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Let K be a closed subspace in a real or complex normed
linear space L. The ‘“Main Interpolation Problem’ as for-
mulated by L. Asimow reads as follows: Given a bounded
convex neighborhood V of 0 in L and a bounded closed
convex U containing 0, their polars V° and U° in the dual
L’ of L, define the functionals on L p,,(x) = sup (z, V°NK")
and py(x) =sup (x, U%). For z,c€L we are looking for an
element x € L satisfying

(1) z—a,€K (xlz0 = xlx0) and

(2) pyl®) = py.(w,) (exact solution), respectively

(2" Do(®)=py(%,)+cfor given ¢ >0 (approximate solution).
The problem is formulated in a different but equivalent way
in this paper using the canonical projection p from L to
L/K. For a real linear subspace M of L, a convex cone N
in M and bounded closed convex neighborhoods U and V' we
prove conditions in terms of the dual space of L. which are
necessary and sufficient for the inclusions

p(N N U)DpM) N p(V)resp. p(N N U) DpM) N p(V)

({---} means the topological interior, {~~-}, the closure).

Theorem 1 shows the equivalence of the first inclusion to the
existence of a not necessarily linear map with certain properties
form the dual L’ to K°, the second inclusion is shown to be wvalid
if the first one holds for a certain family of 0-neighborhoods U and
V. Theorems 2 and 3 are applications of the first one and in the
case L = C(X), where X is a compact Hausdorff space give generali-
zations of several well-known results: Gamelin’s extended Rudin-
Carleson theorem [12], theorems by Bjork [10] and Alfsen [1] and
T.B. Andersen’s split-face theorem [3]. Some of the following results
are closely related to Ando’s paper [4] on closed range theorems,
which gives conditions for the validity of the second inclusion if
there exists a projection in the dual of L with range K°. The
notation of “splitability” there coincides with restrictions on neighbor-
hoods (“strongly admissible”) in this paper.

I am grateful to L. Asimow for some useful suggestions on the
subject.

1. A basic theorem. Let I be a real or complex normed linear
space, L’ its dual. The polar S° of a subset S in L is defined as the
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set of all ;€ L’ such that Re p#(f) < 1 for every feS. The following
well-known facts on polars are used in this paper (for proofs, for
instance see [17]): The bipolar of Sin L is the o(L, L’) closed convex
hull of SU{0}. If S, S, are subsets of L, we have (S,US,)’ =
S:NSS. If both S, and S, are closed and convex (S, U S,)° coinsides
with the o(L’, L) closure of the convex hull of S{US; in L/, and
if in addition S, and S, are 0-neighborhoods in L this convex hull
is o(L', L) compact, hence (S, N S;)° = conv (S! U S%). We state now
our first theorem.

THEOREM 1. Let K be a closed subspace of the real or complex
normed linear space L, M a real linear subspace of L, N a norm
complete convex cone in M, V a bounded convex, U a bounded convex
and closed meighborhood of 0 in L. p:L — L/K s the canonical
projection. For the following assertions

(a) »(NNU)opM)Np(V).

(b) p(NNTU)DpM) N p(V).

(e) {pNn O c{pM)n p(V)).

(d) There is a map @: L' — K° with the properties:

(d1l) For every peK® (p(p) — p)e M.
(d2) For every pe U and every fe M such that p(f)ep(V)
we have Re p(p)(f) = 1.
(d3) For all p,veLl’ such that (¢ —v)eEN° we have
(p(e) — p(v)) € M.
(e) For every he NNU such that the Minkowskr functional of
K+ V qrv(h) <1 define

—UvnLt(v- —1—
U= Uﬂx(h)(U k), Mh) =1 = ggiv(h)

and we have
(NN U,) > pM)NplV) .

(a) and (c) are equivalent, (d) implies (a), (a) implies (d) if N is a
real linear space, (e) implies (b), and (b) implies (a).

Proof. The implications (a) = (¢) and (b) = (a) are trivial. To
prove (¢) = (a) and (e) = (b) we need Lemma 1.

(¢) = (a): Taking the polars on both sides of inclusion (c) shows
that (NN U)DpM) N p(V). Applying Lemma 1, part (1), with
A=L, B=pM)cL/K, C=NNU and D= p(M)N p(V) we con-
clude (a).

(e) = (b) is a consequence of Lemma 1, part (2) with the same
insertion for A, B, C and D. Then UN1/NMC—h)=UNL/MNNU—-h)=
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UN1/MN - hNU —h)DUNNNLYNMU — h) = NN U,. Obviously for
he NN U both Minkowski-functionals in (¢) and in Lemma 1 are
equal:

qi(p(k)) = inf {p|p(k) € p(p(M) N p(V))}
=inf{o|lhecp(M + KNV + K)}
=inf{p|heo(V + K)} = qv.x(h) .

