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Suppose φ: L ® L —> Z is the equivariant intersection form
of a highly-connected manifold admitting a Zp-action, p an odd
prime, so in particular L is an integral representation of Zp.
We first derive conditions on L. Then we show that if ψ is
any even unimodular form on an L satisfying these conditions,
there is a highly-connected manifold M admitting a piecewise-
linear Zp-action having a form Witt-equivalent to φ as its
intersection form. We also prove the analogous statement
for torsion linking forms of odd-dimensional manifolds.
Finally, we consider the smoothing question for the actions
we construct.

This paper may be considered a sequel to [9], although our
emphasis here has shifted somewhat. (We are now more concerned
with the forms we realize than with the manifolds we realize them
with.) Let us recall one of the principal results of [9].

THEOREM. Let φ: Zm ® Zm —> Z be any even, symmetric, unimo-
dular bilinear form. Let Zn denote the cyclic group of order n.

Then for any integer n and any k ^ 2 there exists a semi-free
Zn-action on a (2k — lyconnected Ak-manifold M, with isolated fixed
points, having Zn act trivially on homology, and with ψ the inter-
section form on M.

This theorem may be regarded as a realization theorem for
equivariant intersection forms, where the representation of Zn on
H2k(M) is the trivial one. We are then led to consider the question
of representing arbitrary intersection forms. That is, suppose L is
an integral ^-representation space and φ: L (x) L —> Z is a Z^-equi-
variant, even, symmetric, unimodular bilinear form. We ask when
does there exist a highly-connected 4/b-manifold M admitting a in-
action with φ the intersection form on H2k(M) and H2k(M) = L as
a Z%-space.

Also, suppose that φ: L (x) L —> Q/Z is a Zn-equivariant bilinear
form on a torsion module L. We ask when can φ arise as the torsion
linking form on the highly-connected boundary of a highly-connected
4&-manifold with a Z^-action.

Integral representations are rather difficult to study. In fact,
if n is divisible by the cube of a prime, there are infinitely many
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distinct indecomposable integral ^-representations (see [5, II]). Thus,
in order to enable us to solve the algebraic problems involved, we
shall restrict our attention to Zp-actions, where p is an odd prime.
(In a future paper, we hope to present examples of actions of arbitrary
cyclic groups.) In this case, we know (see [4, §74]) that any integral
representation L of Zp can be written as a direct sum of indecom-
posable (although not irreducible) representations

where m, n, and q are multiplicites and T, A, R, and E are as follows:

T = the trivial representation

A — the representation given by the action of ξ on

Z[ξ], where ξ = exp (2πi/p) (of rank p — 1)

R — the regular representation

E = a representation arising from a nonprincipal ideal

I in Z[ξ\, there being two possibilities for each

such ideal I, one being I itself and the other

being R ®A I (so for p < 23, E cannot occur) .

(We shall use the notation in (*) throughout.)
We first observe

THEOREM 1.6. If φ: L (x) L -+ Z is the equivariant intersection
form of a (2k — T)-connected 4k-manifold with boundary admitting
a Zv-actionf then E does not appear. If the manifold is closed, n
is even. Also, if φ is an even form, m = q mod 2.

The first part of this theorem follows from a result of Swan,
while the second part is due to Conner. The third part follows
trivially as an even form must have even rank. The reader may
conjecture, however, that, in fact, m and q must both be even, but
this conjecture is false, and we present counterexamples below (see
1.7).

We also observe

COROLLARY 1.3. Let φ: L®L-*Z be a Zr

p-equivariant, symmetric,
bilinear (not necessarily unimodular) form, where L = nA, for some
n. Then φ is an even form.

Our main result are realization theorems. We show that any
candidate for an intersection form can be realized, at least stably.
To be precise,
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THEOREM 2.4. Let cp:L®L—*Z be as in the conclusion to
Theorem 1.6 for a closed manifold.

Then, for any k ^ 2, there is a (2k — l)-connected Ak-manifold
M admitting a semi-free Zp-action with fixed-point set F a union
of isolated points and with the equivariant intersection form on M
isomorphic to φ($rε for r sufficiently large, where ε is a hyper-
bolic plane (i.e., the form L QJ with trivial Zp-action).

In order to state our result for the bounded case, we must first
make a definition.

DEFINITION. Let φ\ L®L—>Z be a bilinear form on the Z-ΐree
Z^-module L with det (φ) Φ 0.

Let L' be the dual lattice to L in

L®Q, i.e., V = {i'eL®Q|?>(!', l)sZ VieL}

where φ extends to L (x) Q as φ (x) 1. (The condition det (φ) Φ 0 is
equivalent to the condition that φ (x) 1 be nonsingular.)

Then φ:L(g)L~+ Q/Z defined by L = Lf\L, φ(ll9 l2) = φ(lu l2) mod Z
is the geometric boundary of φ, denoted d(φ).

In the case that φ is the intersection form on a highly-connected
manifold with boundary, then d(φ) is the linking form on its boundary.

THEOREM 3.2. Let φ: L® L-+Q/Z be a Zp-equivariant ε-sym-
metric bilinear form, such that φ — d(φ) for some φ satisfying the
conclusion to Theorem 1.6. Then there is a (k — l)-connected 2k-
manifold M with (k — 2)-connected boundary such that the linking
form on dM is Witt-equivalent to φ. (k is even if φ is symmetric
and odd if φ is skew-symmetric).

Returning to the closed case, from Smith theory, we know that
F must consist of exactly 2 + m — n + 2r fixed points. We can also
give some conditions under which φ can be realized exactly. (Indeed,
we must confess that the need to stabilize may be merely an artifact
of our construction.)

Let us remark on one difference between the situation here and
that in [9]. That is, in the case where Zv acts trivially on homology
there is a basis of H2k(M) consisting of invariant spheres. However,
when n > 0 (regardless of q), the subspace of invariant vectors of
H2k(M) no longer has a basis of invariant spheres. Essentially, this
phenomenon arises as an invariant sphere must contain a pair of
fixed points, and its homology class is partially determined by the
fixed points it contains. If n = 0, the number of fixed points exceeds
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the dimension of fixed vectors by 2, but from the formula above,
if n > 0, this is no longer true, so when we try to find a basis, we
find there are not enough fixed points to go around.

