-covers B if and only if C = B + cA and M = B: C =
B: cA, for some (and then for every) ceC, &B.

The next result and its corollaries show the ubiquity of the
ideal covering relationship.

THEOREM 2.3. Let I and M be ideals in a ring A such that M
is maximal. Then I M-covers some ideal J in A if and only if
MI Φ I. If MI Φ I, then the intersection of the ideals J such that
I M-covers J is MI.

Proof. If I M-covers some ideal J, then MI £ Jal (2.2.2), so
MI Φ I.
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If MI Φ I, then let xel, ί ML Extend {x + MI} to a basis β
of the A/M-vector space I/MI, and let V be the subspace of I/MI
generated by β-{x + MI}. Let σ be the canonical map of I onto
I/MI. Then J= σ~\V) is M-covered by I and xίJ, so MI contains
the intersection of the ideals M-covered by I. On the other hand,
if I M-covers J, then MI £ / (2.2.2), so MI is the intersection of
the ideals M-covered by I.

(We are indebted to the referee for (2.4) and (2.6), both of
which sharpen our original results.)

COROLLARY 2.4. Let I Φ (0) and M be ideals in a ring A such
that I is finitely generated and M is maximal. Then there exists
an ideal J in A such that I M-covers J if and only if (0): / £ M.
(Thus, if A is either quasi-local or an integral domain, then I un-
covers some ideal J.)

Proof. If I M-covers J, then (0): I Q J: I = M, by (2.2.3). Con-
versely, assume that (0): I £ M and suppose that MI = I. Then,
by [3, Theorem 76], there exists xeM such that (1 + x)I = (0),
so 1 + x 6 (0): IQ M. But this is a contradiction, since x e M, so
MlΦl, and so the conclusion follows from (2.3). The parenthetical
statement follows immediately from this.

REMARK 2.5. Let I Φ (0) and M be ideals in a ring A such that
I is finitely generated and M is maximal. Then it follows from
(2.4) and (2.3) that I M-covers some ideal in A if and only if
(0): J £ M if and only if MI Φ I, and then MI = Π {/; / is an ideal
in A and I M-covers J}.

(2.6) is related to [1, Chapter 3, Ex. 18a, p. 110], which is con-
cerned with sheltered modules. So as not to delay developing pro-
perties of the ideal covering relationship, we simply note here that
the first statement in (2.6) is sharpened by the referenced result in
[1]. (See (6.2.2)—and see §6 for additional results on sheltered
modules.)

COROLLARY 2.6. For each ring A and for each ideal D Φ A,x

D is an intersection of covered ideals. Further, every nonzero ideal
I contains a covered ideal.

Proof. Let xeA, <£D, and let M be a maximal ideal in A such
that D: xA £ M. Then x£D + xM, for otherwise x = d + xm, for
some deD and meM, so x(l — m) — d, hence 1 — meD:xAQ M,
and this is a contradiction. Now expand D + xM to an ideal B
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maximal with respect to not containing x, and let C = B + xA.
Then C covers B (by (2.2.1), since there exist no ideals between C
and B, by the definition of B), and x g B. Therefore, since D £ B9

it follows that D is the intersection of covered ideals.
If / is a nonzero ideal in A, then I contains a nonzero finitely

generated ideal in A, so the last statement follows from (2.4).

In (2.7) we consider when an ideal is an intersection of M-covered
ideals, with M a fixed maximal ideal.

COROLLARY 2.7. Let I £ M be ideals in a ring A such that M
is maximal. Then I is an intersection of M-covered ideals in the
following two cases:

(2.7.1) I is prime.
(2.7.2) M is finitely generated and I = IAM Π A.

Proof. (2.7.1) By passing to A/1, it may be assumed that
I = (0), and it may clearly be assumed that I Φ M (since A M-covers
M). Then, for each nonzero element α e M, aM is M-covered by aA
(aMcaA, since A is a domain), and (0)= Γ\{aA; OΦaeM}^
Γ){aM; 0 Φ aeM} 2 (0), so (2.7.1) holds.

(2.7.2) By (2.6), IAM is an intersection of MA^-covered ideals
BAMy so IAχ Π A is an intersection of the ideals BAM Π A, and each
of these ideals is M-covered, by (3.10) and (3.2).

COROLLARY 2.8. Let M, I, and A be as in (2.3). Then I M-
covers a unique ideal J in A if and only if I — MI + xA, for some
x 6 J, £ MI, and then J = MI.

Proof. If I M-covers J, then there exists xel, &J such that
I = J + xA and xM £ J (2.2.2). If J is unique, then J = MI (2.3),
so I = MI + xA and xel, $ ML

Conversely, if there exists xel, & MI such that I = MI + xA,
then / M-covers MI (2.2.2). If also I M-covers JSΓ, then MI Q K
(2.2.2), so necessarily K = ML

COROLLARY 2.9. Lβέ M, I, and A be as in (2.3) and assume
that I M-covers a unique ideal. Then there exists xel such that
1=0 {xA + M*I; i ^ 1}. Therefore, if A is quasi-local and I is
finitely generated, then I is principal.

Proof. By (2.8), there exists xel such that I = xA + MI, so
MI = xM + M2I, hence I = xA + M2J. Therefore it follows that
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/ = Π {%A + M*I; i ^ 1}. Therefore, if A is quasi-local and / is
finitely generated, then, since I—xA-Y MI, [5, (5.1)] says that 1 = xA.

REMARK 2.10. Let Λf, /, and A be as in (2.3), and assume that
(0) Φ I = xA is a principal ideal and A is either a domain or a quasi-
local ring. Then / Af-covers a unique ideal (namely, MI). (There-
fore, for a finitely generated ideal ί in a quasi-local ring (A, M), I
ikf-covers a unique ideal if and only if I is principal.)

Proof. Since A is either a domain or a quasi-local ring and
/ = xA, xM Φ xA. Thus, by (2.2.2), xA Af-covers xM. If also xA
Λf-covers J, then xM £ J" (2.2.2), so J = xM. The parenthetical
statement follows from this and (2.9).

