
Pacific Journal of
Mathematics

DEHN’S CONSTRUCTION AND THE POINCARÉ
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M. Dehn used a type of homology preserving surgery on
ιS3 to produce an infinite family of irreducible homology 3-
spheres. We apply Dehn's construction to arbitrary 3-mani-
folds, give groups invariant under Dehn's construction, give
a reduction of the Poincarέ conjecture, give a nontrivial
example of links in S3 with homeomorphic exteriors, and
give a result connerning knots with property P.

1* Introduction and statement of main results*

Dehn's construction can be iterated, which gives rise to the no-
tion of Dehn equivalence between 3-manifolds [see §2]. Dehn equiva-
lent manifolds not only have the same homology, but we also have
the following invariant groups.

THEOREM A. If M and N are orientable and Dehn equivalent,
then τr1M/(τr1ikί)3 and π1Nj{πJN\ are isomorphic, where (ττ1ikf)3 and
(πxN\ are the third lower central subgroups.

It follows from Theorem A that manifolds with the same ho-
mology need not be Dehn equivalent, e.g., S1 x S1 x S1 and the
connected sum (S1 x S 2 ) * ^ 1 x S 2 ) * ^ 1 x S2).

The notion of Dehn equivalence can be stabilized as follows. Let
M\ N' be 3-manifolds. Attach finitely many 1-handles [thickend 1-
cells] to dW and dN' to obtain 3-manifolds M and N. We say say
that Mr and Nf are stably Dehn equivalent if there exist such
manifolds M and N which are Dehn equivalent. This is an equiva-
lence relation. Recall that a homotopy 3-disc is a compact, simply
connected 3-manifold whose boundary is homeomorphic with S2. Our
main result is the following.

THEOREM B. Every homotopy 3-disc is stably Dehn equivalent
with D\

It follows from Theorem B that every homotopy 3-sphere [i.e.,
simply connected, closed 3-manifold] is a connected sum factor of a
manifold which is Dehn equivalent with S3.

Theorem B is a reduction of the Poincare conjecture, i.e., the
Poincare conjecture can be proved by showing that Dz is the only
homotopy 3-disc which is stably Dehn equivalent with D*.
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One can construct 3-manifolds as follows, (i) successively perform
Dehn constructions on a solid torus Tg of genus g ^ 0 a finite num-
ber, k ^ 1, of times to produce a manifold T'gf and (ii) remove 1-
handles, g in number, from T'g to produce a manifold M. Accord-
ing to Theorem B, if the Poincare conjecture is false, then a coun-
terexample M, i.e., a homotopy 3-disc different from D3, can be
produced by this construction, which we call the SuD-construction.

Attempting to construct a nontrivial homotopy 3-disc by the
SD-construction in the case g = 0, k — 1 [or in the case g = 1, k = 1]
is the same as trying to produce a nontrivial homotopy 3-sphere by
doing a single Dehn construction on S3. The conjecture in knot
theory that all knots have property P is the conjecture that a single
nontrivial Dehn construction on S3 never produces a simply connected
manifold. [See § 2 for the concept of a trivial Dehn construction.]
This conjecture has been studied by several authors, see (1), (2), (4),
(6), (7) for example, and implies that two knots in S3 with homeo-
morphic exteriors have the same type. [An exterior is the comple-
ment of a open tubular or regular neighborhood.]

We consider the case g = 0, k = 2 of the SD-construction. Let
L = (ii, l2) be a link in S3 with two components. Successively perform
Dehn constructions along lx and l2 to obtain a manifold M. If either
Dehn construction is trivial, then up to diffeomorphism, M can be
produced by a single Dehn construction on S3, so assume both Dehn
constructions to be nontrivial. If lλ and l2 have linking number zero
and lλ U l2 is the boundary of an embedded copy of S1 x I in S3,
then again M can be produced by a single Dehn construction, so we
eliminate this case as well and call the remaining case the nontrivial
case. The obvious conjecture is that M is never simply connected
in the nontrivial case. A counterexample to this conjecture is given
as Example 3 of § 4.