Now we turn our attention to skew-symmetric forms φ, i.e., to
the case of actions on (4k + 2)-manifolds. In the case where Zp acts
trivially on homology there is little to say, as from Smith theory
there can never be an action with isolated fixed points (and even a
free action can only occur on a manifold with the cohomology ring
of S2k+1 x S2k+1), and even neglecting the question of a fixed-point set
any form φ must be trivial and so can be realized by an obvious
action on S2k+1 x S2k+1 # # S2k+1 x S2k+ί, taking the equivariant
connected sum along the (positive-dimensional) fixed-point set. Once
we allow Zv to act nontrivially, however, we get an interesting
situation, as then φ need not be trivial. Here our result is somewhat
weaker than in the symmetric case, as we must resort to a more
violent form of stabilization. (In the skew-symmetric case E still
cannot appear, but n need not be even, while q must be.) We have

THEOREM 2.7. Let φ:L§ζ)L~+Z be a skew-symmetric unimodular
bilinear form, where L = nA φ qR (so that the trivial representation
does not appear).

Then, for any k ^ 1, there is a 2k-connected (4k + 2)-manifold
M admitting a semi-free Zp-action with fixed-point set F a union
of isolated points and with the equivariant intersection form on M
isomorphic to φ.

Here Smith theory dictates that there must be 2 + n fixed points.
This result is the analogue of the result in the symmetric case

as any unimodular skew-symmetric form φ is Witt equivalent to a
form in which the trivial representation does not appear. (Witt
equivalence is the equivalence relation obtained by taking the Gro-
thendieck ring of forms, i.e., it is the algebraic relation engendered
by the topological relation of cobordism splitting all short exact
sequences.) In fact, up to Witt equivalence we can eliminate the
copies of the regular action, but that drastic a step we need not take.

Our constructions of actions are done with an eye toward closed
manifolds, but actually proceed by first constructing manifolds-with-
boundary, and then filling in the boundary. Thus the results on
actions on manifolds-with-boundary, which we derive in §3, fall out
with little extra work (all of it spent in identifying forms). However,
if one just needed the results in the bounded case the construction
could be considerably simplified, as much care is taken to insure the
actions constructed can be extended to closed manifolds when necessary
(but it does not seem worthwhile to give a separate proof).
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All of the actions we construct are smooth except possibly at
one fixed point. We can apply the G-Signature theorem to decide
when these actions are (locally) smooth. In this regard, the situation
when Zv acts nontrivially on homology differs markedly from the
case where Zp acts trivially. Recall that in the latter case we showed
(in [9]) that if the manifold M has nonzero index, in order for the
action to be smooth the dimension of M must be divisible by 2p — 2
and in the normal representation to the fixed-point set (which is the
same at each fixed point) each eigenvalue of Zp must appear with
the same multiplicity. Once we allow the inaction on H*(M) to be
nontrivial, however, we may obtain (locally) smooth actions in any
dimension, with a different normal representation. Examples of these
are given in §4.

The author would like to thank Pierre Conner for numerous
helpful conversations.

1* Algebraic preliminaries* In this section we determine the
explicit form of equivariant bilinear forms, which we shall need in
order to construct manifolds in §2. We also prove Theorem 1.6,
which eliminates many candidates for intersection forms. Also, for
the convenience of the reader we explicitly give conditions on the
entries of intersection matrices in order that they be equivariant.

LEMMA 1.1. Suppose φ is a Zp-equivariant symmetric bilinear
form on the integral representation space R. Let H = (hί}j) be the
matrix of φ with respect to a basis x, tx, . Then for j ^ i, hifj =
hij_i+1. Also, for i = 2, •••,#, h1Λ = hlfP+2_i.

Proof. By equivariance, hlti = ftMfl = . - = h1+p__i>p = h2+p_iΛ =

"Ί,p+2—i

LEMMA 1.2. Suppose φ is a Zp-equivariant symmetric bilinear
form on the integral representation space A. Let H — (hiyj) be the
matrix of φ with respect to a basis x, tx, . Then, for j Ξ> i, huj =
fe1,i-i+1. Also, for i = 3, , p - 1, hui = hup+^.

Furthermore, hltl + 2Σ[lγ)/2hui = 0.

Proof. If A has a basis x19 , χp_19 φ(χif xά) = htJ. The action
of Zp is g i v e n b y

a?i —> x2, x2 > a?3, , a?p_2 > xp_u V i > ~(^ + »2 + + xp^) .

That httί- = huj__ί+1 is clear as above.
Now consider
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= - 2 2 r & 1 ) / V ( ^ i , a?,) -
9V(J>-1)/2Z, 7,

— — Δ£i=2 riui — n1Λ —

yielding the desired relation.
As for the first part of the lemma, let us first prove h1>{p+1)/9i —

"Ί,(p+3)/2

= - ί ί ί ' X ^ p - n ^ a?,) -

and in light of the relation just proved, we must have hlΛp+1)/2 =
ΛΊ,<P+3>/2 The remaining cases are proved by downward induction on
i, by essentially the same argument.

COROLLARY 1.3. Let <p: L(x)L—>Z be a Zp-equivarίant, symmetric,
bilinear form, where L is isomorphic to nA, for some value of n.

Then φ is an even form.

COROLLARY 1.4. Let φ: A(x) A—*Z be a Zp-equivariant, sym-
metric bilinear form. Then p\det(φ).

Proof. If H = (hitj) is the matrix of ψ, the relation in Lemma
1.2 imply that if we multiply the vector (1, 2, , p — 1) by H the
result is 0 mod p.

We now turn to the determination of the off-diagonal blocks of
a matrix H for a form <p: L® L—+Z.

First note that T and A are orthogonal, as they can be written
as a sum of distinct irreducibles over the rationals, so a block cor-
responding to such a pair must be zero, while if t generates T and
#i> f %P generate R, φ{t, xj = = φ(t, xp).