A number of other corollaries of (2.3) concerning Bourbaki
associated primes could now be given. However, we postpone giving
them till §3, since we want to concentrate on the ideal covering
relationship in this section. The corollaries are given in (3.3)-(3.6).

The next result gives some further information on the ilf-covering
relationship. Whereas (2.3) gave a necessary and sufficient condition
for a given ideal to M-cover some ideal, (2.11) gives a necessary
and sufficient condition for ideals of the form D + xA to ikf-cover
some ideal B 2 D.

PROPOSITION 2.11. Let D and M be ideals in a ring A such
that M is maximal, and let x e A. Then D + xA M-coveτs some
ideal B^D if and only if D: xA £ M. If D + xA M-covers BΏ.D,
then B = D + xM.

Proof. The kernel of the natural homomorphism of A onto
(D + xA)jD is easily seen to be D: xA, so A/(D: xA) = (D + xA)/D.
Therefore the maximal submodules of (D + xA)/D are in one-to-one
correspondence to the maximal ideals containing D: xA. For the
last statement, define σ: A/(D: xA) —>(D + xA)/D by σ(a + (D: xA)) =
ax + D. Then σ(M + (D: xA)) = D + xM.

(An alternate proof of (2.11) can be given using (2.4) and (2.2.2).)

REMARK 2.12. Let A M, and A be as in (2.11). Then the
following statements hold:

(2.12.1) If DQM, then, for all x e A, &M, D + xA M-covers
D + xM.

(2.12.2) If A is quasi-local and D is M-covered, then D + IM
is M-covered, for all finitely generated ideals I in A.
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Proof. (2.12.1) If D £ M and x g M, then D: xA g M: xA = M,
so the conclusion follows from (2.11).

(2.12.2) If x 6 / n D, then D + xM = D is covered, by hypothesis;
and if a? e I, g Z), then D: #A Q M, so J5 + xM is Af-covered, by (2.11).
Since I is finitely generated, the conclusion follows by a finite number
of repetitions of this.

(3.7) and (3.8) are additional corollaries of (2.11) concerning
Bourbaki associated primes.

The following result shows an interesting property of ideal
covers.

THEOREM 2.13. Let B, C, I, and M be ideals in a ring A such
that M is maximal and C M-covers B, and consider the following
statements:

(2.13.1) Cf)I£B.
(2.13.2) 5nίcCn/.
(2.13.3) (B n I): (C f] I) = B: C.
(2.13.4) C n I M-covers B f] I.
(2.13.1') C£B + I.
(2.13.2') B + IaC + I.
(2.13.3') (B + I): (C + I) = B: C.
(2.13.4') C + / M-covers B + I.
Then (2.13.1)-(2.13.4) are equivalent and (2.13.Γ)-(2.13.4') are

equivalent. Moreover, exactly one set of the statements (2.13.1)-
(2.13.4) or (2.13.ΓM2.13.4') holds.

Proof. C n I Q B if and only if C Π I C B Π / if and only if (by
hypothesis) C Π / = B n /, so (2.13.1) « (2.13.2).

If C n I £ B, then B + (I n C) = C (since C covers £), so A/M =
c/B = (B + (i n C))/J5 = (i n eyes n (/ n C)) - ( i n C)/(i π s), and so
Cnl ilί-covers β f l l (2.1), hence (2.13.1) => (2.13.4).

Assume that (2.13.4) holds. Then, by (2.2.3), (B Π I): (C Γi /) =
AT = JB: C, hence (2.13.4) => (2.13.3).

It is clear that (2.13.3) => (2.13.2).
C g B + I if and only if C + IQ B + / if and only if (by

hypothesis) C + I = B + 7, so (2.13.1') « (2.13.2').
If J5 + / C C + /, then, with C = B + cA (2.2.2), C + / = £ + / + c A

and M(B + ί + c A ) S 5 + ί , hence C + I Λf-covers J? + I (2.2.2).
Therefore (2.13.2') =* (2.13.4').

Assume that (2.13.4') holds. Then, by (2.2.3), (B + /): (C + I) =
M= B:Cf hence (2.13.4') => (2.13.3').

It is clear that (2.13.3') =- (2.13.2').
Finally, let J = B + (C Π /), so, by modularity, J = C ί Ί ( ΰ + /).
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Also B^J^C. Therefore, either J - B or J = C. Now J = B if
and only if C Γ) I Ω B, and J = C if and only if C Ω B + I. There-
fore, if J ^ j?, then C Γι I £ B, so C f l ί M-covers .B n / (by what
has already been shown); and, if J Φ C, then C §£ B + I, so C + /
M-covers B + I (by what has already been shown). Also, J = B if
and only if C Π I C -B if and only if C Π / does not M-eover fifll,
and J = C if and only if C Q B + I if and only if C + I does not
M-cover JB + I, so exactly one of (2.13.4) and (2.13.4') holds.

The statements in the following remark follow immediately from
(2.13).

REMARK 2.14. With the notation of (2.13), let c e C, e JS, so C =
JB + cA (2.2.3). Then the following statements hold:

(2.14.1) C + I M-eovers B + I if and only if c$B + I. There-
fore, if C + I ikf-covers JB + J, then, for all ideals J £ J, C + J M-
covers B -{- J. Also, there exist ideals I which are maximal with
respect to the property that C + I M"-covers B + I.

(2.14.2) If C Π / M-covers ΰ n l , then C Π J M-covers J5 Π J,
for all ideals J 2 I.

(2.14.3) Either C n / = 5 Π / o r Cfl/ M-covers BnΓ, and, either
C + I = B + I or C + / M-covers B + J.

(2.14.4) For each regular element d in A, either C: dA = B: dA
or C: dA M-covers B: dA, since C Π dA = d(C: dA).