So (e) implies the assumptions of Lemma 1, part (2), and we derive
(b).

(d) = (¢): This argument makes use of an extended Hahn-Banach
theorem by Kaufmann [15] which states the following:

Let L be a real linear space, N a convex cone in L, q a sub-
additive, positive-homogeneous functional on L, and let ¢ be an
additive positive-homogeneous functional on N such that ¢ < ¢
on N. Then there is a linear functional # on L such that 4 < ¢
and £ <6 on N.

Now suppose (d) holds and let ¢ be an element of (p(N N U)).
Then p#eK° (K° is the dual of L/K) and Re pu(f) <1 for every
fe NN U. Let q be the positive-homogeneous subadditive functional
on L generated by U:

g(f) =inf{xe R, | ferU}.

There is a constant 7 > 0 such that q(f) < r||f]| for every f in L,
because U is a neighborhood of 0.

Let p, be the real functional on L: g, = Re t. Then p,(f) < q(f)
for every f in N and applying Kaufmann’s theorem we find a real
valued functional p, on L such that :

1(f) = q(f) for feL and p(f) = p6(f) on N.

Clearly p, is continuous, hence the real part of an element g, € L’.
So we have for every f in M

Re ¢(4,)(f) = Re p(¢)(f) = Re p(f) .

(This is a consequence of assumption (d3) because ¢ — p; € N°, hence
() — p(ps) € M°, and of (dl) because pe K°, hence o) — o € M°.)
Now suppose feM such that »(f)ep(V), then (d2) implies
Re p(p,)(f) =1, because p,e U°’. Therefore Re pu(f) <1, and p
belongs to the polar of p(M) N p(V).

If N is a real linear space too we prove the implication

(a) = (d): Suppose p(NN U)D>pM)N p(V) and define the map
@: I — K° using the axiom of choice as follows:
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gﬁ if there is zz¢€ K° such that # — fZe N°
P(H) =
0, else .

Thus @ is well-defined and meets the requirements (d1), (d2), (d3):
(d1) Suppose # € K° and Ze K°® such that ¢ — fie N°.
For every feM there exists by assumption ge N such that
p(f) = p(g), hence Re p(f) = Re pt(g) = Re fi(g) = Re p(1)(f).
(d2) Suppose peU°, = op(y), feM such that p(f)ep(V).
Then for every 7ve€(0,1) 7fep(M)N p(V), therefore we find
ge NN U with p(g) = p(7f), hence Re p(2)(f) = Re p()((1/7)g)=
Re z((1/7)g) = Re p((1/7)g) = (1/7). Thus Re p(p)(f) < 1.
(d3) Suppose g, ve L' such that (¢ — v) e N°.
Then in case there is no proper Z in K°, we have ¢(t) = o) = 0.
Else let be 2 = (), v = (). Then ff — e N’ v —veN",
hence ff — Ve N°, and 2 — v e M°® as well because i — Ve K°,
To complete the proof of Theorem 1 we need the following
lemma:

LEMMA 1. Let A and B be normed real linear spaces, p: A— B
a continuous linear map, C o complete bounded convexr subset in A
containing 0, D a bounded convex meighborhood of 0 in B. Then

(1) p(C)> D implies p(C) N D.

(2) If there is a bounded meighborhood U of 0 in A containing
C, such that for every h im the algebraic interior of C for which

Mh) = sup{oe R.[p(h)e (1 — p)D} = 1 — qp(p(h)) > 0

(where q, denotes the Minkowski-functional of D on B)

p(Uﬂ 3“%%—)(0_ h)):)D,

then p(C)> D.
Proof. (1) Suppose p(C)D D and let feD. Given & > 0 there

is g,€C such that ||f — »(g,)|] < &. Suppose g,, ---, g, € C have been
selected such that

A6 )

where » > 0 is a constant, such that »E;, c D. (&, denotes the closed
unit ball in B.) Then (r/e)"*(f — o>\, (¢/r)ig,))e D and we find
0.+ €C such that

(5= 2(&(5)#) - poe

k
= e<5-> R for every k=1, ---,n
7

=e,
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hence

(0l 2 o2

Set g = >2,(¢/r)'g;,. Then p(g) = f, and g € A/A — (¢/7)))C, hence for
every ¥ > 1, »(vC)> D, »(C) > (1/7)D, which proves part (1).

