PRODUCTS OF BANACH SPACES THAT ARE UNIFORMLY ROTUND IN EVERY DIRECTION

Mark Andrew Smith
It is shown that the product of a collection of Banach spaces that are uniformly rotund in every direction (URED) over a URED Banach space need not be URED; this answers a question raised by M. M. Day. A positive result under an additional hypothesis is also proved.

Introduction. A Banach space B is uniformly rotund in every direction (URED) if and only if, for every nonzero member z of B and $\varepsilon > 0$, there exists a $\delta > 0$ such that $\|(1/2)(x + y)\| \leq 1 - \delta$ whenever $\|x\| = \|y\| = 1$, $x - y = \alpha z$ and $\|x - y\| \geq \varepsilon$.

This generalization of uniform rotundity was introduced by Garkavi [3] to characterize Banach spaces in which every bounded subset has at most one Čebyšev center. Zizler [6] and Day, James, and Swaminathan [2] have investigated this geometrical notion more fully.

The purpose of this note is to answer negatively the following question raised by M. M. Day [1, p. 148]: Is the product of a collection of URED Banach spaces over a URED Banach space still URED? In §1, a positive result is proved under an additional hypothesis; the counterexample, §2, is present exactly when this hypothesis fails.

Let S be an index set. A full function space X on S is a Banach space of real valued functions f on S such that for each f in X, each function g for which $|g(s)| \leq |f(s)|$ for each s in S is again in X and $\|g\| \leq \|f\|$.

Note that X has a natural Banach lattice structure with positive cone $\{f \in X : f(s) \geq 0 \text{ for all } s \in S\}$ and that X is order complete by its fullness. It follows easily from theorems of Lotz [4, p. 121] and McArthur [5, p. 5] that the following are equivalent:

1. X contains no closed sublattice order isomorphic to \mathcal{J}^ω.
2. Each order interval in X is compact.

If for each s in S, a Banach space B_s is given, let P_xB_s, the product of the B_s over X, be the space of all those functions x on S such that (i) $x(s)$ is in B_s for each s in S, and (ii) if f is defined by $f(s) = \|x(s)\|$ for all s in S, then f is in X. For each x in P_xB_s, define $\|x\| = \|f\|_x$. With the above definitions, $(P_xB_s; \|\cdot\|)$ is a Banach space.
1. A positive result. The question of whether the product of a collection of URED spaces is isomorphic to a URED space was considered in [2, p. 1056]. There, it was shown that P_xB_s is isomorphic to a URED space if each B_s is URED, and if either (i) S is countable or (ii) $X = \ell_p(S)$ for $1 \leq p < \infty$. Here, the isometric question raised by Day is considered.

THEOREM. The product space P_xB_s is uniformly rotund in the direction z if each B_s and X is URED and the order interval $[0, ||z(s)||]$ is compact.

Proof. Let z be a nonzero member of P_xB_s for which the order interval $[0, ||z(s)||]$ is compact. Let $\{x_n\}$ and $\{y_n\}$ be sequences in P_xB_s such that $||x_n|| = ||y_n|| = 1$, $||x_n + y_n|| \rightarrow 2$ and $x_n - y_n = \alpha_n z$. Then

$$||x_n - \eta \alpha_n z|| \rightarrow 1 \text{ if } 0 \leq \eta \leq 1.$$ Define sequences $\{f_n\}$ and $\{g_n\}$, for $\theta = (1/2), 1$, by letting

$$f_n(s) = ||x_n(s)|| \text{ and } g_n(s) = ||x_n(s) - \theta \alpha_n z(s)||$$

for s in S. Then $||f_n|| \rightarrow 1$ and $||g_n|| \rightarrow 1$. Since $||2x_n(s) - \theta \alpha_n z(s)|| \leq f_n(s) + g_n(s)$ for each s and $||2x_n - \theta \alpha_n z|| \rightarrow 2$, we have

$$||f_n + g_n|| \rightarrow 2.$$ For each n and s, note that $|f_n(s) - g_n(s)| \leq ||\theta \alpha_n z(s)||$. By the compactness hypothesis, there exist h^θ in X and a sequence $\{n_k\}$ such that

$$f_{n_k} - g_{n_k} \rightarrow h^\theta.$$ Since X is URED, it follows by Theorem 1 of [2] that $h^\theta = 0$. Thus $||x_n(s)|| - ||x_n(s) - \theta \alpha_n z(s)|| \rightarrow 0$ for each s in S and $\theta = (1/2), 1$. Choosing s such that $z(s) \neq 0$ and using the fact that B_s is URED, we conclude that $\alpha_n \rightarrow 0$. This completes the proof.

The following result is an immediate consequence of the theorem and the above remarks concerning full function spaces.

COROLLARY. The product space P_xB_s is URED if each B_s and X is URED and X contains no closed sublattice order isomorphic to ℓ^∞.