As for the remaining cases, they are most conveniently summa-
rized as follows:

LEMMA 1.5. Let L = 2A©2R and let φ:L®L-+Z be a sym-
metric bilinear form with matrix H (with respect to the obvious
basis)
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H * * * c

* * * /

(so that A is (p — 1) x (p - 1), B is (p — 1) x p, and C is p x

(a) If A — (dij), ai+k,j+k = αifJ as i(m# as i + & 5̂  p — 1, j + k^
p — 1, and /or fc = 3, , p — 1, a1)fc — ap+2_fe>1. Furthermore, a2Λ +

(b) If B = (bitί), bi+k,j+k = &,fί as ionflf as i + fc ̂  p - 1 , i + k ^ p ,

for k = 3, •••,?>, &!,& = 6P+2-*,i Furthermore, Σ L i &i,* = 0.

(b) If C — (c<,i), cί+kJ+k — c^j for all i, j , k, with the subscripts
interpreted mod p.

Proof. Routine.
Note that each of the rίiatrices A, JS, and C is determined by its

first row. The conditions given in 1.1, 1.2, and 1.5 turn out to be
sufficient as well as necessary, i.e., any matrix satisfying them can
occur as the matrix of a form, although not necessarily of a uni-
modular one.

THEOREM 1.6. // the even form φ: L®L—>Z is the equivariant
form of a (2k — l)-connected Ak-manifold M with boundary with a
Zp-actionf and L is written as a sum of indecomposables, L = m Γ 0
nA 0 qR 0 E, then E does not appear. If M is closed, n must be
even. Also, if φ is even, m Ξ= q mod 2.

Proof. The last assertion is trivial as a unimodular even form
must have even rank.

For the first assertion, recall the following result of Swan:
Let π be a finite group and let G(Zπ) be the Grothendieck group

of finitely-generated Zπ modules, and similarly for Qπ. Let o be a
maximal order of Qπ, and C0(o) its reduced protective class group.
(If π is Zp, o is Z[exp (2πi/p)].) Then, [7, Corollary 13.2], for π cyclic

G{Zπ) - G(Qπ) x C0(o) .

Now, suppose Zp is acting simplicially on M. Then the equivariant
simplicial chain complex C of M is generated by simplices which Zp

either fixes or permutes freely. Hence the image of C in G(Zπ) pro-
jects to zero in C0(o). But this image is exactly the same as the image
of the chain complex H which is the homology of If (i.e., i ϊhas zero
differential and in dimension i it is Ht(M)). But in our case this
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image is just [H0(M)] + [Hzk{M)\ + [Hik(M)] = 2[T] + [H2k(M)]. Since
this class projects to 0 in C0(o), so must H2k(M). But if H2k(M) =
m T φ ^ i φ g i J φ J ? , this projection is zero iff E does not appear.

Now let us assume M is closed, so that φ is unimodular.
To show n is even, let r denote the action of a generator of Zp.

We have the operators Σ = / + τ + + τp~ι and Δ = (1 — τ) on L,
with J o J = 2vf = 0 (in fact, with (ker Σ)1 = ker J and (ker Δ)1 =
ker I7), and ^(v, J?w) = 9>(2to, w), 9?(v, Δw) = — ̂ (Jt;, w).

We will define a nonsingular Zp-valued skew-symmetric bilinear
form on ker (20/Im (^) But rankZj) ker (Σ)IIm (z/) = w, the number
of copies of A, so n must be even.

For x, y e ker (I7), choose z with zfe = py (which can always be
done as Im (Δ) Z) p ker (Σ)) and set /5(α;, y) = 9?(a?, 2).

Then /3(a;, j/) = iβ(α;, /̂) mod p is our desired form.
1. β is independent of the choice of z. For suppose Δz — 0,

i.e., z is fixed under τ . Then J2 = pz so pφ{x, z) =<p(x, pz) = φ(x, Σz) =
φ(Σx, z) — 0 as x e ker (Σ).

2. Im (Δ) c Radical(/S) so we may pass to the quotient. For
suppose y e Im (Δ). Then 3z with Δz = ?/, so z/p£ = j>y and 8̂(a?, y) =
9?(a?, pi) Ξ 0 mod p.

3. Radical (β) c Im (J) so β is nonsingular. For suppose x e
Radical (β), so that β(x, y) = 0. Then /2(#, y) is always divisible by
p, β{x, y) = pψ(y) As ker (I') is a direct summand, 3w with ψ{y) =
β(-w, y).

Then

pψ(y) = pβ(-w, y) = β(-w, py) = β(-w, Δz) = ^(Ji^, «)

for some «, so /S(α? — Jw, z) = 0 for all 3 e p ker (I7), so /β(a? — Jw, «) = 0
for all z e ker (Σ) as /3 is integer-valued and p ker (J?) is of finite
index in ker (Σ). While, if z e ker (Δ), τz = jδ, so Σz = pa; and

p/3(a; - ί̂w, «) = β(x - Δw, Σz) = ^(^(a? - Jw), «) = 0

as x 6 ker (J?). Hence we must have x = Jw, so α? e Im (Δ).
4. /9 is skew-symmetric. It suffices to show β(x, x) = 0 Vx. Now

β(x, x) = 9>(a?, ίδ) where J2 = pa;, so

pβ{xy x) = φ(px, z) = 9>(J«, «) = 9>(«, -Δz) = ^(ij,

But >̂ is symmetric so β(xf x) = 0.

REMARK. A similar argument applied to L/ker(J)® ker(J?) shows
that the number of copies of the group-ring appearing must be even
in the case of a unimodular skew-symmetric form φ.

Now we present an example of an even, symmetric unimodular
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form on L = mT®qR with m and q both odd.

PROPOSITION 1.6. Let H = (hiti) be the (2p — 2) x (2p — 2) matrix
with entries given by

(a) hiti = 1 if i Φ j , 1 ^ p + 1, j ^ p + 1,
(b) Λ<fi = l < / | i - i | = 1,
(c) Λif< = 0, i = 1, •••, p,
(d) &<tl = 2,i = p + 1, . . , 2 p - 2 .
Then H is equivariant with respect to the representation R 0

(p — 2)Γ (with the obvious basis) αwd det (iϊ) = 1.

Proof. Equivariance is clear from 1.1 and the remarks preceding
1.5.

To prove det (if) = 1, let Hs be the s x s matrix in the upper
left-hand corner of H (i.e., Hs = (hitί), i = l, , s, j — 1, , s). First
we claim det (Hp) = p — 1. To show this, add each of the first (p — 1)
rows to the last row, so that all of the entries in the last row become
equal to p — 1, and then subtract l/(p — 1) times the last row from
each of the first (p — 1) rows, so that all of the entries in each become
zero, except for the diagonal entires which all become — 1. Then
det (Hp) = (-iy~\p - 1) = (p - 1).