(2) Uis bounded, so UcC RE,, where E, denotes the unit ball
in A. Let feD. Then (f/2)e D@ — (1/2)*) and by hypothesis (set
h = 0) and part (1) there is g, €C(1 — (1/2)*) such that n(g,) = (f/2)
and ||g.]] = (8/2)R (because g, € (1 — (1/2))U). Suppose g,, g;, ***, ¢
have been selected such that 37, g, C(1L — (1/2)*™), p(g;) = (f,/29),
lg:ll = B/2")R, 1 =1, ---, m. Set

2n+2 o 22 2n+2 . 22
= 2n+2__1 ezn—!—z_l

S

hence

2'n+2 . 22 o 3

)\’(h)zl—znﬂ__l_znn_l'

By hypothesis and part (1) of the lemma then
2%«!—2 . 1
p(UnE—=LC¢-n)>D,
and there is
gelUn 2123_—1(0 — h)
such that

N2
p(g") = 3f-

Now let
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3 1 ,
gn+1"_‘ 2 2n+1g .
Then
3 1 2" —1 v (LN _
et B2l -w=(1-(3) JCc-n

- e poyEe) - @ e

hence

2 9 eC(l - (~21—>”+2> y D(Gar) = -é{; s ganll = §%7R .

Set g = 32, 9.. Then p(g9) = fand g € C, which completes the proof.

2. A Rudin-Carleson theorem. Throughout this section we
assume that K° is the range of a norm continuous linear projection
7 in the dual space L' of L. Applying the implications (d)= (a)
(setting @ = m) and (e) = (b) in Theorem 1 we derive an extended
Rudin-Carleson-type theorem in Banach spaces. Since the above
assumption coincides with Ando’s [4] some of the results are related
to his.

Let K be a closed subspace of the Banach space L, n: L' - K° a
continuous linear projection. To apply Theorem 1 we need some
requirements on “admissible” neighborhoods of the origin in L.

DEFINITION. Let U and V be closed convex bounded neighbor-
hoods of 0 in L. (U, V) is called admissible, iff #(U°)c V°. U is
called strongly admissible, iff U° = conv {z(U) U T — =)(U%} ({ }
denotes the closure in the norm topology of L’.)

REMARKS.

2.1) (B, (/|iz|)E), where E is the closed unit ball in L, is ad-
missible.

(2.2) If L is an AM-space (Banach lattice with property [|f Vgl =
11V Ilgll for all positive elements f, ¢ in L, cf. [19]), K an ideal in
L, w: L' — K° the band projection, then the closed unit ball £ in L
is strongly admissible: The inclusion E° D conv (z(£°) U (I — w)(E"®))
is trivial. Conversely let peE° then p = m(y)+ (I —m)y, and
because w(y) and (I — m)p are orthogonal and L' is an AL-space
(el + 1 — | = |z + (I — ()l || < lmeel) + (I — )l S 1,
hence € conv (n(E°) U (I — m)(E")).
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2.3) Let (U, V) and (U, V, be admissible 0-neighborhoods.
Then (U, N U,, V,N V,) is admissible.

This is an immediate consequence of the fact that (U, N U,)° =
conv (Ut U Uy), hence n((U, N U, = w(eonv (U U U3) S conv (m(U?) U
n(U3) Ceonv (VI U V3) = (VN V).

(2.4) If both U and V are strongly admissible, U N V is strongly
admissible, because

(UN V) = conv (U°U V°)
= conv (conv ((U)) U — 7 (U")) U conv (z(V*) U — w)(V?))
= conv ((UHU(VHYUUT — a)}U) U — m)(V?))
= eonv (zw(conv (U°U VHU (I — m)(eonv (U'N V?)))
=conv(m(UNVYUJ —-aXUNV)).

(2.5) Let U be strongly admissible, he U. Then (U,, U) is
admissible (U, was defined: U, = U N A/MR))U — h)). To prove (2.5)
it is sufficient (because of (2.3)) to show that ((1/A(R))U — h), U) is
admissible, i.e., w((L/MR)U — h))°’< U, i.e., (U — h)° < A/NR)) T,
Let ¢ e (U — h)°, then Re #(f) <1 + Re p(h) for every fe U. From
0e U we conclude that Re p(h) > —1, hence e (1 + Re p(h))U°. By
assumption U is strongly admissible, hence there is vy € L’ such that
Hpe—vll <& v =AY+ NV M+ 0N =1, Ay, N\, =0, v, €(1+ Re (B)n(T),
v, € (1 + Re u(h))(U". Then ) = Ay, (I — 7)(v) = MY,

From the definition of (k) = sup{pcR,|p(h)e (@ — p)p(U)} and
because 7(v) € K° for every f€ U we conclude Re 7(¥)(h) + M Re z(v)(f) <
sup {z(v)(9)| g € U}=N,(1+Re u(h)), hence N Re z(¥)(f) = \,(1+Re p(h)) +
Re (I — m)(¥)(h) — Re v(h) = M(1 4+ Re (k) + M(1 + Re p(h)) — Re v(h) =
1+ Re p#(h) — Rev(h) =1+ ¢||R||. (Note that h e U, (I —7)(¥) e M(1 +
Re p(h))(I — w)(U*) imply Re (I — m)(¥)(h) = M(1 + Re p(h)).)