(2.14.5) If I + B£M= B:C, then Cfl/ M-covers BnL
(2.14.6) A M-covers M, so, for all ideals I §£ M, I M-covers

M Π I (so, for each α e J, g M, J = (M ΓΊ J) + αA).
It follows from (2.13.4) that if d M-covers B, (i = 1, 2), then

either: C = C, f) C2 = Bt n B2 = B; or C covers 5; or C covers d ΓΊ i?2

covers β and C covers C2 Π -Bx covers B. Thus, it probably is not
true that if C M-covers B, then either C: I = B: I or C: I M-covers
JB: J, for all ideals / in A. However, see (2.18.1).

Two corollaries to (2.13) will now be given. The first is a special
case of parts of (2.14), but it is felt that it is of sufficient importance
to be specifically mentioned.

COROLLARY 2.15. Let B, C, I, and M be ideals in a ring A
such that M is maximal and C M-covers B. Then the following
statements hold:

(2.15.1) If CΓ\Γ = BΓ\I% for some e ^ 1, then C + Γ M-covers
B + Γ, for all i ^ e.

(2.15.2) IfC + Iβ = B + Γ, for some e ^ 1, then C Π Γ M-covers
J5ΠΓ, for i = 1, . . . , e.

(2.15.3) If C + deA = B + d'A, for some e ^ 1, and if d is
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regular, then C: dιA M-covers B: diA, for i — 1, , e.

Of course, the contrapositive of (2.15.3) shows that if C: deA =
B: deA, for some e ̂  1, then C + dιA M-covers B + dιA, for all i ^ e.

COROLLARY 2.16. Let I and M be ideals in a ring A such that
M is maximal, and let d be a regular element in A. If dl is M-
covered, then either dA or I is M-covered.

Proof. Let C M-cover dl. If dA is not M-covered, then C+dA—
dl + dA = dA (2.14.3), so I = dl: dA is M-covered (2.15.3).

(2.16) shows that if del is M-covered, for some e ^ 1, then either
dA is M-covered or <W is M-covered, for i = 0,1, •••, e. Namely,
(2.1) shows that if dA is not M-covered, then dβ~ιI is M-covered
(since del = did*'1!)), so the conclusion follows by repetition.

If A is Noetherian and Q is an M-primary ideal of A, for some
maximal ideal M, then, since A/Q is Artinian, it is clear that Q
is M-covered. This together with (2.13) gives a large class of
covered ideals. The next result shows that, in fact, every covered
ideal in A can be obtained in this way, in that, if C M-covers
B, then the primary decompositions of B and C differ only in
M-primary components and some M-primary component of B is
either covered by some M-primary component of C or C has no
M-primary component. Also, (2.17) shows that by considering a
primary decomposition of a covered ideal B, we can build up from
B to an ideal which covers it, instead of the other way around as
in (2.3)-(2.5) and (2.8)-(2.11).

Before stating (2.17), we give an example to show that G may
not have an M-primary component even when M is not the component
of B.

EXAMPLE. Let (R, M = (a, b)) be a regular local ring, let Q =
(a, bz)R (so (a, ¥)R c (a, ¥)R c M), let x = a2 + b2, let B = Q n %R,
and let C = xR. Then C M-covers B (since B = Q Π xR = x(Q: xR) =
xM, and xR M-covers xM, by (2.10)) and C has no M-primary com-
ponent (since C is a principal ideal and R is a Krull domain).

PROPOSITION 2.17. Let BaC and M be ideals in a Noetherian
ring A such that M is maximal and C M-covers B. Then B has
an M-primary component, B and C have the same primary decom-
positions except for M-primary components, and either some M-
primary component of C M-covers some M-primary component of
B or C has no M-primary component.
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Proof. If B = M, then C = A and the conclusion is clear. If
B is ikf-primary and BΦM, then C is M-primary and the conclusion
is again clear. Therefore assume that B is not M-primary.

Now M = B:C, since C ikf-covers B, so M is a prime divisor of
B. Also, for each prime ideal P Φ M in A, CAP = MCAP Q BAP Q
CAP, hence it follows that there exist primary ideals q, Q2, , Qn

in A such that q is M-primary, g Π Q2 Π Π Q» is a normal primary
decomposition of B, and either Q2 Π Π Qn is a normary decomposi-
tion of C or qf (Ί Q2 Π Π Qn is a normal primary decomposition of
C, for some M-primary ideal q''. Therefore it remains to show that
if M is a prime divisor of C, then q and qf can be chosen such that
q' M-covers g. For this, it may be assumed that q £ q', since BaC,
so g c # ' . Therefore let I = Q2 n Π Q», let 9 = gx c c q k = q'
be a chain of M-primary ideals such that qi covers q^19 for i = 2, , k,
and let JB* = IΠ 9i (i = 1, , fc). Then B = J5X S C B* = C, so,
since C covers B, there exists d < k such that B = Bι= — Bdd
Bd+i = = Bk = C, and the conclusion follows immediately from
this.

(2.17) holds in the more general case that every ideal in A is a
finite intersection of primary ideals and, for all maximal ideals
M and M-primary ideals Q, A/Q is Artinian (by the proof of
(2.17)).

This section will be closed with three more results concerning
ideal covers in a Noetherian ring.

REMARK 2.18. Let C M-cover B in a Noetherian ring A, and
let J be an ideal in A. Then the following statements hold:

(2.18.1) If JQ B: G, then C: J' = B: J\ for all large i.
(2.18.2) Let Q be an M-primary component of B (2.17). If

J £ Q, then C + J' M-covers B + J% for all i ^ 1.

Proo/. (2.18.1) If J^B C, then (2.18.1) follows immediately
from (2.17), since, for all large i, J1 is contained in a given M-primary
component of B.

(2.18.2) If J £ Q , then CίΊ J = B f] J (2.17), so the conclusion
follows from (2.15.1).

REMARK 2.19. With the notation of (2.18.2), if I19 - ,Ik are
ideals in A which are contained in Q, then C + It1 + + Γk

k M-
covers B + It1 + + Ik

k, for all integers e* ̂  1. Also, the M-
primary components of B and B + It1 + + Iί* are the same.

