A NOTE ON RADON-NIKODÝM THEOREM FOR FINITELY ADDITIVE MEASURES

SURJIT SINGH KHURANA
A NOTE ON RADON-NIKODYN THEOREM FOR FINITELY ADDITIVE MEASURES

SURJIT SINGH KHURANA

The Radon-Nikodym theorem for finitely additive measures is deduced from the corresponding result for countably additive measures.

In ([4], Theorem 1, p. 35) a Radon-Nikodym type result is proved for finitely additive measures. In this note we prove that this result is a simple consequence of the corresponding result for the countably additive case.

Let \mathcal{A}_0 be an algebra of subsets of a set X; without loss of generality we assume that \mathcal{A}_0 is reduced, i.e., separates points of X ([5], p. 68). We denote by ρ the isomorphism between \mathcal{A}_0 and \mathcal{A} the algebra of all clopen subsets of \hat{X}, the compact Hausdorff, totally disconnected space which is the Boolean space for \mathcal{A}_0 ([5], p. 70).

THEOREM ([4], Theorem 1, p. 35). Let λ and μ be two complex-valued finite-additive measures on \mathcal{A}_0 such that μ is bounded and λ is absolutely continuous relative to μ ($\varepsilon - \delta$ meaning of absolute continuity). Then there exists a sequence $\{f_n\}$ of \mathcal{A}_0-simple functions on X such that

1. $\lim_{n \to \infty} \int_A f_n \, d\mu = \lambda(A)$, unif. for $A \in \mathcal{A}_0$

and

2. $\lim_{m,n \to \infty} \int |f_n - f_m| \, d|\mu| = 0$, $|\mu|$ being the total variation of μ ([2]).

Proof. For any disjoint sequence $\{A_n\} \subset \mathcal{A}_0$, $|\mu|(A_n) \to 0$ (note μ is bounded) and so $\lambda(A_n) \to 0$. This means λ is exhaustive (\equiv strongly bounded) and so λ is bounded ([1]). λ and μ naturally give rise to countably additive measures λ' and μ' on \mathcal{A} and as such can be uniquely extended to the σ-algebra \mathcal{B}_∞ generated by \mathcal{A}; \mathcal{B}_∞ is also the class of all Baire subsets of \hat{X} ([5], p. 70). We claim $|\lambda'|$ is absolutely continuous with respect to $|\mu'|$: suppose $|\mu'|(B) = 0$ but $|\lambda'(B)| > 0$ for some $B \in \mathcal{B}_\infty$. This means there exists a $C \subset B$, $C \in \mathcal{B}_\infty$ such that $|\lambda'(C)| > \varepsilon$ for some $\varepsilon > 0$. Fix $\delta > 0$ such that $P \in \mathcal{A}_0$, $|\mu|(P) < \delta$ implies $|\lambda(P)| < \varepsilon$. Since Baire measures are regular, there exists an open subset V of \hat{X} such that $V \supset C$, $|\mu'|(V) < \delta$, and $|\lambda'(V)| > \varepsilon$. Again by regularity and total disconnectedness of \hat{X} there is a clopen subset $U \subset V$ such that $|\mu'|(U) < \delta$ and $|\lambda'(U)| > \varepsilon$. Taking $P = \rho^{-1}(U)$ we get $|\mu|(P) < \delta$ and $|\lambda(P)| > \varepsilon$, a contradiction.
By ([2], Theorem 7, p. 181) there exists an \(f \in L^1(X, \mathcal{B}_\infty, |\mu'|) \) such that \(\lambda' = f \mu' \). Since \(\mathcal{U} \)-simple functions are dense in \(L^1(X, \mathcal{B}_\infty, |\mu'|) \) there exists a sequence \(\{f_n\} \) of \(\mathcal{U} \)-simple functions such that \(\lim \int_E |f_n - f| d|\mu'| = 0 \). From this it follows that \(\int_E f_n d|\mu'| \to \int_E f d|\mu'| \) uniformly for \(E \in \mathcal{U} \). Note on \(\mathcal{U} \) the variation \(|\mu'| \) of \(\mu' \) is the same whether this variation is calculated relative to \(\mathcal{U} \) or \(\mathcal{B}_\infty \) ([2]), Theorem 3, p. 76). The results (1) and (2) of the theorem are obvious now.

REFERENCES

Received July 6, 1977.

UNIVERSITY OF IOWA
IOWA CITY, IA 52242
Gerald Arthur Anderson, *Computation of the surgery obstruction groups* $L_{4k}(1; Z_p)$.. 1

R. K. Beatson, *The degree of monotone approximation* ... 5

Sterling K. Berberian, *The character space of the algebra of regulated functions* 15

Douglas Michael Campbell and Jack Wayne Lamoreaux, *Continua in the plane with limit directions* .. 37

R. J. Duffin, *Algorithms for localizing roots of a polynomial and the Pisot-Vijayaraghavan numbers* .. 47

Alessandro Figà-Talamanca and Massimo A. Picardello, *Functions that operate on the algebra $B_0(G)$* .. 57

John Erik Fornaess, *Biholomorphic mappings between weakly pseudoconvex domains* 63

Andrzej Granas, Ronald Bernard Guenther and John Walter Lee, *On a theorem of S. Bernstein* .. 67

Jerry Grossman, *On groups with specified lower central series quotients* 83

William H. Julian, Ray Mines, III and Fred Richman, *Algebraic numbers, a constructive development* .. 91

Surjit Singh Khurana, *A note on Radon-Nikodým theorem for finitely additive measures* ... 103

Garo K. Kiremidjian, *A Nash-Moser-type implicit function theorem and nonlinear boundary value problems* .. 105

Ronald Jacob Leach, *Coefficient estimates for certain multivalent functions* 133

John Alan MacBain, *Local and global bifurcation from normal eigenvalues. II* 143

James A. MacDougall and Lowell G. Sweet, *Three dimensional homogeneous algebras* 153

John Rowlay Martin, *Fixed point sets of Peano continua* .. 163

R. Daniel Mauldin, *The boundedness of the Cantor-Bendixson order of some analytic sets* ... 167

Richard C. Metzler, *Uniqueness of extensions of positive linear functions* 179

Rodney V. Nillsen, *Moment sequences obtained from restricted powers* 183

Keiji Nishioka, *Transcendental constants over the coefficient fields in differential elliptic function fields* .. 191

Gabriel Michael Miller Obi, *An algebraic closed graph theorem* ... 199

Richard Cranston Randell, *Quotients of complete intersections by C^* actions* 209

Bruce Reznick, *Banach spaces which satisfy linear identities* .. 221

Bennett Setzer, *Elliptic curves over complex quadratic fields* .. 235

Arne Stray, *A scheme for approximating bounded analytic functions on certain subsets of the unit disc* .. 251

Nicholas Th. Varopoulos, *A remark on functions of bounded mean oscillation and bounded harmonic functions. Addendum to: “BMO functions and the $\overline{\partial}$-equation”* .. 257

Charles Irvin Vinsonhaler, *Torsion free abelian groups quasi-projective over their endomorphism rings. II* .. 261

Thomas R. Wolf, *Characters of p'-degree in solvable groups* ... 267

Toshihiko Yamada, *Schur indices over the 2-adic field* ... 273