Thus 7(¥) e (1L + &||r|)(U*/\) for € > 0. Because 7 is norm con-
tinuous from this we conclude ()€ (U°/N) = (TU/A).

Now Theorem 2 is at hand.

THEOREM 2. Let K be a closed subspace of the real or complex
Banach space L, K° be the range of a morm continuous linear
projection @ on L', p: L — L/K the canonical map. Suppose M is
a real linear subspace of L, N a norm closed convex cone in M. For
the following assertions

(a) For all closed convex bounded neighborhoods U and V of
O in L such that (U, V) s admissible

pNNU)DpM) N p(V).

(b) For every strongly admissible closed convex bounded meigh-
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borhood U of 0 im L
NN U)DPM)np(U) .

(¢) wNYcC M.
(a) implies (b), and (¢c) and (a) are equivalent.

Proof.

(a) = (b) is an immediate consequence of implication

() = (b) in Theorem 1 and of Remark (2.5). To prove

(¢) = (a) we show Condition (d) in Theorem 1 holds with ¢ = 7.

(d1) is trivial, and because of the linearity of x (d3) corresponds
to assertion (¢) of Theorem 2. To verify (d2) let e U’ fe V. Then
n(p) € V° because (U, V) is admissible, hence Re m(p)(f) < 1.

(a) = (¢). Assume (a) holds and let peN° feM. To prove
Re z()(f) = 0 we have to define proper 0-neighborhoods U and V.
Let

V=(@1/|z])E and U, = EN({kheL||I— m)(t)h) =< ¢}

where FE denotes the closed unit ball in L. Both U, and V are
bounded convex and closed and (U, V) is admissible: U? =
conv (E° U {---}"), hence #(U?) c conv (n(E°) Ux{---}°). So obviously
it suffices to verify w{.--}’c V°. ‘But {-.-}=¢-{e"(I—n)()| @ €0, 27]}°,
therefore {---}° = (1/e){MI — ) () |{|N < 1} and ={---}° = {0}.

Now select & > [|fl|-lIz|l. Then (AI/A)fe V and p((A/N)f) e p(M) N
(V) and by assumption there is g. € NN U, such that p(g.)=p((1/7)f),
hence (I — 7)(¢)(g.)| = &, i.e., |pu(g.) — n(p)(g.)] = e.

On the other hand we know because g. — (I/A)fe K, ¢ N° and
n(p) € K° that Re w(#)((1/N)f) = Re m(p)(g.) = Re p(g.) + ¢ =< e.

The argument holds for every ¢ > 0 independent of A, hence
Re z()(f/n) £ 0 and 7w(p) e M°.

3. Applications in Banach lattices. In this section we are
going to take advantage of the fact that the map ¢: L' — K° in
Theorem (1d) needs not necessarily be linear. For the following
suppose L is a real or complex Banach lattice, i.e., in the complex
case L is the complexification of a real Banach lattice L, (for
details cf. [19]) L = L, + 7L, Let K be an ideal in L, then K°
is a band in the order complete dual I/ = L; + <L, of L. By 7 we
denote the band projection from L' onto K°. = is norm continuous
and monotone (cf. ([19]). As before M is a real linear subspace of
L, N a closed convex cone in M. For the construction of ¢ we
introduce a new parameter:
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Let R be a sup-stable (i.e., f\Vge R for all f, g € R) convex cone
in L, such that

(3.1) Re(lin N)C R, i.e., R contains all real parts of the elements
of lin N, the complex linear hull of N.

(3.2) R is total in L, i.e., R — R = L,.

(3.3) (E;,NR)+ L,, where E; denotes the unit ball, L, the
positive cone in I,, is a neighborhood of the origin in L,.