Proof. The first statement is clear by (2.18.2). The last state-
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ment follows from the facts: Q contains D = B + It1 + + Uk;
D has an Λf-primary component (2.17); and, D^B.

If BQ C Bγ c c Bn is a composition series of Af-primary ideals
in a Noetherian ring A and IeQB0, then it is clear that the images
of the Bt in A/Γ is a composition series of M/P-primary ideals. The
following result, which is closely related to (2.18.2) and (2.19), shows
that if I Q M and we no longer assume that the Bt are M-primary
(so possibly Γ g; J50, for all e ^ 1), then, even so, the images of the
Bi in A/Γ are still a composition series.

PROPOSITION 2.20. Let B, C, I, and M be ideals in a Noetherian
ring A such that M is maximal, C M-covers B, and I Q M. Then
C + Γ M-covers B + Γ, for all large integers e.

Proof. For all large β, Γ is contained in an M-primary com-
ponent of B (2.17), so CΠΓ = Bf]I% by (2.17). Therefore C + Γ
M-covers B + Γ (2.13).

If A is local, then an alternate proof of (2.20) which does not
use (2.17) is: since, for each ideal D in A, D = Π {D + Γ; e = 1, 2, •},
Be = B + Γ c C + Γ = Ce, for all large β, so Ce covers Be (2.14.3).

Further results concerning ideal covers are given in (3.2), (3.9),
(3.10), and (3.16.2).

3* Notes on associated primes and prime divisors* In this
section, we apply the results in §2 to obtain some results on
Bourbaki associated primes in arbitrary rings and prime divisors
in Noetherian rings. (We prefer to use the prime divisor terminology
in Noetherian rings, since it is somewhat more standard and the two
concepts of associated primes are equivalent.) To begin, recall the
following definition.

DEFINITION 3.1. A prime ideal P in a ring A is a Bourbaki as-
sociated prime of an ideal I in A in case there exists x e A such
that I: xA = P.

It is known [6, (1.2)] that if P is a Bourbaki associated prime
of /, then P is a prime divisor of I in Nagata's terminology [5, p.
19]. (See also [5, (8.8)].)

REMARK 3.2. Let B and M be ideals in a ring A such that M
is maximal. Then B is M-covered if and only if M is a Bourbaki
associated prime of B, by (2.2.3).

Because of (3.2), a number of results in §2 concerning an M-
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covered ideal I can be translated to results concerning a Bourbaki
associated prime of I. (3.3)-(3.6) correspond to (2.3) and some of
its corollaries.

COROLLARY 3.3. Let I and M be ideals in a ring A such that
M is maximal and MI Φ I. Then MI is an intersection of ideals
Jdl such that I lies immediately above J and J has M as a
Bourbaki associated prime.

Proof. By (2.3), MI is an intersection of ideals J Λf-covered by
/. Therefore, for each such J, J lies immediately above J, and M
is a Bourbaki associated prime of J (3.2).

COROLLARY 3.4. Let I Φ (0) and M be ideals in a ring A such
that I is finitely generated and M is maximal. Then I lies im-
mediately above an ideal J that has M as a Bourbaki associated
prime if and only if (0): ί S M, and then MI is an intersection of
such ideals. (Thus, if A is either quasi-local or an integral domain,
then MI is an intersection of such ideals.)

Proof. This is clear by (2.4), (2.5), and (3.2).

A particularly important case of (3.4) is when A is Noetherian.

COROLLARY 3.5. For each ring A and for each ideal D Φ A, D
is an intersection of ideals J each having a maximal ideal as a
Bourbaki associated prime. Further, every nonzero ideal I contains
an ideal with a maximal ideal as a Bourbaki associated prime.

Proof. This follows immediately from (2.6) and (3.2).

(3.5) generalizes the well-known result that if paP are prime
ideals in a Noetherian ring A such that pAP Φ (0), then P is an
imbedded prime divisor of some ideal contained in p. Namely, by
the last statement in (3.5), PAP is a prime divisor of some ideal,
say BAP, contained in pAP, so, since A is Noetherian, P is a prime
divisor of B and Bap.

(3.6) stands in relation to (3.5) in the same way that (2.7) stands
to (2.6).

COROLLARY 3.6. Let I £ M be ideals in a ring A such that M
is maximal. Then I is an intersection of ideals each of which has
M as a Bourbaki associated prime in the following two cases:

(3.6.1) I is prime.
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(3.6.2) M is finitely generated and I = IAM Π A.

Proof. This is clear by (2.7) and (3.2).

The following result is a corollary to (2.11). The reason the
converse of the corollary does not hold (as it did in (2.11)) is that,
in general, an M-covered ideal has more than one M-cover. This
follows, for example, from the result of Grobner mentioned in the
introduction.

COROLLARY 3.7. Let D and M be ideals in a ring A such that
M is maximal, and let xeA. If D: xA £ M, then M is a Bourbaki
associated prime of D + xM.

Proof. If D: xA £ M, then D + xA M-covers D + xM, by (2.11),
so M is a Bourbaki associated prime of D + xM (3.2).

(3.8) corresponds to (2.12).

REMARK 3.8. Let D and M be ideals in a ring A such that M
is maximal. Then the following statements hold:

(3.8.1) If D Q M, then I is a Bourbaki associated prime
of D + xM for all xeA, $M.

(3.8.2) If A is quasi-local and M is a Bourbaki associated prime
of D, then, for all finitely generated ideals I in A, M is a Bourbaki
associated prime of D + IM.

Proof. (3.8.1) follows from (2.12.1) and (3.2), and (3.8.2) follows
from (2.12.2) and (3.2).

The next corollary to (3.2) gives another application of the
covering relationship.

COROLLARY 3.9. Let b19 •••,&& be an R-sequence in a local ring
(R, M). B = (&!, , bk)R is covered if and only if every maximal
R-sequence has length equal to k.

