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This paper studies the bifurcation of solutions of non-
linear eigenvalue problems of the form Lu = iu 4+ H(Q, u),
where L is linear and H is o(]|«||) uniformly on bounded 2
intervals. This paper shows that isolated eigenvalues of L
having odd multiplicity are bifurcation points if H merely
has a “degree” of compactness, but is not necessarily com-
pact (treated in [3], [5]). Moreover, a global alternative
theorem follows.

Introduction. In this paper we study the bifurcation of solu-
tions of nonlinear eigenvalue problems. The equations to be studied
are of the form

0.1) Lu = »u + H(u)

where all operators are defined in a real Banach space <Z. L is
assumed to be linear, bounded or unbounded; I, the identity map,
and H, o(j|u]]) near u = 0. Clearly, (), 0) is a solution for each real
N, and these are called the trivial solutions of (0.1). Of more in-
terest are the nontrivial solutions, pairs (A, u) satisfying (0.1) with
# # 0. In particular, one is interested in how solutions of (0.1) are
related to solutions of the linear equation

(0.2) Lu = wu .
The study of this led to the following definition.

DEFINITION. A point (A, 0) is a bifurcation point for (0.1) if
every neighborhood of (A, 0) in R x <& contains a nontrivial solu-
tion of (0.1).

Under quite general conditions, it is easy to show that in order
for (A, 0) to be a bifurcation point of (0.1), it is necessary that X,
be in the spectrum of L. [8].

The first general existence theorem for bifurcation points was
obtained by Krasnoseljskii [2]. He considered equations of the type

0.8) % + AMLu + H(u)

where L is linear and compact, and H compact. He proved that if
N, is a characteristic value of L having odd algebraic multiplicity,
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144 JOHN A. MACBAIN

then (A, 0) is a bifurcation point.

More recently, Rabinowitz [6] studied the same problem as
Krasnoseljkii and proved a much stronger result. The bifurcation
from such points is a global property, with a continuous branch of
solutions joining (A, 0) to infinity in R X <, or if the branch is
bounded, containing (A, 0) with A, # A,

The author ([3] and [5]) eliminated the compactness assumption
on L while maintaining the strength of the result. The main result
of this paper is that the compactness assumption on H can be re-
laxed. The proofs of the theorems mentioned involve the use of
degree theory.

1. Preliminaries. Let <Z be a real Banach space and let &
denote R X <& with the product topology. By a nonlinear eigenvalue
problem we mean an equation of the form

(1.1) Ly = Nu + H(u)

where L: & — <% is linear and H: &% — <& is a nonlinear operator

satisfying hypothesis H — 1:

(H—1) (i) H iscontinuous, and bounded on each ball centered at 0.
(i) H is o(]|u||) for » near 0.

A nontrivial solution of (1.1) is a pair (A, #) with « = 0 which satis-

fies (1.1), and the trivial solutions are the pairs (A, 0).

In what follows, L: & — <& will be a densely defined linear
operator (bounded or unbounded) with domain dom (L). The re-
solvent set of L, o(L), will be all real values of » for which there
exists a bounded linear operator C: &# — <& such that

CL —Nx =2, xcdom (L)

1.2) (L —\N)Cx =2z, merange(L —\).

C will be denoted by (L — \)%.

DEFINITION 1.1. The (algebraic) multiplicity of an eigenvalue A\
of L is defined to be the dimension of the subspace U2, ker (L — \)?
where ker (L — \)’ denotes the nullspace of (L — A). Uz, ker (L — \)?
will be referred to as the principal manifold of L associated with .

DEFINITION 1.2. An eigenvalue A of L is defined to be normal if

(i) the multiplicity of L is finite.

(ii) < is the direct sum of subspaces < .#; where &, =
Uz ker (L — \)?, _#7 is invariant under L, and (L — \) is invertible
on _%7.