Now we claim det (Hp+ι) = p — 2. To show this, subtract lftp — 1)
times the sum of the first p rows from the last row, obtaining a
row which is all zero except for the last entry, which is now
2 - p/(p - l) = (p - 2)/(p - 1). Then

det (Hp+1) = (p - 2)/(p - l) det (HP) = p - 2 .

For 8 > p + 1, Hs is obtained from if^ by adjoining a row and
column all of whose entries are zero, except for hs_us = h,,^ = 1
and (possibly) hS}S. Expanding by minors of the last row yields the
formula

(**) det (Hβ) = hs,s det (H^) - det (Hs_2) .

Here, hSyS = 2 for s > p + 1. Then applying the above formula
shows inductively that det (Hs) = (p — 2) — (s — (p + 1)) = 2p - 1 — s
so det (jff) = det (#23,_2) = 1.

We now compute the determinants of matrices which we will
use in §2.

LEMMA 1.8. Let H8 — (hitί) be the s x s matrix given by
(a) hitj = l,iΦ j ,
(b) Λlf< = O,i = l , . . . , [ ( 8 + l)/2] ,
(c) hiΛ = 2, i = [(8 + l)/2] + 1, . . . , 8 .
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Then detCff.) = (-l) s / 2 for s even, and det (Hs) = 0 for s odd.

Proof. Subtract the first row from each of the other rows.
Each of these rows then has a 1 in the first column, and all other
entries 0 except that on the diagonal, which is —1 for the second
through the [(s + l)/2]-nd row and 1 for the rest. Then the second
through [(s + l)/2]-nd rows to the first row and subtract the remaining
rows from the first row. All the entries in the first row are now
zero, except for the first, which is 0 if s is odd and — 1 if s is even.
Then det(£Γs) = 0 for s odd and (-l) s / 2 for s even (as the first s/2
rows have a —1 on the diagonal and the last s/2 rows a + 1).

Now we turn to the skew-symmetric case. First we observe
that E also cannot appear here—the proof of 1.6 holds unchanged
in this case. On the other hand, n need not be even, and we will
present an example of a unimodular skew-symmetric form on A
shortly.

First, however, let us determine the form of an equivariant
skew-symmetric bilinear form, i.e., the analogues to 1.1, 1.2, and 1.5.

LEMMA 1.9. Suppose φ is a Zp-invariant skew-symmetric bilinear
form on the integral representation space with matrix H = (hitί).
Then hiΛ — 0 and hit3- = —h3)i. Furthermore,

(a) if L = R, hιΛ = --hίtP+i^i9 2 ̂  i ^ p
(b) if L — A, h1Λ = — hltP+2-if 3 ̂  i <; p — 1.

Proof. Routine.

LEMMA 1.10. Let L = 2A 0 2R and let φ\L®L—>Zbea skew-
symmetric bilinear form with matrix H (with respect to the obvious
basis)

/* A * *

H- . . , c

*

(so that A is (p — 1) x (p — 1), B is (p — 1) x p and C is p x p).
Then A, B, and C are as in the conclusion of 1.5.

Proof. It is never necessary to change the order of the inner
products in proving 1.5 so the same computation that proves that
lemma in the symmetric case proves it in the skew-symmetric case.

Now for the promised example.
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PROPOSITION 1.11. Let H = (huύ) be the (p — 1) x (p - 1) matrix
with entries given by

(a) hitj = 1 if j = i + 1,
(b) hifJ = - 1 if j = ί - 1,
(c) Λ<fi = 0 i/ |ΐ - i | =£1.

TT̂ ew if is equivariant with respect to the representation A and
det (H) = 1.

Proof. That if is equivariant follows from 1.9. Unimodularity
is easy to check using (**).

2* Geometric constructions• In this section we construct mani-
folds with given equivariant intersection forms.

All of our constructions will be performed "upstairs" rather than
"downstairs," i.e., in the total space of the action rather than in the
quotient. However, this will cause no problem with equivariance,
as all modification will be done either on invariant (or perhaps fixed)
sets, or else will be done on a set which is acted upon freely and
is disjoint from all its translates, and then will be copied exactly
on these translates, so as to maintain in variance under the group
action.

The construction proceeds by assembling "building blocks." We
begin by showing how to obtain these blocks.

LEMMA 2.1. Let φ: A (x) A —»Z be an equivariant symmetric bi-
linear form.

Then, for any k ^ 1, there exists a (2k — l)-connected ^k-manifold
M with (2k — 2)-connected boundary, and a Zp-action on M, such
that φ is the equivariant intersection form of M.

The action may be chosen so as to be free, or to have fixed-point
set F = S2*-1 x D2r+1, q,r < k.

Proof. Let Mo = S2*'1 x D2k+1. If M is embedded in the obvious
way in Ck x Ck x R, let Zp act on Mo by

gifii, , z2*, x) = (exp (2πilp)zι, , exp (2πi/p)zk, x) .

Let Szk~x = So be embedded in Mo by a map x —»(x, *), where *
is a point moved freely by Zp. Let Slf Si9 be its translates under
Zp. They are then mutually disjoint, and [So] = = [S^-J e fl2fc_ι(JkΓ0)
is the generator.

Of course, So has trivial normal bundle in dM0, and so, choosing
a framing of this normal bundle v(S0), we may attach a 2&-handle Do
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with core SQ to 8M0. If we perform this attaching equivariantly, choos-
ing sufficiently small tubular neighborhoods to make all the handles
disjoint, and translating the framing chosen on v(S0) to obtain framings
on v(St), we obtain a new manifold with .H^-i = 0, H2k = Zp~\ and
in fact H2k = A as a Z^-representation lattice. Generators for H2k

are given by the embedded spheres Dt U S* x I U — Di+19 i — 0, ,
p — 2. This remains true if instead of attaching along So, •••, Sp_x

we attach the handles along spheres homotopic to So, •• ,SP_ 1, and
if the new spheres are isotopic, they will also have trivial normal
bundle. (Observe that the choice of framing does not affect the
resulting intersection form, as follows: Let S i = A U S i x l U - D i + 1 ,
i = 0, , p — 2. The framing only affects the self-intersections of
the Si9 which we calculate by making the S< transverse to themselves.
In doing this, isotopy the embedding of Si\Di9 and then that of
S<|( —A+i) to the translate of the new embedding of S J A Then
we see our isotopy has the effect that the self-intersections of one
of these disks will cancel those of the other, and so all the contribution
to the self-intersection number comes from St | S, x /, which is inde-
pendent of the framing.)