Proof. If B is covered, then M is a prime divisor of B (3.2),
so blf •••,&* is a maximal J?-sequence, hence every maximal R-
sequence has length equal to k [10, Theorem 1, p. 396].

If every maximal iϋ-sequence has length equal to k, then M is
a prime divisor of B, so B is covered (3.2).

A result related to (3.9) is given in (3.19).
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The next result is another corollary to (3.2). However, it is of
sufficient importance to be called a theorem. It characterizes finitely
generated Bourbaki associated primes in an arbitrary ring in terms
of ideal covers.

THEOREM 3.10. Let B and P be ideals in a ring A such that
P is a finitely generated prime ideal. Then P is a Bourbaki as-
sociated prime of B if and only if BAP is covered.

Proof. Since P is finitely generated, P is a Bourbaki associated
prime of B if and only if PAP is a Bourbaki associated prime of
BAP [1, Proposition 5, p. 134] if and only if BAP is covered (3.2).

A number of corollaries of (3.2) and (3.10) will now be given.
In these corollaries, results in § 2 concerning a covered ideal B in an
arbitrary ring correspond to results concerning finitely generated
Bourbaki associated primes of B. (3.11) corresponds to (2.13), (2.14.1),
and (2.14.2). (3.11) is of some interest, since if BcDcP are ideals
in a Noetherian ring A such that P is an imbedded prime divisor
of B, then it need not be true that P is a prime divisor of D.
However, (3.11) shows that, for each ideal I such that P is not a
prime divisor of B Π I, P is a prime divisor of B + J, for all ideals
J£*I. ((3.8.2) showed a closely related result.) (3,11) also shows
that for all ideals I §£ P, P is a prime divisor of Bf] I.

COROLLARY 3.11. Let B, I, and P be ideals in a ring A such
that P is a Bourbaki associated prime of B and is either finitely
generated or maximal. Then P is a Bourbaki associated prime of
either B + J, for all ideals J Q I, or B Π K, for all ideals K 2 I.

Proof. Assume P is finitely generated, let C be an ideal in A
such that CAP covers BAP (3.10), and assume that there exists an
ideal / £ / such that P is not a Bourbaki associated prime of B + J.
Then (B + J)AP is not covered (3.10), so (C + J)AP does not cover
(B + J)AP, hence (C + I)AP does not cover (B + I)AP (2.14.1). There-
fore (CnI)AP covers (Bf]I)AP (2.13), so, by (2.14.2), (C(]K)AP covers
(B Π K)AP, for all ideals K^I. Therefore the conclusion follows
from (3.10). The proof is similar using (3.2) and avoiding localiza-
tion, if P is maximal.

(3.12) corresponds to (2.15).

COROLLARY 3.12. Let B, I, and P be as in (3.11). Then the
following statements hold:
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(3.12.1) / / P is not a Bourbaki associated prime of Bf]Γf for
some e ^ 1, then P is a Bourbaki associated prime of B + I\ for
all i ^ e.

(3.12.2) // P is not a Bourbaki associated prime ofB + Γ, for
some e ^ 1, then P is a Bourbaki associated prime of B Π I\ for
i = 1, •••, e.

(3.12.3) / / P is not a Bourbaki associated prime of B + deA,
for some e ^ 1, and if d is regular, then P is a Bourbaki associated
prime of B: d{A, for i = 1, , e.

Proof. (3.12.1) and (3.12.2) are clear by (3.11).

(3.12.3) Assume that P is finitely generated, let C be an ideal
in A such that CAP covers BAP (3.10), and assume that P is not a
Bourbaki associated prime of B + deA. Then (C + deA)AP does not
cover {B + deA)AP (3.10), so (C + deA)AP - (B + deA)AP (2.14.3),
hence, by (2.15.3,) (C:d*A)AP covers {B:diA)AP, for i = l, .- ,β.
Therefore the conclusion follows from (3.10). If P is maximal, the
proof is similar using (3.2) and avoiding localization.

It is clear that the contrapositive of (3.12.3) shows that if P
is not a Bourbaki associated prime of B: deA, for some e ̂  1, then P
is a Bourbaki associated prime of B + diA9 for all i ^ e.

The next corollary corresponds to (2.16).

COROLLARY 3.13. Let I and P be ideals in a ring A such that
P is a Bourbaki associated prime of dl and is either maximal or
finitely generated, where d is a regular element in A. Then P is
a Bourbaki associated prime of either dA or I. (Hence, if d £ P,
then P is a Bourbaki associated prime of I.)

Proof. If P is finitely generated, then dIAP is covered (3.10),
so either dAP or IAP is covered (2.16). Therefore the conclusion
follows from (3.10). The proof is similar using (3.2) and avoiding
localization, if P is maximal.

(3.13) shows that if P is a Bourbaki associated prime of del, for
some e ^ 1, then P is a Bourbaki associated prime of either dA or
dιl, for i = 0, 1, •••, e. Namely, if P is not a Bourbaki associated
prime of dA, then P is a Bourbaki associated prime of de~ιI (since
del = did6'1!)), so the conclusion follows by repetition.

Also, if A is a Krull domain, if P is either a finitely generated
prime ideal or a maximal ideal in A, and if P is a Bourbaki associated
prime of dq (deA and q a primary ideal in A) and height P > 1,
then q is P-primary, by (3.13) (since nonzero principal ideals in a
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Krull domain are finite intersections of height one primary ideals
[5, (33.3)]). In terms of ideal covers, this says: if dq is P-covered
(P maximal and height P > 1), then q is primary (2.16).

REMARK 3.14. (3.14.1) (3.10) and its corollaries hold for all
ideals B and P (P prime), if A is Noetherian.

(3.14.2) It is known [1, Chapter 4, Ex. lc, p. 163] that if P in
(3.10) is not finitely generated, then there may exist an ideal BaP
such that PAP is a Bourbaki associated prime of BAP (so BAP is
covered) and P is not a Bourbaki associated prime of B.