The projection of <& onto &5 along ._#; is denoted by P,.
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Hence P,.# = &%, and (I — P)# = 4, Let @, =1— P,

An eigenvalue ) of L is isolated if there exists ¢ > 0 such that
(» — &, X\ + &) contains no other members of sp L. The set of isolated
normal eigenvalues of L is called the discrete spectrum of L which
we denote by sp, (L). The remaining part of the spectrum will be
called nondiscrete and is denoted by sp,, (L).

REMARK. If L is self-adjoint, the nondiscrete spectrum is the
essential speetrum of L.

DEFINITION 1.3. (A, 0) is a bifurcation point for (1.1) if every
neighborhood in & of (\, 0) contains a nontrivial solution of (1.1).

DEFINITION 1.4. If 7 is a subset of &, 7; and ¥ are defined
to be 7 ={u|(n, w)e?’} and 7z = M\, w) € 7" for some u}. For
WcR, &£ or &, W denotes the closure of W in the respective
space.

Some of the material that follows in this section was presented
in [8], and is repeated here without proof.

DEFINITION. The set measure of compactness of a bounded set
2, expressed by a(), is defined to be the infimum of all § > 0 such
that 2 can be covered by a finite number of balls having radius o.

Some useful results in this area include:

(i) a@) = a(@) for all bounded sets 2.

(ii) If 2 is bounded, 2 is relatively compact if and only if
a(2) = 0.

(iii) a2, + 2y) = a(2)) + a(2,).

(iv)y If lim, ..z, =0, then a({x,}.-.....) = O.

DEFINITION. An operator T: B-— B is called a k-set contraction
if it is continuous and a(T(R)) < ka(2) for all bounded sets 2. Let
YWT)=inf{k|T is a k-set contraction}. The following results con-
cerning k-set contractions hold.

(i) T is compact if and only if T is a 0-set contraction.

(ii) If L is a bounded linear operator with operator norm || L],
then L is a ||L||-set contraction. (This need not be true if L is
nonlinear. (See §4.))

(iii) If L is a bounded, linear, and self-adjoint operator, Y(L) =
0.(L) where p,(L) is the radius of the essential spectrum of L. [8].

(iv) If F=GH with G linear, v(F) < ||G||v(H). In general,
for all G and H, Y(F) = 7(G)Y(H).

A degree theory for nonlinear operators of the form I— T,
where T: B— B is a k-set contraction with %k <1, was developed by
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Nussbaum in his thesis. The results of Nussbaum’s to be used are
given below, together with a theorem of Stuart.

Let T: B— B be a k-set contraction (¢ <1). Then an integer-
valued function, denoted by deg, can be defined so as to have the
following properties.

(1) deg(2,I— T,0) is well defined for each open, bounded
subset 2 C B such that T has no fixed points on the boundary 0Q
of 2.

(2) If deg(2,I— T,0) 0, then there is a point x €2 such
that 2z = Tx.

(8) If 2, and 2, are open subsets of 2, itself a bounded, open
subset of such that 7 has no fixed points in [2](2, U 2,)] U (2, N 2,),
then deg (2, I — T,0) =deg (2,, I — T, 0) + deg (2,, I — T, 0).

(4) If T is compact, then deg(2,I— T,0)=d(2,I— T,0),
where d denotes the Leray-Schauder degree, whenever the left-hand
side is defined. [8].

The arguments of this paper will closely follow those of [5].
Thus, a notation of index is helpful. Define

index (T, z,) = deg (B, I — T, 0)

where B is an open ball in B centered at z, with a radius small
enough so that x, is the only fixed point of 7T in B.

In [5], eritical use was made of a theorem in Leray-Schauder
degree theory which has been extended to the Nussbhaum degree
theory by Toland and Stuart [8].

THEOREM. Let T: X— X be a k-set contraction (k<1) and let
z, be @ fized point of T. Suppose that T has Frechet derivative
T'(xz,) ot x, and that unity s not an eigenvalue of T'(x,).

Then x, is an isolated fixed point of T, and

ind (Tr xo) = (_1)» ’
where VY 18 the sum of the multiplicities of the eigenvalues greater
than unity of T'(x,).
Proof. See [8].