This is in fact what we shall do, choosing the spheres correctly
so as to obtain the desired intersection form.

Let φ have matrix H = (hifj). Recally from 1.2 that H is deter-
mined by hίtif hlti9 •••, hlΛp+1)/2 and the requirement of equivariance.

Suppose hlΛp+1)/2 = s. We may change the embedding of So in s
small disks, and then the embeddings of S19 , Sp^ by equivariance,
so that So will link each of S19 •••, S(3,+1)/2 exactly s times, with the
new So isotopic to the old. Now change the embedding of So in
h1(p-1)/2 — h1>{p+1)/2=s' small disks to link S19 , S{p_1)/2 s' times, changing
the embeddings of the embeddings of S19 •• ,SJ,_1 by equivariance,
and similarly for hlAp_B)/2 — hu{p_1)/2 down to hu2 — h1>3.

(One may visualize this as running tubes from So to link the
other spheres. We start with the longest tube. As this links with
all the intervening spheres, we correct for these extra linkings with
the next shortest tube, and so on till we finish with the tube linking
each sphere to the next.)

When the handles are added these linkings become intersections,
and the resulting manifold M has the desired intersection form. (In
the case when F is to be nonempty, we choose an action on Mo with
the desired fixed-point set and restrict our modifications to occur in
the free part of the action.)

M is (2&—l)-connected, as we have killed H2k_γ(MQ). dM is (2fc —2)-
connected by a Mayer-Vietoris argument as it is the union of (2k — 2)-
connected subspaces alnng (2k — 2)-connected subspaces.

(Observe that the action on Mo could have been chosen to be
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any linear representation of Zp. This will be of use to us in §3.)
It should be noted that the manifolds constructed above are just

the "standard twisted models" of Lance [6] and what we have shown
is just how to explicitly realize all possible models.

PROPOSITION 2.2. Suppose Zp acts on a (k — lyconnected 2fc-
manifold M, such that Hk(M) has a decomposition as an integral
Z^representation m Γ φ nA 0 qR.

Let F be the fixed-point set of Zp. Then the Euler characteristic
χ(F) = 2 + (-l)*(m - n).

Proof. We have from Smith theory (see [2, III. 4.3]),

( * ) X(M) + (p - l)χ(F) = pχ(M/Zp) .

Let us calculate the Euler characteristic by using homology with
rational coefficients. Then we also know (see [2, III. 2.4]) that

Substituting into (*), we have then

2 + (-l)\m + (p - ΐ)n + pq) + (p - l)χ(F) = p( + {-l)\m + q))

yielding the stated formula.

Let us now recall a lemma which will be of use to us. It may
be found as [3, Lemma V. 2.7] where it is stated in a special case,
but the proof of our statement below is identical.

LEMMA 2.3. Let M be a (k — lyconnected 2k-manifold with
(k — 2)-connected boundary dM. Let φ: Hk(M) (x) Hk(M) —>Z be the
intersection form of M. Assume k > 2.

Then dM is a homotopy sphere if and only if φ is unimodular.

Now we come to one of our main results.

THEOREM 2.4. Let p be an odd prime and let φ\ L (x) L —»Z by
any symmetric, unimodular, even, Zp-equivariant bilinear form,
when the lattice L has a decomposition as a Z^representation space
L = mTφnAφqR.

Then for any k ̂  2, there exists a (2k — lyconnected Ak-manifold
M admitting a semi-free Zp-action with m — n + 2r + 2 isolated
fixed points and having φ(&rε as its equivariant intersection form,
where ε is the 2-dimensional hyperbolic plane on which Zp acts
trivially, for r sufficiently large.

Proof. The difficult part of the construction lies in realizing
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φA = φ\nA, so we take care of that first, and then we add on the
rest. In fact, we will initially have to realize φA 0 nε.

Let φA be φA restricted to the ΐth copy of A. Let Mlf , Mn

be manifolds with boundary, as in 2.1, realizing φl9 " 9φn, respec-
tively, and with Zp acting as in 2.1.

In dMi we have the invariant sphere S^"1 x (0, « ,0,1). A
neighborhood of this invariant sphere in dM is equivariantly diίfeo-
morphic to a neighborhood of the equator in S2fe x D2k with the Zp-
action given by multiplying each complex coordinate by exp (2πί/p),
a bundle with Euler class zero, as well as to a neighborhood of the
equator in the tangent bundle of S2k with action induced from that
on S9k of multiplying each complex coordinate by exp (2πi/p), a bundle
with Euler two.

Attach a 2Miandle equivariantly, using this sphere as a core, to
each of M19 , Mn9 choosing the attaching maps so that its homology
class has self-intersection 0 on M19 , Mn/2 and self-intersection 2
on Mp/2+19 , Mn. Let the results be M[, , M'n.

Now each M\ has the same normal representation, g(z19 , z2k) =
(exp (2πi/p)zί9 , exp (2πi/p)zk) around its fixed point. Thus, we may
take M' = Dik U M[ U U M'n9 where D*k has the above ^-action,
and each ikf is identified with a linear subspace of Dik. Then each
of these submanifolds will be transverse to each other with exactly
one self-intersection, at the fixed point.

Thus at this stage we have a manifold Mf with boundary realizing
the intersection form, whose matrix is

>ι

A \

where * = 0 or 2. Rearranging the rows, write the intersection form
as follows, with Hn as in 1.8.

H
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We may next realize the off-diagonal blocks of φA by plumbing
together spheres representing the generators the appropriate number
of times.

Referring to 1.5, we see algebraically that in all such blocks
intersection numbers are determined by their first row, and so we
may plumb together the first sphere in the ΐth block along the diagonal
with all the spheres in the jth block along the diagonal, and then
equivariancew ill require us to plumb the remaining spheres in the ίth
block with those in the ith block so as to correctly obtain all of the
(off-diagonal) entries in the (ί, i)th block. Since this occurs in the
free part of the action, there is no problem with plumbing translates.