The counterexample above has the following significance in the
theory of links. It is well known that if a link in S3 has an unknotted
component, then the exterior of the link may be homeomorphic with
the exterior of a link of different type [see Example 1 of § 4]. Let
Tl9 T2 be closed tubular neighborhoods of two components, say Zx and
l2, of a link with no unknotted components. If there exists an
embedding

OS1 x I.S'x 0, S1 x 1) > (S3\int (2\ U T2\ dTlf dT2) ,

then again the exterior of L may be homeomorphic with the exterior
of a link of different type [see Example 2 of § 4]. However, in this
case one of the nontrivial knots ll912 must be a cable about the
other, and consequently one of llf l2 is a companion of the other.
Example 3 of § 4 proves the following.
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THEOREM C. There exists a [tame] link in S3 such that (i) the
exterior is homeomorphic with the exterior of another link of dif-
ferent type, and (ii) no component is a companion of another com-
ponent.

The next four sections deal respectively with the definition of
Dehn equivalence and the proofs of Theorems A, C, and B, together
with related results. It is possible to obtain the same homology
sphere from S3 by Dehn constructions along different knots. In the
final section we give an infinite class of such knots and verify that
most of the homology spheres involved are not simply connected,
which generalizes a result of (2) and (4).

In the following we work in the category of smooth manifolds
and maps since this is convenient for the transversality argument
in § 5. Everything we do has a PL analog however.

2* Dehn's construction* Let M be a 3-manifold and let * be
an element of S1. Let /: S1 x D2 —> int M = M\dM be an embedding
such that fiS1 x *) is null-homologous in M\int fiS1 x D2). Let
h: S1 x dD2->f{Sι x dD2) be a diffeomorphism such that h^S1 x *) =
/(S 1 x *). Glue S1 x D2 to ikfyint/XS1 x D2) by h. The resulting
manifold Mx has been obtained from M by Dehn's construction along
/(S 1 x 0). The construction is trivial if either /(S 1 x 0) bounds an
embedded disc in M or h(* x dD2) is null-homotopic in /(S 1 x D2).
A trivial Dehn construction does not change the diίEeomorphism class
of M. If MOf M19 , Mn, n Ξ> 0 are such that Mi+ί is obtained from
Mi by Dehn's construction, then we say that any two manifolds
diffeomorphic with Mo and Mn respectively are Dehn equivalent.
This is an equivalence relation. It is easily proved that there is a
commutative square as follows.

3* Proof of Theorem A and related results. Let M, Mί9 /, h
be as in § 2 and assume M to be orientable. Let F be a compact
surface in M\int/(S1 x D2) with dF = /(S 1 x *). Let P be a closed
ε-neighborhood of FUfiS'xD2) in M. Then P^FxI after
smoothing, and πβP has generators aif bi9 a'uVu 1 ̂  i ^ Q and the
defining relation
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where g is the genus of F. [We use the definition [x, y] = xyx~xy~\\
The Dehn construction producing Mι from M is simultaneously a
Dehn construction producing a manifold Px from P. Presentations
of πJP and πj?γ can be obtained from the presentation of πβP by-
adding the relations (i) at = a'u bt = 6 , and (ii) dnaid~~'n' = a'ίf dnbtdrn = δί
respectively, where d denotes [aί9 6J [c^, &ff] and the integer n is,
up to sign, the intersection number of / ( * x S1) and h(* x S1) in
/ ( S 1 x 3D2). Given any group G we denote G/Gβ+1, c ^ O b y V£G).
We have a commutative diagram

in which the slanted arrows are inclusion induced. Note that Vc is
a functor. The image of this functor is the group variety Vc of
groups with nil-c. The image of a push out diagram under the
functor Vc is a push out diagram in the category Vc. The Seifert-
VanKampen theorem applied to M = PU (Λf\int P), M1 = Pι U (Λf\int P)
describes ^Λf and ^ikfi as push outs. By the commutative triangle
above these push out diagrams become isomorphic after the functor
V2 is applied. Thus VJjtJd) = VJjtJdύ and Theorem A is proved.