In straightforward analogy to the concept of the Choquet ordering
for measures on a convex compact Hausdorff space we define an
order relation “<;” on L) (L. denotes the positive cone in L;) by
r<py iff pu(f) £v(f) for all fe R. Here R takes the part of the
continuous convex functions in the classical case (cf. Alfsen [1]).
Like there we show that there are sufficiently many maximal elements
in this ordering (Lemma 2) and then define @ using the axiom of
choice of the composition of a map from L’ in the set of maximal
elements and the band projection onto K°. According to the choice
of the parameter R Theorem 3 yields a wide range of applications.
For R = L, for instance, the ordering is trivial and it leads to the
Rudin-Carleson-type theorem of §2. In §4 we shall apply it to the
case I, = C(X) with different choices for R.

The proof of Lemma 4.1 in [16] can be adapted to derive the
following lemma on the existence of maximal elements in L.. (Note
that condition (3.3) for R guarantees the o(L’/, L) compactness of the
set {ve L. |y >y} for given peL..)

LEMMA 2. For every pelL! there is fte L, such that > p
and [ is maximal in the ordering “>;”.

For every fe L, define the upper respectively lower R-envelope
(cf. [1], §5) in L;, the order complete bidual of L,

f=inf{he —Rlh=f}, fFf=suplheR|h=7f}.

Then for s, ve L, st <pv implies u(f) < v(f) and p(f) = »(f). This
is an immediate consequence of Propositions 4.2 and 4.5 in Schafer’s
book [19], because ;,c(f) = inf {¢(h)|h € —R, h = f} for positive p.

Corresponding to the set of boundary measures in Choquet-theory
we define

oL’ = {pe L]y is R-maximal} .

(Recall that || = SUDucpo,0n1|COS @, + sin @ps,] € Ly where g = o, + ip,.)
For every pe L' there is £eoL’ such that ¢ — fZe(lin N)°, be-
cause there is a decomposition of p = (g, — ) + (¢, — £,) such that
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Y. € L. According to Lemma 2 select Z; € L. such that the f; are
R-maximal and 2, > 1, hence ZZ; — p,€(lin N)°. Set Zz = (&, — t£,) +
?'(ﬁs - ﬁA)- -

A very useful characterization of the elements of oL’ is given
by a reformulation of [1], Proposition I.4.5.

LEMMA 3. peoL if and only of |pl(f) = ¢ (F) for every fe L.
oL’ is an order ideal in L’'.

The proof of the first assertion follows straightforward the proof
of Proposition 1.3.5 and the argument in Proposition I.4.5 in Alfsen’s
book [1]. To verify that 6L’ is an order ideal in L’ let p, veolL .
Then for fe L, f—f is clearly positive in L”, i/A—I-vl(f—f) slpl(fF—nN+
}vl(f - f)=0, hence pt +veol’. If peodLl’ and vel' such that
[v| < |ggl. Then |v|(f — f) < |pl(f — f) =0, which completes the
proof.

To formulate the main theorem we need some additional require-
ments on K and on 0-neighborhoods in L.

DEFINITION. Let U and V be subsets in L. (U, V) is called
R-stable, iff for every pe U° there is e V° N oL’ such that Z — e
(lin N)°. A subset U in L is called R-stable iff (U, U) is R-stable.

REMARKS.

(8.4) Let U, U, V,, V, be closed convex 0-neighborhoods in L
such that (U, V)) and (U, V,) are R-stable. Then (U, N U, V.N V,
is R-stable.

To prove (3.4) let e (U,NU,)’ = conv (UU U3). Then p = \p +
Noloy €U, € Ujy N+ Ny =1, My N, = 0. By hypothesis there are
ZeViNoL and f,e ViNoL' such that Z, — p¢,e(linN)’, =1, 2.
Set £ =N\, + Ny, then e oL/, —p e (lin N)* and Z € conv (ViU Vi) =
(V.n V.

(3.5) Suppose U is an R-stable closed convex bounded 0-neigh-
borhood in L, he NNU. Then U — h is R-stable.

Let #£e(U — h)°. Then Re (k) > —1 and Re #(f) <1 + Re u(h)
for every fe U, hence pe(1 + Re u#(h))U°. Because U is R-stable
there is ¢£edL’' N (1 + Re p(h))U°® such that Z — pe(lin N),. From
Re y(h) = Re (k) we conclude Re f(f) < 1+ Re ti(h) for every fe U,
hence e (U — h).

(3.6) There is a handy characterization for R-stable admissible
0-neighborhoods in the case L is a real Banach lattige: .
Suppose U is a 0-neighborhood such that g, (f,) + ¢ (fO)=1
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for all pe U° fe U, then Uis R-convex and (U, U) is admissible
for every band projection 7 on L'.