Now let us choose a subspace T of mT of dimension n with
ψτ' = φ\ Tr unimodular. If T' does not exist, we may take the direct
sum of (n/2)ε with φ to create such a subspace. Then by the proof
of [9, 1.5], φτ, has a basis such that its matrix Hf is congruent to
Hn mod p. Realize the intersections specified by Hr — Hn by plumbing
in the free part of the action. Once again there is no problem with
equivariance as each plumbing is to be done a multiple of p times,
since every entry in H — Hn is divisible by p, so perform the plumbing
at a point and each of its translates.

Now we realize φ\T", where T" is the orthogonal complement
of T in T. (This is exactly the construction in [9].) Suppose for
simplicity that φτ,, — φ\T" is unimodular. Equivariantly plumb
S2k x D2k with the above-mentioned action to M' at the unique fixed
point of M!.

The manifold now constructed has intersection matrix Hn+1, as
this last sphere intersects each other sphere transversely once. Now
equivariantly plumb the remaining sphere of T" successively using
trivial bundles each to the unused fixed point of the previous one,
so that each homology class has a self-intersection of zero and an
intersection of zero with every other homology class except for the
ones immediately preceding and following it, which it intersects once.
Note that the representations at the successive fixed points differ
only in sign. Inductively, it is easy to compute that the intersection
matrix so obtained is unimodular. As before, since both this matrix
and φτ are unimodular, there is a basis for which their matrices are
congruent mod p, so do the additional plumbings in the free part of
the action to get then to be identical.

If φτ" is not unimodular, instead of using trivial bundles to
plumb with we must use copies of the tangent bundle, with self-
intersection 2. An inductive computation reveals that the resulting
matrix may have any prescribed determinant modp, providing the
dimension of T" is correct. If it is not, we may add more copies
of ε to φ to make it so, for formula (**) in the proof of Proposition
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1.7 shows that as we plumb with additional bundles the determinant
of the resultant intersection matrix ranges through all values mod p.
Then proceed as above. Note that the representations at all the
fixed points are the same.

We are now left with the task of representing the form on qR,
but this is the easiest part.

In a disk around the hitherto unused fixed point, choose a linear
subspace. Then attach an arbitrary bundle by it and its translates,
thus realizing a copy of R with prescribed self-inter sections. One
may do this for each copy. Now all other plumbing involving spheres
representing elements of R need to be done a multiple of p times,
so may be done equivariantly in the free part of the action, at a
point and its translates.

Let the resulting manifold be ikf". Now M" is (2k — l)-connected
except for the presence of a fundamental group.

π^M") is a free group, however, with a generator arising each
time a plumbing is done on an already connected manifold. But all
such plumbings here were done equivariantly in the free part of the
action, so π1 may be killed by equivariant surgeries on the generators
of πγ. Let the result be Mnt.

Now M"f is highly-connected, as is its boundary, and φ © re is
unimodular, so by 2.3, dM is a homotopy sphere.

Let M = M"r \JσM Dik and extend the action to Dilc by coning.
Then M is as required.

By examining the proof we can see where stabilization was
required. Thus we may observe:

COROLLARY 2.5. Let φ be as in 2.4. Suppose that L = mT 0 qR.
Then φ may be realized as in 2.4.

Alternatively, if n Φ 0, suppose that φτ is unimodular. Suppose
T has a subspace T of rank 2n with φτ, unimodular. Then φ may
be realized as in 2.4.

Note, of course, that under the assumptions of the second part
of the corollary, φ actually splits, i.e., with respect to some basis

φ = φτ> Θ ψτ>> Θ φ"

In the case where m and n are both zero, this realization theorem
is already known from a different perspective. It is an easy con-
sequence of the realizability of Wall group elements.

Now for the skew-symmetric case. First, the analogue of 2.1.

LEMMA 2.6. Let φ: A®A—*Z be an equivariant, skew-symmetric
bilinear form.
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Then, for any k ^ 1, there exists a 2k-connected (4k + 2)-manifold
M with (2k — lyconnected boundary, and a Zp-action on M, such
that φ is the intersection form of M.

The action may be chosen to have fixed-point set S2q x
D2r+2, q,r<k.

In particular, F may be chosen to be S°, contained in the interior
of M.

Proof. Let Mo — S2k x D4k+2 and choose a linear action on Mo to
obtain F as required.

Note by 1,9 that H, the matrix of φ, is determined by hίΛ9 ,
KΛP+D/2 in this case also, so we may proceed exactly as in 2.1. (Our
constructions are again done away from F.)

THEOREM 2.7. Let p be an odd prime and let φ: L® L—>Z
be any skew-symmetric, unimodular, Zp-equivariant bilinear form,
where the lattice L has a decomposition as a Z^representation space
L = nA@ QR-

Then, for any k^l, there exists a 2k-connected (4k + 2)-manifold
M admitting a semi-free Zp-action with N + 2 isolated fixed points
and having φ as its equivariant intersection form.

Proof. If L — nA 0 qR, let φA = L \ nA, and then let φ\ be the
restriction of ψA to the ith copy of A.

Construct manifolds Mt as in 2.6 with fixed-point set S° and
intersection form φt on Mt. Choose the Z^-action so that the pairs
of representations on each fixed-point set (the representations at the
two points of S° differing from each other only in sign) are the same
on each Mt.

Now let W = Mx U M2 U U Mnf where Mt is identified with
Mi+1 equivariantly at a fixed point, and Mi+ί with Λf<+2 equivariantly
at a fixed point of Mi+2 and the other fixed point of Af«.

The intersection form on M' is given by the diagonal blocks of
<PA

Now complete the construction as in the symmetric case, using
the unused fixed point of Mn to attach p copies of S2k+1 x D2k+1 which
are permuted cyclically by the action of Zp, performing appropriate
plumbings to realize the off-diagonal blocks, and then killing the
fundamental group.

3* Linking forms* The objective of this section is to prove
Theorem 3.2. All of the geometry has already been done; what
remains is the algebra.
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DEFINITION 3.1. Let φ:L®L—*Z be a bilinear form on the
Z-free Z%-module L with det (φ) Φ 0.

Let 1! be the dual lattice to L in L(x)Q, i.e., L' = {l'eL(><)
Q\φ(l',l)eZyleL).