2. The counterexample. An equivalent full function space norm $||| \cdot |||$ on ℓ^∞ that is URED and a sequence $\{B_s\}$ of URED
Banach spaces are defined such that, for \(X = (\ell^\infty; \|\cdot\|) \), the product space \(P_xB_i \) is not URED.

Let \(\{a_j\}_{j=1}^\infty \) be a sequence of positive real numbers such that \(\sum_{j=1}^\infty a_j^2 = 1 \). For \(x = (x_j)_{j=1}^\infty \) an element of \(\ell^\infty \), define

\[
\|x\| = \left(\|x\|_\infty + \sum_{j=1}^\infty a_j^2(|x_1| + |x_j|)^2 \right)^{1/2}.
\]

It is straightforward to verify that \(\|\cdot\| \) is a norm on \(\ell^\infty \) and that \(\|\cdot\|_\infty \leq \|\cdot\| \leq \sqrt{\|\cdot\|_\infty} \). Also note that \(\|x\| = \|x\|_\infty \) and that \(0 \leq x \leq y \) implies \(\|x\| \leq \|y\| \) for all \(x \) and \(y \) in \(\ell^\infty \). Therefore \(\|\cdot\| \) is an equivalent full function space norm on \(\ell^\infty \).

To show \((\ell^\infty; \|\cdot\|) \) is URED, let \(z \) be a member of \(\ell^\infty \) such that \(\|z\| = 1 \). If \(\|x\| = \|y\| = 1 \), where \(y = x + \alpha z \), then \(x + y = 2x + \alpha z \) and

\[
\|2x + \alpha z\|^2 = \|2x + \alpha z\|_\infty^2 + \sum_{j=1}^\infty a_j^2(|2x_1 + \alpha z_1| + |2x_j + \alpha z_j|)^2
\]

\[
\leq (\|x\|_\infty + \|x + \alpha z\|_\infty)^2 + \sum_{j=1}^\infty a_j^2(|x_1| + |x_1 + \alpha z_1| + |x_j| + |x_j + \alpha z_j|)^2
\]

\[
= 4 - [(\|x\|_\infty - \|x + \alpha z\|_\infty)^2
\]

\[
+ \sum_{j=1}^\infty a_j^2(|x_1| + |x_1 + \alpha z_1| + |x_j + \alpha z_j| - |x_1| - |x_j|)^2],
\]

and hence

\[
(1) \quad \left[1 + \|x + \frac{1}{2} \alpha z\|^2 \right]^{1/2} \geq \frac{1}{2} [(\|x\|_\infty - \|x + \alpha z\|_\infty)^2
\]

\[
+ \sum_{j=1}^\infty a_j^2(|x_1 + \alpha z_1| + |x_j + \alpha z_j| - |x_1| - |x_j|)^2]^{1/2}.
\]

Similarly, using \(2\|x\|^2 + \|x + (1/2)\alpha z\|^2 \leq 4 \), we obtain

\[
(2) \quad \left[1 - \|x + \frac{1}{4} \alpha z\|^2 \right]^{1/2} \geq \frac{1}{2} [(\|x\|_\infty - \|x + \frac{1}{2} \alpha z\|_\infty)^2
\]

\[
+ \sum_{j=1}^\infty a_j^2\left(|x_1 + \frac{1}{2} \alpha z_1| + |x_j + \frac{1}{2} \alpha z_j| - |x_1| - |x_j|\right)^2]^{1/2}.
\]

It is sufficient to show that for each \(\varepsilon > 0 \) the sum of the right members of (1) and (2) is bounded from zero, uniformly for all \(x \) such that \(\|x\| = \|x + \alpha z\| = 1 \) with \(|\alpha| \geq \varepsilon \).

(i) If \(z_i = 0 \), choose any \(k \) with \(z_k \neq 0 \). Then at least one of \(|(|x_k + \alpha z_k| - |x_k|)| \) or \(|(|x_k + (1/2)\alpha z_k| - |x_k|)| \) is as great as \(2^{-3}|\alpha z_k| \), so either the right member of (1) or the right member of (2) is greater than \(2^{-3}a_z\varepsilon |z_k| \).

(ii) If \(z_i \neq 0 \) and \(|z_i| < 2^{-3}|z_k| \) for some \(k \), then either \(|(|x_i + \alpha z_i| - |x_i|)| \) or \(|(|x_i + (1/2)\alpha z_i| - |x_i|)| \) is as great as \(2^{-3}|\alpha z_i| \), but
\[|(x_k + az_k) - |x_k|) < 2^{-5}|az| \text{ and } |(|x_k + (1/2)az| - |x_k|) < 2^{-4}|az|, \]
so either the right member of (1) or the right member of (2) is greater than \(2^{-4}a_k\varepsilon|z_i|\).