The following result is a corollary to (3.10), (2.19), and (2.20),
but, due to its importance, we call it a theorem. The theorem
corresponds to (2.19) and (2.20).

THEOREM 3.15. Let P be a prime divisor of an ideal B in a
Noetherian ring A, let Q be a P-primary component of B, and let
Iί9 •••, Ik be ideals contained in P. Then the following statements
hold:

(3.15.1) / / I19 , Ik £ Q, then P is a prime divisor of
B + It1 + + Ik

k, for all integers et ^ 1.
(3.15.2) For all large integers ei9 P is a prime divisor of

B + I? + + UK
(3.15.3) In both cases the P-primary component of B + It1 +

• + Uk is Q.

Proof. (3.15.1) It clearly suffices to prove if I Q Q, then P is
a prime divisor of B +1. For this, BAP is covered (3.10), so (B + I)AP

is covered (2.18.2), hence P is a prime divisor of B + / (3.10).
(3.15.2) follows similarly from (2.20), and (3.15.3) follows from

(2.19).

This section will be closed with a number of corollaries to (3.15).
For the first corollary, recall that if P is a prime divisor of dA in
a Noetherian ring A and d is regular, then P is a prime divisor of
cA, for all regular elements ceP [5, (12.6)]. (3.16) shows that a
somewhat analogous result holds if P is a prime divisor of zero.

COROLLARY 3.16. Assume that P is a prime divisor of (0) in
a ring A. Then the following statements hold:

(3.16.1) / / A is Noetherian, then, for all ideals Iίf , Ik Q P,
P is a prime divisor of It1 + + Ie

k

k, for all large e^
(3.16.2) If (A, P) is quasi-local, then, for each deP such that

(0): P g£ dA, dA is covered (so P is a Bourbaki associated prime of
dA).
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Proof. (3.16.1) is clear by (3.15).

(3.16.2) Assume that (A, P) is quasi-local and let deP such that
(0): P §£ dA. Let c e (0): P, £ dA. Then P £ (0): cA £ dA: cA ̂  A, so
P is a Bourbaki associated prime of dA, hence dA is covered (3.2).

The following result shows that, for certain prime ideals p and
for all large e, pe Φ p{e), the eth symbolic power of p.

COROLLARY 3.17. If P is a prime divisor of (0) in a Noetherian
ring A, then for all prime ideals pczP and for all large e, pe is not
p-primary.

Proof. By (3.16.1), P is a prime divisor of pe, for all large e.

The hypothesis in the next corollary is somewhat restrictive, but
an example following the result shows that the conclusion does not
hold for all local rings. The corollary shows, in particular, that if
P is a prime divisor of an ideal B which is generated by k elements,
if height B = n, and if height P = h, then P is an prime divisor of
an ideal Ct generated by k + i elements such that height Gt = n + i,
for i = 1, •••, h — n. In particular, if (A, M) is a catenary local
domain of altitude h, and if Λf is a prime divisor of a principal
ideal, then M is a prime divisor of an ideal of height i and generated
by i elements, for i — 1, , h.

COROLLARY 3.18. Let A be a local ring that satisfies the first
chain condition for prime ideals, let B be an ideal in A, and let
Pbe a prime divisor of B. Let height P — h and let height B = n.
Then, for i = 1, , h — n, P is a prime divisor of an ideal Gt =
(B, dlf , di)A such that height Ct = n + i.

Proof. It may clearly be assumed that h > n, and it clearly
suffices to prove that P is a prime divisor of an ideal C — B + dA
such that height C = n + 1. For this, let xeP such that x is not
in any prime divisor of B that has height = n. Then height B +
xA ^ n + 1. Now, if p is a height n prime divisor of B, then
height p + xA = n + 1, by the first chain condition (since p + xA Φ A),
and B + xA £ p + xA, so it follows that height B + xA = n + 1.
Therefore, let d = xe with e large, so P is a prime divisor of B + dA
(3.15) and height B + dA = n + 1.

The conclusion of (3.18) does not hold for arbitrary local rings.
For example, let (A, P) be a local ring such that altitude A = a > 1
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and there exists a depth one minimal prime ideal z in A. Let Q be
a P-primary ideal such that z g£ Q, and let B = z Π Q. Then height
JB = 0 and P is a prime divisor of B, but for all deM such that
height JB + dA > 0, height B + dA = a > 1.

COROLLARY 3.19. Let (R, M) be a local ring, let blf , bk be an

R-sequence, and assume that M is a prime divisor of (jblf •••, bk)R.

Then, for all Resequences clf , ck and all elements dlf , dh(h ^ 0)

in M, M is a prime divisor of (c{\ •--,c{k,d{\ — ,de

h

h)R, for all

f ^ l and for all large eό.

Proof φ, •••, cζk is an iϋ-sequence [3, Exercise 12, p. 102], so
M is a prime divisor of (cf1, , c{k)R [10, Theorem 1, p. 396]. There-
fore the conclusion follows from (3.15.2).

4* Modules and ikf-covers* In this section, we briefly indicate
how the results in §2 can be generalized to A-modules. We begin
by recalling the definition.

DEFINITION 4.1. Let A be a ring, let M be a maximal ideal in
A, and let & and <& be submodules of an A-module ^ C Then ^
M-covers & in case & c <& and ^ / ^ = A/M. ^ covers & in
case ^ iV-covers &, for some maximal ideal N in A, and & is
covered in case some submodule of ^/έ covers ^ .

Given a ring A and an A-module ^€, recall that if & is a sub-
module of . ^ then (0) φ & is an ideal in the ring A φ , ^ where
addition is componentwise and multiplication is given by

(α, m)(a', mr) — (oaf, am' + aim)

(the principle of idealization [5, p. 2]).

REMARK 4.2. With the notation of (4.1), ^ Λf-covers & if and
only if (0) φ <& (M φ ^)-covers (0) φ & in A φ

Proof This follows immediately from

= ((0) Φ ^)/((0) Φ ^) .