Then φ: L (x) L —* Q/Z defined by L = L'/L, <p(Zw i2) = ^(ί1? l2) mod Z
is the geometric boundary d(φ) of <£>.

Now if φ = 3(9>), and <£> is an even form with p prime to det (φ),
then our construction in § 2 shows how to realize φ by an action on
a manifold-with-boundary M, having φ as the intersection form on
dM. Of course, this is not always the case. We show, however,
that up to equivalence one can find a form ψ, Witt-equivalent to ψ,
for which this is almost the case, and that is good enough. We
proceed.

THEOREM 3.2. Let φ\L®L~+ QjZ be a Zn-equivariant εsymmetric
bilinear form with ψ = d(<p)9 where φ: L(g) L~»Z satisfies the con-
clusion of Theorem 1.6. Then there is a (k — l)-connected 2k-
manifold M with (k — 2)-connected boundary dM, and a smooth
Zp-action on M, free on dM, such that the linking form on dM
is Witt-equivalent to φ. k must be even if φ is symmetric and
odd if φ is skew-symmetric; subject to that k may be any integer

Proof. If W*(ZP: Q) denotes the Witt group of Z^-equivariant
Q-valued s-symmetric bilinear forms (where * = 0 for symmetric
forms and * = 2 for skew-symmetric forms), and similarly for
W*(ZP; Q/Z), then the geometric boundary map φ—+d(φ) factors
through the Witt groups to give a map W*(Zp:Q)-+dW*(Zp:QIZ).
Furthermore, localization gives us a map

0 >W*{Z,ι Q) -

where Z(l/p) is Z with all primes except p inverted. Thus φ f->
Ki(φ) θ πt(φ) where π2(φ) may be regarded as a bilinear form on a
free Z-module whose determinant is a unit mod p. Thus if we can
realize forms in the Witt classes of π^φ) and π2(φ) we will be able
to realize a form ψ Witt-equivalent to φ and hence with d(ψ) Witt-
equivalent to d(φ).

W*(ZP: Z(l/p)) is quite complex, but fortunately we need not
concern ourselves with it. Let p2 = π2(φ), so p2: L2(x)L2-+Z. If p2

is not itself an even form, we may replace it by &p2, (Ίp2(llf l2) —
p2(2llf 2Ϊ2), so we are merely rechoosing a lattice) which is Witt-
equivalent to p2 (as p is odd). Now since det (p2) is a unit mod p,
the constructions of §2 all go through and enable us to realize p2.
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Now for px = π^φ) e W*(ZP: Z(l/p)). Fortunately this group is
relatively simple. There is a split exact sequence

0 >W*(ZP: Z) WP(ZP: Zp) 0

and W2(ZP: Zp) = 0, WO(ZP: Zp) = W(ZP).
We have already seen how to represent elements of W*(ZP: Z)-

these are classes of Zp-equivariant, ε-symmetric, unimodular bi-
linear forms on free Z-modules, so this is exactly the construction
of §2.

It remains to represent WO(ZP: Zp) = W(ZP). Recall however, that
W(ZP) is given as follows:

W(ZP) = Z4 generated by <1> for p = 3(4)

W(ZP) = Z2@Z2 generated by <1> and (a), a a quadratic

nonresidue, for p = 3(4), where <α) denotes the one-

dimensional form (x, y) —• axy .

But <1> = (p + 1) and <α> = (a + p) so we may always choose even
representatives. Then an action realizing each of these is just given
by an action on a boundle over a sphere of appropriate Euler class.

Thus we may always represent a form in the Witt class of plf

and hence can always represent a form Witt-equivalent to φ.

REMARK 3.3. It should be observed that in the case of torsion
modules, taking the Witt class is an operation of extreme violence.

For example, let Mn = Zpi Zpι{n times) provided with the
whose matrix, with respect to the obvious basis, is

/ I

V 1

p 1

V 1

\

1

p 1

and whose Z^-valued bilinear form is x\. Then Heller and Reiner
[5,1] show the Mn, n = 1, 2, •••, are all distinct indecomposable Zp-
modules, yet the Witt class of each Mn is trivial.

4. Locally smooth actions* Our constructions in §2 gave actions
that were smooth everywhere except possibly at one fixed point,
where the action was obtained by coning off the action on a homotopy
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sphere. The Atiyah-Singer G-Signature formula can be applied to
decide when these actions can be made locally smooth (and sometimes
smooth as well). Together with some number-theoretic results, this
enables us to construct interesting examples of locally smooth actions
with nonzero G-Signature.

First let us observe that we may modify the proof of Theorem
2.4 slightly. The representation at the fixed point of Mf that we
used was

g(z» - , Z2k) = (exp (2πi/p)z19 , exp (2πi/p)z2k) .

In fact, we may use instead any representation

9(*if , Z2k) = (exp (2πiajp)z19 , exp (2πia2k/p)z2k) .

([9, Lemma 1.6] proves this in case Πί=i#i = Π t π i ai m o ( i V but it
is in fact true in general.)

Now for any 2fc-tuple (aί9 •••, a2k), the proof of Lemmas 1.5 and
1.7 of [10] show that

Π cot (atπ/p) = JuΣCi f* > ί = exp (2πi/p) ,
<=l p" i=i

with each ct an odd integer.
Fix a 2fc-tuple (aίf , a2k) and let

Let us make the following assumption

Hypothesis (A): There exists an even, Z^-equivariant, symmetric,
unimodular bilinear form φ: V ® V —* Z, V isomorphic to m i for some
m, with Sign (g, V) - Σdg.

Assuming this, we will construct locally smooth actions. After-
wards, we shall justify this assumption in some cases.

Let φ be as in Hypothesis (A) and let ψ = φ 0 (m + 4pfc)ε, where
ε is the two-dimensional hyperbolic plane with trivial Zp-action. Note
Sign (g, ψ) = Sign (g, φ).

By Lemma 1.6 of [9] we know 4pkε has a basis in which it has
a matrix H whose diagonal elements are mutually congruent, whose
elements adjacent to the diagonal are congruent to 1, and whose
remaining elements are congruent to zero mod p.