It follows from this proof that the diagram of § 2 also commutes
when H* is replaced by V2π19

We show that Vz(πtM) is not necessarily invariant under Dehn
equivalence by giving an example. Let P, P1 be as in the proof
above, but choose P, Px so that g, n = 1. Let N be the double of
P, and glue dP to dP1 by the identity map to obtain Nt = P\J Pιm

Then N and N± are Dehn equivalent, but Vz(πjsί) is nilpotent of
class three while V^πJSί^ is nilpotent of class two.

If F, as in the proof of Theorem A, is chosen to have the
smallest possible genus g, then we say that the Dehn construction
has genus g. Let E be the group variety defined by the Engel law
[x, x, y] = 1. [We define [x, y, z] to be [x, [y, z]].] The proof of
Theorem A with slight modification proves the following.

THEOREM 1. If N is obtained from M by a Dehn construction
of genus onet then E(πJΛ) = E{πxN).

The groups in E have the following structure.

THEOREM 2. Let S be a set which generates a group G. Then
E(G) is isomorphic with V3(G) modulo the relations [a, 6, c][6, α, c] = l,
a,b,ce S. Also E{G) is an extension of an abelian group of period
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3, namely E(G)3, by V2(G).

The proof of Theorem 2 has much in common with the proof of
the structure theorem for Burnside groups of period three (5, pp.
320-324), so we omit the proof.

It follows from Theorem 2 that if G has a given finite presenta-
tion, then E{G) has a solvable word problem.

The group E(πtM) is not necessarily invariant under Dehn equiva-
lence. This is shown by manifolds N, Nx constructed as above, but
in the case g ^ 2, n = 1 rather than the case g, n — 1.

4* Proof of Theorem C* Let M, Mlf f, h be as in § 2. Orient
S1 x 3D2 and /(S 1 x 3D2) as the boundaries of S1 x D2 and /(S 1 x D2)
respectively. Assume that M is oriented and that /, h are orienta-
tion preserving. Then M1 has a canonical orientation, and we say
that the Dehn construction has type (£, n) where I is the unoriented
curve /(S 1 x 0) and n is the intersection number of /(* x 3D2) with
hi* x SD2) in f(Sι x 3D2). [Thus if n = 1, the oriented curves
hi* x 3D2) and f{Sι x 0) are isotopic in /(S 1 x D2).] Up to orienta-
tion preserving diffeomorphism M1 is determined by n and the isotopy
class of I in M.

Let 1£ be the link of Figure 1. Let kx be the small unknotted
component, let k2 be the component which is a figure eight knot,
and let k3 be the remaining unknotted component. The example
which proves Theorem C will be constructed in three steps each of
which is an example.

FIGURE 1 FIGURE 2 FIGURE 3

EXAMPLE 1. A Dehn construction of type (kίf 1) on S3 has genus
zero and changes K into a link K' whose components k'2 and k'z are
parallel figure eight knots. Thus K and Kr have different types
and diffeomorphic exteriors. Note that the Dehn construction (fcw 1)
has genus 1 when considered tohbe a Dehn construction on the
exterior of k39 and it changes this exterior into the exterior of k[.

EXAMPLE 2. Let n Φ 0 be an integer. Do Dehn constructions
of types (k'2, n) and (fcj, —n) simultaneously to change Kf into a link
iΓ". [These two constructions can also be performed successively,
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but it is conceptually and notationally convenient to perform such
constructions simultaneously.] The components k" and k" are figure
eight knots while k" has Alexander polynomial nt2 + (1 — 2n)t + n.
Thus K, K', K" are of different types, but their exteriors are dif-
feomorphic. [Note that if we tie a small knot in k[ before doing
the construction of K", then we obtain links with different types,
no unknotted components, and diffeomorphic exteriors.]