(iii) If \(z_i \neq 0\) and \(|z_j| \geq 2^{-3}|z_i|\) for all \(j\), then either

\[
\begin{align*}
|(|x|| - |x + az||) > 2^{-5}\varepsilon|z_i| \\
\left(|(|x|| - |x + \frac{1}{2}az||) > 2^{-5}\varepsilon|z_i| \right)
\end{align*}
\]

and so either the right member of (1) or the right member of (2) is greater than \(2^{-5}\varepsilon|z_i|\). To prove (3), we need only observe that if

\[
|(|x|| - |x + (1/2)az||) < 2^{-5}|az| \text{ and } j \text{ is chosen so that } |(|x|| - |x + (1/2)az||) < 2^{-5}|az|, \]
then \(|x_j + (1/2)az| > |x_j| - 2^{-2}|az|\) and hence \(|x_j + az| = |x_j + (1/2)az| + (1/2)|az|\). Thus

\[|x + az|| > |x|| - 2^{-2}|az| + \frac{1}{2}|az| > |x|| + 2^{-3}|z_i|. \]

This shows that \(||\cdot||\) is URED.

Now, let \(X = (\ell^\infty; ||\cdot||)\) and for each positive integer \(i\), let \(B_i\) be the two dimensional \(\ell_i^{+1}\) space. Note that each \(B_i\) is URED. Let \(z\) in \(P_xB_i\) be defined by \(z(i) = (1, 0)\) in \(B_i\) for each \(i\). For each \(n \geq 2\), let \(x_n\) and \(y_n\) in \(P_xB_i\) be defined by

\[x_n(i) = \begin{cases} (0, 0) & \text{if } i = 1 \\ (1, 0) & \text{if } i = n \\ \left(\frac{1}{2}, b_n\right) & \text{if } i \neq 1, n \end{cases} \]

and

\[y_n(i) = \begin{cases} (-1, 0) & \text{if } i = 1 \\ \left(\frac{1}{2}, b_n\right) & \text{if } i = n \\ (0, 0) & \text{if } i \neq 1, n \end{cases} \]

where \(b_n\) is chosen such that \(b_n > 0\) and \((1/2)^{n+1} + (b_n)^{n+1} = 1\). Then

\[||x_n|| = \sqrt{2}, ||y_n|| = (2 + 3a_n^{1/2}), \]
\[||x_n + y_n|| = [4b_n + 4 + (4b_n^2 + 4b_n - 3a_n^{1/2})^{1/2}, \]

and \(x_n - y_n = z\) for each \(n \geq 2\). Since \(b_n \to 1\) and \(a_n \to 0\), it follows that \(||y_n|| \to \sqrt{2}\) and \(||x_n + y_n|| \to 2\sqrt{2}\), and hence \(P_xB_i\) is not URED.

The author thanks the referee for helpful suggestions.
REFERENCES

Received April 7, 1976 and in revised form April 11, 1977. This paper is a revised version of part of the author’s Ph. D. thesis written at the University of Illinois under the supervision of Professor M. M. Day.

LAKE FOREST COLLEGE
LAKE FOREST, IL 60045
AND
MIAMI UNIVERSITY
OXFORD, OH 45056
Thomas Robert Berger, *Hall-Higman type theorems. V.* 1
Frank Peter Anthony Cass and Billy E. Rhoades, *Mercerian theorems via spectral theory.* ... 63
Morris Leroy Eaton and Michael David Perlman, *Generating O(n) with reflections.* ... 73
Frank John Forelli, Jr., *A necessary condition on the extreme points of a class of holomorphic functions.* ... 81
Melvin F. Janowitz, *Complemented congruences on complemented lattices.* ... 87
Maria M. Klawe, *Semidirect product of semigroups in relation to amenability, cancellation properties, and strong Fø lner conditions...* 91
Chao-Chu Liang, *Involutions fixing codimension two knots.* 125
Joyce Longman, *On generalizations of alternative algebras.* 131
Giancarlo Mauceri, *Square integrable representations and the Fourier algebra of a unimodular group.* ... 143
J. Marshall Osborn, *Lie algebras with descending chain condition...* 155
John Robert Quine, Jr., *Tangent winding numbers and branched mappings.* ... 161
Louis Jackson Ratliff, Jr. and David Eugene Rush, *Notes on ideal covers and associated primes.* ... 169
H. B. Reiter and N. Stavrakas, *On the compactness of the hyperspace of faces.* ... 193
Walter Roth, *A general Rudin-Carlson theorem in Banach-spaces.* 197
Mark Andrew Smith, *Products of Banach spaces that are uniformly rotund in every direction.* ... 215
Roger R. Smith, *The R-Borel structure on a Choquet simplex.* 221
Gerald Stoller, *The convergence-preserving rearrangements of real infinite series.* ... 227
Graham H. Toomer, *Generalized homotopy excision theorems modulo a Serre class of nilpotent groups.* .. 233
Norris Freeman Weaver, *Dehn’s construction and the Poincaré conjecture.* ... 247
Steven Howard Weintraub, *Topological realization of equivariant intersection forms.* ... 257