To derive the first assertion, let g = p, — p_e U° and select
Loy pt_€0L' N L, suchthat £, >, B_>pp.. Thenf =g, — i €
0L’ and £ — pe(lin N)° and for every fe U

B S B () + B(F) S B(F) + B (F) s wF) + B(F) =1,

hence tie U°’. Secondly assume 7 is a band projection on L'. Then
a(p)(f) = a(p)() — (e )(f) = a(p)(fo)+m(p )OS p (o + p-(F)=1,
hence wue U°.

Now we state

THEOREM 8. Let L be a real or complex Banach lattice, M a
real linear subspace of L, N a closed convex cone in M, R a sup-
stable convex cone in L, (the underlying real Banach lattice of L)
such that (3.1), (3.2), and (8.3) hold. Suppose K is an R-stable ideal
wn L, p: L— L/K the canonical projection, m: L' — K° the band
projection from L' onto K°. For the following assertions

(a) For each triple (U, W, V) of closed convex bounded 0-neigh-
borhoods in L such that (U, W) is R-stable and (W, V) is admissible
(with respect to )

pINNU)DpMjnp(V).

(b) For every strongly admissible R-stable closed convexr bound-
ed 0-neighborhood U in L

pNNU)D M) 0 p(U) .

(¢) w@L' N NYcCM°® and K° (N (linN)* < M°.
(a) implies (b), and (¢) and (a) are equivalent.

Proof.

(a)=(b). For every he NnNU U,=UnA/Nr)XU — h) is R-
stable (Remarks (8.4) and (8.5)) and (U,, U) is admissible, (b) then
is a sequence of implication (e) = (b) in Theorem 1.

(¢) == (a). To apply Theorem 1, (d) = (a), we construct ¢: L' — K°
as follows: Let pecL' and N =inf{ocR, |ntcpU’. There is
zgexWwnoL/, such that Z — e (lin N)’. Define o) = n(ff)ernV?.
Conditions (d1), (d2), (d3) hold.

(dl): Let peK°'. Because of the R-stability of K there is
PeK'N oL’ such that ¢ —ve(lin N)°, hence # — v e K'N (lin N)°'c M°
by assumption (¢). On the other hand £ in the construction of p(u)
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was selected such that #Z — e (lin N)°, hence # — veoLl’ N (lin N)°'c
oL’ N N° and again by (¢) we conclude 7(&t — V) = n(f) — ¥ = p(p) —
Ue M°, hence, p(¢) — pre M°. (d2) is obvious, because p e U° implies
p(¢) e V°. To verify (d3) let yg, ve L’ such that (¢ — v)e N°. Then
2 —vedl’ N N° hence by (¢) n(ft — V) = p(tt) — p(¥) € M".

(a) = (¢). Clearly K°N (lin N’ M° is a necessary condition for
(a) because (a) implies p(N) = p(M). To prove the other inclusion let
preol’ N N° feM. To show Rez(u)(f) =1 we construct a proper

triple of neighborhoods U., W,., V: Define
U.=En{heL||(I— m)(p)(h)| = ¢}

(E denotes the unit ball in L). By assumption (3.3) for R there is
a constant » > 0 such that »E, c (K, N R). (K, is the unit ball in
L,.)

Let W.=(@/)En{heL||I — m)(p)(h) <¢}, V= (r/4)E. The
pair (W,, V) is admissible (cf. the proof (a) = (¢) in Theorem 2). We
shall prove now (U,, W,) is R-stable. Let g e E°, then there is a
decomposition g = g, — pt, + i(¢s — f2,) such that g, e E°N L. Let
Z; be R-maximal in L such that Z,>;p,. Suppose ferE; then
there is h € E;, N —R such that & = f, hence f£,(f) < ti(h) = p(h) = 1,
hence /£, € (rE,,)’, and for ferE we conclude f = f, + if;, fi, o€ rEy,
hence Re ti,(f) = p,(f)) £ 1, and g, € (»E). Thus

ﬁ = ﬁl - ﬁz + 'b(ﬁs - ﬁA) € 4(7’E)0 - <%E> ’

and (E, (r/4)E) is R-stable. Because of Remark (8.4) all left to show
now is R-stability of the set {he L|(I — m)(¢t)(h)] < €}. But this is
obvious because pedL’ implies (I — w)(p)€oL’ (ef. Lemma 3) and
{«-P=0I—-7m)()|IN £1}coL’. Therefore (U, W, is R-stable,
and to complete the proof we adapt the conclusion in (a)=(c¢) in
Theorem 2.