Using (4.2), it is straightforward to generalize most of the
results of §2 to submodules of an arbitrary A-module ^£1 In
particular, the generalizations (both statements and proofs) of (2.2),
(2.3), (2.6), (2.7.2), (2.8), the first statement in (2.9), (2.11), (2.13),
and (2.14.1)-(2.14.3) are clear; and, for (2.14.6), consider maximal
submodules of ^ C

The integral domain parts of (2.4) and (2.10) do not generalize
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by this method, since A 0 ^ is a domain only if Λί?= (0). The
quasi-local parts of (2.9), (2.10), and (2.12.2) do generalize, since
A 0 ^£ is quasi-local if A is. This also holds for the quasi-local
part of (2.4), once it is shown that the main part of (2.4) generalizes
(see below), and then (2.5) also generalizes.

(2.7.1) and (2.14.5) do not generalize in a convenient manner by
this method.

The generalizations of the remaining results in § 2 are somewhat
less clear, so they will now be explicitly stated. In the statements,
A is a ring, ^fί is an A-module, and M is a maximal ideal in A.
Script letters will denote submodules of ^ .

(4.4) J? M-eovers some ^JΓ if and only if (0): J? £ M.

Proof. ^ M-covers some J" if and only if ( 0 ) 0 ^
covers some (O)0^T by (4.2), if and only if ((0)0(0)): ( ( 0 ) 0 ^ )

/4 by (2.4): that is, if and only if (((0J: (0J) Π (0^):
): (0J) £ M 0 ^f, and this holds if and only if (0^): J* £ M.

(4.12.1) If ^ C i k L ^ C then, for all x e ^ <£M^f, & + (x)
M-covers & + Mx.

Proof. If & Q M^/ί and x $ M^/ί, then

((0) 0 &)\ (o,

so (0) 0 ( ^ + (a?)) ( M 0 ^^)-covers (0) 0 ( ^ + Maj) (2.11), hence
^ + (x) ilί-covers ^ + Mx (4.2).

(4.14.4) Assume that ^ Λf-covers «^. Then the following
statements hold:

( a ) For each ^"-regular element d e A, either <g*: cϊA = ̂ : cίA
or ^:dA ikf-covers ^ : dA.

(b) For each regular element x 6 ̂  (that is, if a 6 A and
αx = 0, then α = 0), either ^ : (a?) = ̂ : (a?) or <if: (x) M-covers &:(x).

Proof. By (2.14.3) (for modules), either ^ Π d ^ ^ = & Π
or ^ Π c£^# M-covers ^ Π d ^ ^ Therefore, since d(£^: dA) =
3f Π d ^ ^ and d is .^"-regular, (a) follows.

The proof of (b) is similar.

(4.15.1) Assume that ^ M-covers ^ , and let I be an ideal in
A. If ΐ f Π Ie^ = & Π / e ^ ^ for some e ̂  1, then 9f + JUT M-
covers ^ + I V ^ for all i ^ e.
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The proof is similar to the proof of (2.15.1).
(2.15.2) generalizes in a similar manner.
Two generalizations of (2.15.3) similar to the two generalizations

of (2.14.4) given above can now be easily supplied by the reader.
(For the case ^ 6 . 4 the exponent e is, of course, e = 1.)

(4.16) Let J ^ be a submodule of ^/έ, and let d be ^C-regular
in A. If d^F is M-covered, then either d^S or ^ is M-covered.

The proof is similar to the proof of (2.16).
The following result follows quite readily from (2.17), by using

the principle of idealization. However, some of the specific results
used in its proof are, perhaps, not well-known. For this reason,
we give a fairly detailed proof of the result.

(4.17) Let A be a Noetherian ring, let ^ be a finitely generated
A-module, let M be a maximal ideal in A, and let & c ^ be sub-
modules of ^ such that ^ M-covers έ%. Then & has an M-
primary component, & and <& have the same primary decompositions
except for M-primary components, and either some M-primary com-
ponent of ^ M-covers some M-primary component of & or ^ has
no M-primary component.

Proof. R = i φ ^ is Noetherian and C = (0) 0 <Sf 1 0 gr-
oovers (0) φ & = B, so by (2.17) and its proof, there exist ideals
I and q in R such that q is M 0 ^-primary, I : ( M 0 ^ C ) = J,
B = I f)q, and either C = I or M 0 ^ C is a prime divisor of C and
C = I n tf', and it may then be assumed that qf M 0 ^€"-covers g.
Now, since q is Af 0 ^f-primary, either g = Q 0 ^ or Q 0
for some ikf-primary ideal Q and for some ilί-primary submodule
of ^ ^ (see [8, Lemma 1.26], where it is shown that q must be of
this form; see [9, pp. 252-253] for some results on primary sub-
modules). Also, if i l ί 0 ^ ^ is a prime divisor of C, then qf —
with Q' M-primary and either ^V%r an M-primary submodule of
or ^Vf — ̂ . Moreover, I = J 0 ^ for some ideal J" in A and for
some submodule ^ of ^ .

Since C covers B, since the first components of B and C are (0),
and since the second component of B = Idq is either J? or J ^ n ^
and the second component of C is either ^ or ^ n ^ ^ ' , it follows
that B = (0)© ( ^ n -<T) and q = Qζ&^K Therefore, &
so if J l ί 0 ^ # is not a prime divisor of C, then (O)0£f = C=
so ^ = ^ and the conclusion holds (since /: (M 0 ^ ^ ) = / implies
^ : M = ^ ^ ) . Therefore assume that 1 0 ^ is a prime divisor
of c, so c = i n ?' = (J n Q') 0 (-^ n ^ r ' ) (possibly «̂
Therefore, since C covers B and the first components are (0), ^ Π
covers ^ Π ̂ 7 so it may be assumed that Λ" =) ̂ V ^ »/ Thus
since q = Q@Λ" is covered by q', it follows that g'
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(same Q as for q) and .Λ" covers ^V (possibly ^4rt = ^). Finally,
it has already been shown that & = ^ n ^V\ <& = ^ Π ̂ V\ and

(4.18) Assume that A is Noetherian, that ^ is finitely
generated, and that ^ M-covers ^ , and let / be an ideal in A.