Now perform the construction of 2.4, so as to first obtain <p0
me as the form on a manifold-with-boundary having a Zp-action with
one fixed point, whose normal representation is

giti, , Sg*) = (exp (2πa1i/p)zlf , exp (2πa2ki/p)z2k) ,
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and then, using H, continue the construction to obtain a manifold—
with—boundary M\ M' has a Z^-action with Apk + 1 isolated fixed
points, each having the same normal representation.

Now on dM' we have a free Zp-action, whose quotient is a fake
lens space L. We compute its multisignature from the G-Signature
formula [1]

p(L) = Sign (g, AT) - Σ Π cot (a)π/p)

where the sum is over all the fixed points, and the normal represen-
tation is (at, ---,a\k) at the ith fixed point. But here there are
4pk + 1 isolated fixed points, each with normal representation
(alf , α2fc), while Sign (g, Mf) = Sign (g, φ) by construction. Thus

p(L) = Sign (g, φ) - (Apk + 1) ft cot (adπ/p) = - ft cot (a.π/p)

= P(L0)

by hypothesis A, where Lo is the linear lens space LAk'\p\ ~-a19 α2,
•••, a2k). Then by [8, Chapter 14], L is PL fo-cobordant to Lo.

Adding in the universal cover of the fe-cobordism, and then coning
off the linear action covering the lens space Lo gives a manifold M
with a locally smooth ^-action having G-Signature Σd^ (and having
all fixed points isolated, with normal representations ±(α w •• ,α2fc).

Now we must investigate when hypothesis A is satisfied. We
obtain a condition which is sufficient but undoubtedly not necessary.
The argument is an adaptation for our purposes of a method of
Pierre Conner's for construction unimodular forms, which we will
outline.

Let μeQ(ξ) be the unit ζi*-»'χi - ξ). Note μ = -a (~ denotes
complex conjugation).

Let P be a protective A-module (A = Z(ζ)).
There is an isomorphism

Homz(ί)(P, Z(f)) > Homz(P, Z)

given by ψ —> 1/p tr (μψ(x)) where tr is the trace homomorphism in
Z(ξ). (The 1/p factor arises as μZ(ξ) is precisely the ideal of Z(ξ)
of elements whose trace is divisible by p.)

Under this isomorphism a skew-Hermitian Z(f)-valued inner pro-
duct < , > on p yields a symmetric even form β on P, (β(x, y} =
1/p tr (μ(x, »»).

Consider a fractional ideal / in Q(£). Let & e Q(ξ + ξ"1) be a unit
for which klϊ = Z(ξ) (k is unique up to multiplication by a unit of
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We wish to introduce a skew-Hermitian Z(λ)-valued inner product
on P = Z(ξ) ®IczQ(ξ) © Q(ξ). This will be given by

= (a?,

for a suitable matrix S.

S must be skew-Hermitian (with entries in Q(ξ)) and S must be

Z(£)-valued on Z(f)φί . If S - (__^ ^) this will occur exactly

when ά = — α, 7 = — 7, αeZ(f), /5e I"1, and ΎekZ(ξ). In such case
we may rewrite S in the form

μa β

In order for S to be an inner product we also need det (S) = ku
for some unit u of Z(ξ + f"1), giving the condition

μ2aΊ + k~ιββ = u .

We will call such a unit u adapted to the pair (/, k).
The field Q(ξ + ξ'1) has (p — l)/2 different orderings corresponding

to the (p — l)/2 embeddings of Q(ξ) into C (conjugate embeddings
give the same ordering and so are excluded), and it turns out that
u is adapted to (/, k) if and only if uk is negative at an even number
of orderings. Now pairs (I, k) exist where the sign of k at each
ordering may be arbitrarily prescribed.

Thus if an even set of orderings is chosen, there is a pair (I, k)
to which 1 is adapted and for which k is negative at exactly those
orderings.

We may now calculate the ^-Signature of the form arising from
such a matrix S with a = 1. Since β(x9 y) = 1/p tr (μ(x, y}) we
multiply S by μ to obtain the Hermitian matrix

μ2_ μβ

-μβ kμ2Ύ

If T is the unimodular matrix ( 3, Vj, conjugating S by T gives

(2 _ 0 \ (2 0\
ββ ~

0 \ (μ2 0\
Ύj ~ \0 k)m

Now ^ 2 is negative at every ordering of Q(f + f"1)* so at the
orderings of Q(ξ + ξ'1) where k is negative we get a contribution of
— 2 to the total signature, while at the others we get a contribution
of 0. Changing signs gives us contributions of +2 or 0.

Thus we can realize G-Signatures which occur as sums I{Ia£l)
with at — ±2 or 0, 2 or —2 occurring an even number of times, so
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certainly the sum Σdtζ* of (*) can be realized as each dt is divisible
by four.

Thus we see that we can find a form φ on 0 (Z(£) 0 I) with
Sign (g, φ) = Σdtζ*. The only remaining point is that we need to
ensure that / is actually a principal ideal. Actually, we do not need
quite this strong a result, it suffices that our form φ should be
Witt-equivalent to a form φf whose underlying space is 0 Z(ζ).

Now the ideal I defines a class in H2(Z2, <£*), with ^ the ideal
class group of Z(ξ), and Z2 acting on an ideal by conjugation, and
φ is Witt-equivalent to such a form φ* iff this class is zero. In
general, it is difficult to decide when I is zero, but if the order of
^ is odd, H2(Z2, <&*) = 0 and so the class of I must trivially be zero.

Thus, we may conclude that hypothesis (A) is satisfied if the
class number of Q(ξ) is odd.

Summarizing we have shown

EXAMPLE 4.1. Let p be a prime with the class number of
Q(exp (2πi/p)) odd. Let k ^ 2 and let (al9 •••, a2k) be a 2fc-tuple of
integers prime to p.

Let φ be any Zp-equivariant even integer-valued unimodular form
with

Sign (g, φ) = any multiple of 4pfcΠ£i cot (a^/p), g a generator of
Zp.

Such a form φ always exists.
Then there is a (2k — l)-connected 4fc-manifold M admitting

a semi-free locally smooth Zp-action, with isolated fixed points
whose local representation are all g(zlf ••, zk) = (exp(±2πiajp)zίf

exp (2πia2/p)z2, , exp (2πia2Jp)z2k), and with φ the equivariant inter-
section form φ: H2k(M) (g) H2k{M) —> Z.
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