EXAMPLE 3. A Dehn construction of type (k3, —n) changes K
into a link with components llf l2, l3. Delete l3 to obtain L. The
components of L have polynomials nt2 + (1 — 2n)t + n and £2 — 3fc + 1
respectively. If n Φ — 1, then neither polynomial divides the other,
so neither component of L is a companion knot of the other com-
ponent. Delete k" from K" to obtain U whose components have
polynomials nt2 + (1 — 2n)t + n and t2 — 3£ + 1 respectively. Neither
component of U is a companion of the other if n Φ — 1. By the
construction of L and U we can transform L into U by successively
doing Dehn constructions of types (ϊ3, n) and (klf 1) followed by
simultaneously doing the constructions (k2, n) and {k[, —n). The
Dehn constructions (i3, n) and (k[, —n) cancell each other out, so the
simultaneous constructions (ϊw 1) and (Z2, n) transform L into U.
Consequently L and U have diffeomorphic exteriors. It remains to
show that L and U are of different types. This is not easy [even
though llf l2, l[, 1'2 all seem to have different types], so we give a
proof only in the case n = 1. In the case n = 1 the components of
L are a trefoil knot and the knot of Figure 2 while l[, V2 are re-
spectively the knot of Figure 3 and a figure eight knot. We can
distinguish l± from l[ as follows. Let Giy i — 0, 1 be the knot groups
of l19 l[ respectively. Let m< e Gt be a meridian element. Let Hi be
Gi modulo the relation m\ = 1. Note that Hi does not depend on
the choice of mt. Let Nt be the kernel of the canonical epimorphism
Hi—>Z2. Let Ai be the abelianization of the commutator subgroup
of Nt. Present At by the Reidemeister-Schreier algorithm to show
that AQ is trivial while Ax = Z8(& Z8. Thus llf l[ have different types
and Theorem C is proved.

5. Proof of Theorem B* We prove the following Theorem 3
which clearly implies Theorem B.

THEOREM 3. Let M be a compact, connected, and ovientable 3-
manifold. If dM is connected and π^M, dM) is trivial, then M is
stably Dehn equivalent with Ds. The stable equivalence can be taken
to only use Dehn constructions of genus one.
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Theorem 2 is proved by using link homotopy in a relative case.
A relative link is an embedding (U, dU)—>(M, dM) where U is a
finite disjoint union of closed intervals. A link homotopy is a homo-
topy H:(U, dU) x I—*(M, dM) between relative links such that
distinct components of U do not intersect each other during the
homotopy, but self-inter sections of components are allowed. By
transversality theory we can approximate H by a link homotopy Hr

such that (i) h'o — h0, h[ — hlf (ii) each h[ is an immersion [meeting
dM transversely] with at most one self-intersection, and (iii) the
induced map

(Ux U\δU) x / >M x M

is transverse to the diagonal dM. In the following we will only use
link homotopies with the properties (ii) and (iii), and we assume M
to be as in Theorem 3. Let H be a link homotopy. We claim that
the exteriors of hQ and hi are Dehn equivalent. Note that ht has a
self-intersection for only finitely many values of t. The exterior of
the link just before a self-intersection can be changed into the ex-
terior just after the self-intersection by a Dehn construction of
genus one which is simultaneously a Dehn construction of genus
zero on M. [The situation is essentially that of the Dehn construc-
tion of Example 1 of § 4 which changes the exterior of k3 into the
exterior of k[.\ The claim is proved. Now we claim that any rela-
tive link in M is link homotopic with an isotopy trivial relative link.
[A relative link is isotopy trivial if (i) the components lie in disjoint
open sets each of which is diffeomorphic with R2 x [0, oo), and (ii)
in each copy of JK2 X [0, oo) the link component is given by x = 0,
y2 + z2 = 1, z ^ 0.] In order to prove the claim by induction we
temporarily drop the assumption that M be compact. Clearly the
claim is true if U is connected. Assume the claim to be true when
U has n ^ 1 components and consider the case n + 1. We can link
homotop one component so that it becomes isotopy trivial. Extend
this link homotopy to become a link homotopy of the entire link.
Remove the isotopy trivial component from M to produce a mani-
fold, say Λf\Zi By inductive hypothesis we can link homotop the
remaining components in Λf\Zi to become an isotopy trivial link.
The entire link is now isotopy trivial in M and the claim follows.
The two claims prove Theorem 2 as follows. The compact manifold
M has some handlebody decomposition