(4.18.1) If J C M = gg\ 9f, then <gf: JV*T = ^ : Λ^T and
<if: J* = . ^ : J\ for all large i.

(4.18.2) If ^ is an M-primary component of ^ and
then <g* + J*c^r M-covers B + J1^ for all i ^ 1.

Proo/. (4.18.1) By [9, p. 252], and with the notation of (4.17),
£ ^ 7 for all large i, so ^ : J^^^ - <if: J ^ ί : Also, ^ # =

: J« = ^ ^ ' : J\ so ^ : J« = ^\ Jι = ^ : J ,̂ for all large i.
The proof of (4.18.2) is similar to that of (2.18.2).

(2.19) can be generalized in the same way that (4.18) generalizes
(2.18).

(4.20) Let A, &, <&, M, and J be as in (4.18), and assume that
J £ M. Then <g" + Je^ M-covers & + Je^€, for all large e.

The proof is similar to the proof of (2.20), using [9, p. 252].

5* Modules and Bourbaki associated primes* In this section,
we briefly indicate how the results in §3 can be generalized to A-
modules. We begin by recalling the following definition.

DEFINITION 5.1. Let A be a ring and ^£ an A-module. Then
a prime ideal P in A is a Bourbaki associated prime of a submodule
& of ^ in case there exists x e^f such that P = &\ (x).

The following remark generalizes (3.2).

REMARK 5.2. Let & be a submodule of an A-module ^ ^ and
let M be a maximal ideal in A. Then & is Λί-covered if and only
if M is a Bourbaki associated prime of έ%.

Proof. This follows easily from (2.2.3) generalized to modules.

Using (5.2) and the results in §4, the following results can
easily be generalized to an arbitrary A-module ^\ (3.3), (3.4), (3.5),
(3.6.2), (3.7), (3.8), (3.9) (let ^ f be a finitely generated i2-module
and bίf •••,&* an ^T-sequence), (3.10), (3.11), (3.12.1) and (3.12.2) (let
I be an ideal as in (4.15.1) and the generalization of (2.15.2)), (3.12.3)
(this has the same two generalizations that (2.15.3) had in §4), (3.13)
(let <y and d be as in (4.16); the parenthetical statement does not
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generalize in a convenient manner), (3.14.1) (if A is Noetherian, then
the results hold for all prime ideals and for all A-modules), (3.14.2)
(this shows the results do not hold for arbitrary modules over an
arbitrary ring), (3.15) (assume that A is Noetherian, that ^€ is
finitely generated, and that Il9 •••, Ik are ideals contained in Pas in
the generalization of (2.19) in §4), (3.16.1) (same assumptions as for
the generalization of (3.15) and let P be a Bourbaki associated prime
of (0) in ^ ) , (3.16.2) (let P be a Bourbaki associated prime of (0) in
^ and let x e ^t, £ (0^): P), and (3.19) (use the same assumptions
as for the generalization of (3.9) and assume that M is a Bourbaki
associated prime of (b19 •••, bk)^/f).

(3.6.1), (3.17), and (3.18) do not generalize nicely by this method.

6* Sheltered modules. In this brief section, we consider a
concept which is somewhat more restrictive than the covering rela-
tionship, namely, the sheltering relationship. We begin by recalling
the definition.

DEFINITION 6.1. [1, Chapter 3, Ex. 18, p. 110]. Let ^/f be an
A-module, and let & be a submodule of ^/έ. Then & is said to
be sheltered in case the set of submodules of ^y£ which properly
contain & contains a smallest element, which is then called the
shelter of &. ^ is sheltered in case (0) is a sheltered submodule
of ^ C

The final result in this paper gives a few of the relationships
between covered modules and sheltered modules.

REMARK 6.2. Let A, &, and Λ be as in (6.1). Then the
following statements hold:

(6.2.1) If & is sheltered, then & is Λf-covered, for some
maximal ideal M in A. Moreover, M is uniquely determined, M =
&\ ^ , where <& is the shelter of &, and then ^ is the unique
cover of &.

(6.2.2) [1, Chapter 3, Ex. 18a, p. 110]. & is the intersection
of sheltered submodules of ^

(6.2.3) (cf. (2.6).) Every proper submodule of ^£ is an intersec-
tion of covered submodules. (In particular, every proper ideal in A
is an intersection of covered ideals.) Moreover, every nonzero sub-
module of ^ contains a covered submodule.

(6.2.4) If {A, M) is a local ring and altitude A > 0, then every
nonzero ideal contains an ikf-covered ideal, but there exist nonzero
ideals which do not contain a sheltered ideal.

(6.2.5) If (A, M) is quasi-local and & has a unique ikf-cover,
then & need not be sheltered.
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Proof. (6.2.1) &I& is a nonzero simple JL-module, so the con-
clusion follows from (2.2.1) (generalized to modules) and (4.21). (An
alternate proof follows easily from [7, Theorem 6].)

(6.2.2) is given in the cited reference.
(6.2.3) The first statement follows from (6.2.1) and (6.2.2), and

the parenthetical statement follows from this. Also, the last state-
ment follows from (2.6) and (4.2).

(6.2.4) Assume that (A, Af) is a local ring and altitude A > 0.
Then every nonzero ideal contains an Af-covered ideal (2.6). However,
a sheltered ideal is Λf-primary [7, Theorem 6], so there exist nonzero
ideals which do not contain a sheltered ideal.

(6.2.5) This is more or less clear, but a specific example will be
given. Let (R, N) be a local domain which is not a field, and let
A — R 0 (R/N) (principle of idealization), so A is a local ring with
maximal ideal M = N($(R/N). Also, the zero ideal in A has a
unique Λf-cover (namely, (0) 0 (R/N)). However, A is not Artinian,
since altitude A = altitude R>0, so A is not sheltered [7, Theorem
6].
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