4. The case L = C(X). There are some interesting applications
of Theorem 3 to the case L = C(X), where X is a compact Hausdorff
space. With proper choice of the parameter R then quite a few
generalizations of well-known results about dominated extensions of
continuous functions are at hand. We have to distinguish the cases
L = Cr(X) (real valued continuous functions on X) and the complex
case L = C(X). The latter one requires more sophisticated techni-
ques to stady R-stable neighborhoods, corresponding to Hustad’s [14]
method to derive a norm preserving complex Choquet theorem. We
apply a generalization of his result [18].

Throughout the chapter suppose X is a compact Hausdorff space,
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L = Cr(X) (resp. L = C(X)) provided with the supremum norm.
Let K be the closed ideal in C(X) of all functions vanishing on the
compact subset Y X. L’ then is the space of all real (resp. com-
plex) valued Borel measures on X, n: L' — K° the usual restriction
to the subset Y.

To define strongly admissible 0-neighborhoods in L let 7 =
{zeC||z| =1}, p: X X ¥ — R, a lower semicontinuous bounded strictly
positive function and

U= {feCyX)|Re (2f(x)) < p(x, 2) for all xc X, ze7}.
To see that U is a strongly admissible 0-neighborhood in L = C¢(X)

with respect to the restriction map x, let f,ge U, pe U’ Y, the
characteristic function of Y. We shall prove first that

(4.1) Re pe(fyr + 91 — ) = 1.
Given ¢ > 0 there is a compact subset K € X\Y such that

(X\(YUK)) <e.

Let x€ X\(Y U K). Urysohn’s lemma guanties the existence of con-
tinuous functions y, and ¢, such that 0 < ¢,, 4, < 1 and

'llj\ac‘KU(m):O, ",b‘,;lyzl
¢x1YU(a:):0’ ¢x|K:1-

Let « <1 and f = af, § = ag, and
G, = {(z, 2) € X X 7|Re (2(4,f + v.9)) < p(=, 2)}

then Y X v, K X 7, {#} X 7 all are subsets of G,, which is open in
X X 7, because o is lower semicontinuous. Re 2(¢,f + ¥.§) is con-
tinuous on X X 7v. Thus U, G, = X X 7, which is compact, and there
are x, &y *++, £, € X\(Y U K) such that Ui, G., = X X 7. Let ¢y =
infy,, ¢ =infg,. Thus h=¢f + ygeU, hly =F, hlx =7, and

le(h) — p( oy + G — 1) < e(IF1] + 11glh
and
lpe(h) — p(fxy + 91 — x| < e(IF]] + llgl) + el — a) .

Because ||f]|, |lg]l, ||#|| are bounded, ¢ > 0 and « < 1 arbitrary, and
he U we conclude (4.1).

Now set A = sup {Re n(¢)(f)|fe U}, é =sup {Re (1 — m)(1)(f)|f e U}
Then N\, 0=0, M+0=<1 by (4.1), and w(¢)erU’, (1 — w)(p)eoU",
hence 7(p) e xn(U?), (1 — w)(p) e 61 — 7)(U°), and

¢ =n(p) + (1 — m) () e conv (n(U°) U (L — m)(U?))
Ucconv (#@(U)U 1 — =)(TY).
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The converse is obvious, since pe€ U°, fe U implies by (4.1) m(¢)(f) =
M y) < 1, hence wpe U

As a first corollary of Theorem 3 choosing R = Cr(X) we now
prove a Rudin-Carleson theorem, which generalizes Gamelin’s [10]
version by requiring N only to be a convex cone:

COROLLARY 3.1. Let Y be a closed subset of the compact
Hausdorff space X, M a real linear subspace of Co(X), N a closed
convex cone in M. Then the following conditions are equivalent:

(a) For every 0-neighborhood U in Cy(X) defined by a strictly
positive bounded lower semicontinuous function p: X X ¥ — R, (as
above) and every fe M such that fy€ Uy (restrictions to the subset
Y) there is a function ge N N U such that gy = fir.

(b) For every complex Borel measure ¢t on X peN° implies
Ly € M.

Proof.

(b) = (a) is an immediate consequence of (c) = (b) in Theorem 3.
To prove the converse suppose ¢ € N° h< M such that & 5= 0. Define
U by o(z, ) = ||1|| if z€ G and p(z, ) = ¢ else, where G is an open
neighborhood of Y. Clearly hc U, and by assumption there is
g€ NNU such that h;, = ¢'y, hence

0 = Re ¢(g9) = Re p1,5(g) + Re p6_5(g9) + Re ttx_4(g)
= Re py(h) — hip|(G —Y) — e|p|(X — G) ,

and because G and ¢ were arbitrary and p is regular 0 = Re ¢ .(h),
hence p,, € M°.

