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GERALD A. ANDERSON

The 4k-dimensional simply connected surgery obstruction
group with coefficients Z, (i.e., the group of nonsingular
even quadratic forms over Z,) is computed in terms of the
classical Witt group and a Gauss sum invariant.

1. Introduction. Let L,(1; Z,) be the simply connected surgery
obstruction group, with coefficient Z, = Z[1/p: p € P], in dimension
4k, of [1]. By definition, this is the Witt group of even, non-
singular quadratic forms over the ring Z,. We compute L, (1; Z;)
in terms of the classical Witt group W(Z,) ([4]).

Let 7,: W(Q,) — % denote the “p-primary Gauss sum” character
of [4], Appendix 4, where % CC* is the multiplicative group of
roots of unity. Define @,: W(Z,) — Z/8Z by

exp(2mi@x(q)/8) = exp(zfritf(q)/S);slI] (Tl ® @)™,
where ¢ is the signature.

THEOREM 1.1. (i) If 2€P, then L1, Z,) = W(Z,).
(ii) If 2¢ P, then L,(1; Zp) = ker(®,).

(i) is obvious and the proof of (ii) occupies §2. An explicit description
of ker (@,), necessary to obtain the ring structure, is given in §3.

The author would like to thank the referee for suggesting the
brief statement and proof of Theorem 1.1 found here.

2. The proof of Theorem 1.1. For p» an odd prime, let
B, W(Q) —W(F,) be the second residue homomorphism (called 3, in
[4]), and B,:W(Q) — W(F,) the 2-adic value of the determinant. Let
8 =@,B, According to [4], o D B:W(Q) — ZD @, W(F,) is an iso-
morphism. '

Recall that W(F,) = Z/2Z, W(F,)= Z/4Z if p = 3 mod (4), generated
by 1), and W(F,) = Z2Z D Z/2Z if p = 1 mod (4), generated by (1)
and {s,), where s, is some quadratic nonresidue mod(p). Let =, 7,
W(F,)— Z/2Z be the projections, p = 1 mod (4). The invariants 5,
and 7, are related by the following lemma.

LEMMA 2.1. Let [qle W(Q). Then:
(1) 7(¢®Q,) = (ie)’»?, where ¢ = (—1)?*""* ¢f p = 3 mod (4).

1



2 GERALD A. ANDERSON

(=12 4f p = 5mod (8)

(i) 7(e®Q,) = {(_l)nzpm tf »=1mod(8).

Proof. (i) We have ¢ ® @, = n{p) + m{1l) in W(Q,) and B,(q) =
nmod (4). Therefore 7,(¢®Q,) = 7,({p>)»*. By [4], 7,({4p)) =
exp(wi(l — p)/4) = 1e. (il) is similar.

Let Br = @per Byt W(Z5) — @y W(F,). Then we have the fol-
lowing well-known result:

LEMMA 2.2. 0 D BW(Zp) = Z@,.»W(F,).

The proof is immediate from the localization sequence

0—W(Z,) — W(Q) ————>1§DW(F,,) —0
of [4], Corollary IV. 3.3.

Proof of Theorem 1.1.(ii). Using the notation of [3], L,1; Z,) =
W(Z,) and we have the following commutative diagram

0 0

l

0 —— W(Z) — W(Zs) 2 W(Z,, Z) — 0

l Js

0—W(Z) —W(Zy) -2 @W(F,) —0

Ox iq)p

Z|8Z — Z|SZ .

Here o, is the signature mod(8). The left vertical sequence is
exact by [4], the top horizontal sequence by [3] or [5], and the
middle horizontal sequence by Lemma 2.2. Furthermore, by [3], 7.
is an isomorphism.

We claim that W(Z,) = ker (@,). Clearly W(Z,)C ker(®,) by the
reciprocity formula of [4]. Suppose @.(z) = 0. Choose ¥ € B5"i;'Bx(x).
By a diagram chase, « — y € W(Z) and o,(x —y) = 0. Since W(Z)=
ker (0,), x € W(Zy).

3. The ring structure. The tensor product of even quadratic
forms is again even, so L,(1; Z,) has the structure of a commutative
ring. Since 0 D Bp: L, (1; Zp) — Z D @,.» W(F,) is injective, and
o(q ® q') = o(q)a(q’), it sufficies to consider B,(¢ R ¢').
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- Let a,:W(Q) —W(F,) be the first residue homomorphism if p = 2,
and the signature mod(2) if » = 2. We have:

PROPOSITION 3.1. B,(q ® ¢') = a,(@)B,(q") + @,(¢")8,(q).

Proof. First assume p = 2. Diagonalize ¢ over Q as ¢, ® {(p) + q.,
where ¢, ¢, are diagonal forms with entries prime to p. Similarly
write ¢’ = ¢, ® (») + ¢i. Then B,(q) =7y, &,(q) =T, B:(q") =T, @,(q) =
d:, where “7” denotes passing to the residue class field of @,, and

Bra ® ) =Byt R e &P + 6 R q Q {p)
+ 6 Q¢ ®<(P+a.8q)
=G,Q7+7.Q7 -
The case p = 2 is an easy determinant argument and left to the
reader.

The ring L,(1; Z,) can now be completely determined by the
values of the first residues of a set of generators, which we now
describe.

Let (n; z,(p,), **+, :,(p,)) denote the element y € W(Z,) with o(y) =

n, Bo(y) =, 0 =1, ++, k, and B,(y) = 0 otherwise. By Theorem 1.1
and Lemma 2.1, we have

LEMMA 3.2. Let 2¢ P. Then: (m; 2.(Dy), -+, 2, (Dr) € Lu(1; Zp)
if and only if

n+ D, (=L, + > 4dm(x) + D )471'2(9%) = 0 mod (8) .
»; Ps=1(8

P;=3(4) =5(8)

Generators of L,(1; Z,) are given by the following matrices:
(1) p =4k + 3: (2; (—1)**'(p)) is obtained from the weighted
graph

) —2(e+1)
(2) p =8k + 5:(0; s(p)) is obtained
o 2(2k-+1)

(4; 1(p)) is obtained from

I
(3) p =8k + 1:(0; 1(p)) is obtained from

2 i

In general, it is hard to write down an explicit matrix realizing
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(4; s(p)). However, by the proof of Theorem IV. 2.1 of [4], a diago-
nalization can be obtained in a specific case. For example, (4; s(17))
is represented by <51, 3, 1, 1).

Finally, we include the following result on signatures of even
forms over Z,. Let a, = g.c.d.{lo(x)|: x € Lu(1l; Z,)}

COROLLARY 3.3. a,=1(resp.8) if and only 1f 2¢ P (resp. P =¢).
Otherwise, ap, = 2 if some peP is 3 mod (4), and @, = 4 if not.

The proof is immediate from Lemma 3.2. This shows that Prop-
osition 2.2. of [6] is incorrect.
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