M~ Γ . U ^ U ••• \Jht , O^t^g , 0 ^ 0

where Tg us a solid torus of genus g and the h/s are disjoint 2-
handles, i.e., disjoint thickened 2-cells attached to dTg. [Sometimes
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2-handles on a 3-manifold are called pillboxes.] The union hγ U U ht

is a closed tubular neighborhood of a relative link. This relative link
can be link homotoped to become isotopy trivial. Hence M\int Γ,
where T is a closed tubular neighborhood of an isotopy trivial link
with t components, is Dehn equivalent with Tg. Since M can be
obtained from M\int T by removing 1-handles, the theorem is proved.

6* T h e manifolds B(p, q, r)* Many examples of diίfeomorphic
manifolds obtained by Dehn constructions along different knots can
be given as follows. Select an order llf l2, l3 for the components of
a Borromean link. Let B(p, q, r), p, q, r any integers, be the mani-
fold obtained from S 3 by simultaneously doing Dehn constructions
of type (llf p), (72, q), and (Z3, r) . Diffeomorphisms of S3 which map
the Borromean link onto itself induce orientation preserving diffeo-
morphisms

,*v B(π(p), π(q), π(r)) ^ B{p, q, r)

B{-p, -q, -r) ^ -B(p, q, r)

where π is a permutation of p, q, r and —B(p, qy r) is B(pf q, r) with
reversed orientation. We can obtain B(p, q, r) by first doing the
(llf p) and (Z2, q) constructions to change i3 into a knot k(p, q) in S 3

and then doing the Dehn construction of type (k(p, q), r ) . By (*) the
Dehn constructions (k(p, q), r), (k(q, r), p) and (k(r, p), q) all produce
the same manifold from <S3. The knots k(p, q), k(q, r), k(r, p) are
different in general since k(p, q) has Alexander polynomial pqt2 +
(1 - 2pq)t + pq.

The question of whether any of the B(p, q, r)'s with p, q, r Φ 0
are simply connected naturally arises. The following theorem is a
partial answer.

THEOREM 4. The group πγB(p, q, r), p, q, r Φ 0 is nontrivial if
none of the absolute values \p\9 \q\, \r\ is 2 or 3.

Proof. The knot fc(l, q), q Φ 0 has property P according to (2)
and (4). The theorem follows if any of |j>|, \q\, \r\ is 1. The re-
maining case is \p\, \q\, \r\ > 3, and we can assume r > 0. Present
π,B(p, q, r) as

<α, 6, c; a[b-\ c]p, b[c'\ a\q, c[a~\ b]r) .

Consider the group

G = (a, b, c; a = [6"1, c], c = [a~\ b]) .

After the substitutions b — a~ιd~x and a — e^d we obtain
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G = <d, e; dz = e*) .

Add the relation d3 = 1 to G to obtain a group in which the rela-
tions of πλB(p, q, r) become (dβ"1)3p+1, (dβ)3g+1, and [d, e]r+\ Thus
7utB(p9 q, r) has the group

as a quotient. By Theorem 1 of [3] this group is nontrivial when
\p\t \Q\t r > 3, so we are done.

Finally it may be noted that the J5(l, 1, r)?s with r Φ 0 are the
irreducible homology 3-spheres constructed by Dehn. It might be
asked if all of the B(p9 q, r)'s are irreducible.
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