We are going to state now a corollary, which implies and
generalizes results by Bjork [10], Alfsen-Hirsberg [2], and T.B.
Andersen [3]. Recall that the Choquet boundary of R 4,X is defined
to be the subset of all xe X such that the Dirac measure ¢, is
maximal in the “<;” ordering. Every “boundary measure” peoL’
on X is known to vanish on every Baire set disjoint from the
Choquet boundary (cf. [1] or [14]). For a linear subspace N in Cy(X),
which separates the points of X and contains the constants, we say
0y X = 0,X, where R is the sup-stable cone in Cr(X) generated by
the real parts of N.

Note that in the real case the R-stability of a given neighbor-
hood U is relatively easy to be checked, whereas in the complex
case the arguments turn out to be much more complicated. Hustad
[14] (along with Hirsberg’s [13] interpretation) proves the R-stability
of the unit ball in C(X). We shall apply a generalization of his
result given in [18]:
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Suppose U is defined by a strictly positive l.s.c. function
0: X X 7— R U {}

U = {f e Cc|Re (2f(x)) = p(x, z), for all xe X, ze7}
and for every zev, the function
0: X—RU{}, p,(2)=p )

is R-superharmonic, i.e., p,(x) = p(p,) for all x€ X and u>z¢, (Dirac
measure in z). Then U is R-stable.

COROLLARY 3.2. Let X be a compact Hausdorff space, M o real
linear subspace tn Cy(X) (resp. Cx(X)), N a closed convex cone in M,
which separates the points of X and contains the comstant functions,
R a sup-stable convex cone im Cr(X) which contains the real parts
of all functions in lin N.

Suppose Y is a compact subset of X such that

(1) for every measure p supported by Y there is a boundary
measure [ supported by Y such that g — pe(lin N)°.

(2) for every complex boundary measure pt € N° vmplies pt,y € M°.

(3) lin N,y ts dense in M.

Suppose U s a 0-neighborhood in C.(X) defined by a strictly
positive bounded l.s.c. function o0: X x ¥ — R, such that 0,: X— R 1is
R-superharmonic for every ze".

Then for every fe M such that fi,€ Uy there is g€ NNU such

that fiy = 9y

With the above notations and remarks this follows directly from
Theorem 3. If Y is a subset of d,,,yX condition (1) is obviously
true, (2) implies (3), so Corollary (3.2) generalizes Bjork’s [10] result
and the main theorem in the Alfsen-Hirsberg paper [2]. To derive
a complex version of T.B. Andersen [3] extension theorem about
continuous affine functions on split-faces let Y be a closed split-face
in the compact convex set X, N = A(X) the space of all continuous
(complex) affine functions on X, M the subspace of C,(X) such that
all function in M), are affine on X. Conditions (1) and (8) then are
obvious, because Y is a face and because A(X) is dense in A(Y).
(2) is known to be a characterization for split-faces (cf. [1], Theorem
11.6.12).

Note that in the real case p reduces to two strictly positive
bounded l.s.c. functions f;, fy: X — R, defining U by

U={feCX)| —fr =F =fi}.
U is R-stable if both f; and f, are R-superharmonic.
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Another obvious consequence of our main result is Alfsen’s
Theorem II. 4.5 [1].

COROLLARY 3.3. Let Y be the topological closure of the set of
extreme points 0,X of the compact conver set X, f:0,X— R a con-
tinuwous function. Then f can be extended to a function in A(X)
iff the following two conditions are satisfied:

(1) f and f coincide on 0,K
(F is defined to be inf {ge AX)|g = fD.

(2) The common restriction of 7 and fv' to 0,X 1is annihilated
by every peol’ N AX).

To prove this set N = A(X), M = A + Rf, where f is any con-
tinuous extension of f on X, U the unit ball in Cx(X). With the
same choice of K and R as before the assertion is obvious.

Finally we are going to derive a corollary of the type of Bauer’s
classical theorem on the abstract Dirichlet-problem (cf. [8], [1]
Theorem II. 4.3, [17]).

COROLLARY 38.4. Let N be a closed convexr cone in C(X) (Ci(X)
resp. Cr(X)), where X is a compact Hausdorff space, which separates
the points of X and contains the constant functions. Set Y = 0ynyX
and R the sup-stable convex cone generated by lin N. Then N,y =(C(Y)
of and only if N°NOL = {0} and 0,y X = Y.

To prove this set M = C(X). K = {f €C(X)|fy = 0} is R-stable
as well as the unit ball U in CRr(X). All left to show is K°N
(lin N)’c M°. But this is obvious because pe K°N (lin N)° implies
predl’ (K° is the set of all measures carried by Y = 0. xX, hence
the set of all boundary measures), therefore #eoL’ N N° = {0}.
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