2. Local bifurcation theorem. The first theorem shows that
bifurcation from an isolated eigenvalue A, of L having odd multi-
plicity is not dependent upon H being compact, but rather on how
“close” H is to being compact.

THEOREM 2.1. Let L be as above and let H satisfy H— 1. X,
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18 an isolated mormal eigenvalue of L having odd multiplicity.
Assume that for |N—N| <é, [|(L—=N"Ql7(H) = K<1. Then,
(X, 0) i8 @ bifurcation point for (1.1).

Proof. In order to prove this theorem, (1.1) will be rewritten
in the form « — C(», w) = 0. Split (1.1) by
L.onu = 7\:P20u + on.HO\:, ’U/)

(2.1) LQ;u =A@ u + @ H\, u) .

A solution of (1.1) is equivalent to a simulation solution of the two
equations in (2.1). Select p, € o(L). Instead of (2.1) we may write
Pyu = (L — pto)Pru . P H(n, w)

(2.2) A — Hto A — ot
Quu = (L — N)7Q, H(N, w)

where (L — \)™ is to be interpreted as (L — \)7'|.#%. Thus, (2.2)
is valid for » e {3} U {o(I)\{t,}}. Adding these equations we get

u = C(\, u) + Cy(N, u)

(L — ) Pru
(2.3) Gl w) = == ==
lir e Py
v w) = (L =@, m)ﬂ

Note that C;: & — <& is compact and linear in « for each fixed A
C,: & — &7 satisfies H — 1. Define

(2.4) O\, ) =1—C\, 2) — G -)

Clearly, (2.3) or @(n, u) = 0 is equivalent to (1.1) for the specified
values of » when L is bounded. If L is unbounded, the question
arises as to wheter  is in dom (L) if (A, ) is a zero of @. Noting
(2.2), which is obtained from (2.3) by projecting onto &, .43, re-
spectively, we see that Q,u is in dom (L). Since P,u is in an
eigenspace of L, u = P,u + Q,u is in dom (L).

If the assertion of the theorem is not true we can find a neigh-
borhood & of (A, 0) such that the only solutions of (1.1) in & are
trivial solutions, o(L)\c% # @, and ZxNspL = {\}. Select g€
O(L)\Z% such that (1.1) is equivalent to (2.3) for all <%. Select
e>0, 0<e<e, that [—e+ N, N + €] X {0} . Applying the
homotopy property of degree theory we obtain

(2.5) deg (D(\, +), &% 0) = constant, |\ — )\, <e.
Select X and X\ such that M — e <A <N < X<\ + & Then
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deg (@()\'; ')’ ﬁi, 0) = index (I - Cl(&? ')y (l’) 0))

(2.6) dom (/s ; , i
eg (d(, -), &%, 0) = index (I — C,(}, -), (X, 0)) .

Thus, using (2.5) and (2.6),

index (I — C,(, -), (\, 0)

(2'7> = index (I - Cl(X, ')y (X! 0)) o

However, since the multiplicity of \, is odd,

index (I — C,(», -), (\, 0))

(2.8) = —index (I — C%, +), (X, 0)) .

Since the indices in (2.7) and (2.8) are either +1 or —1, we have a
contradiction. Thus, such a neighborhood can never be found. This
proves that (A, 0) is a bifurcation point.

REMARK 1. If A, 0 is an eigenvalue of L having odd multi-
plicity, then the hypotheses of Theorem 1 are satisfied if L is com-
pact or if L is self-adjoint with \, isolated in sp L.

REMARK 2. The condition on Y((L — \)7'@; H) can be relaxed.
If one restricted the operators to a ball B, centered at (A, 0) and
then extended them to all of Rx B, in a linear manner, one could
apply Theorem 1.1 if 7(L — \)7'@;, H|B,) = K <1, for |[x — | <€
This would handle the case that H is well behaved near u = 0 but
grows too large for u far from O.
(H—2) H:Z& — <& satisfies:

(i) H is continuous, and bounded on each ball centered at 0.

(i) H is o(J|u|]) uniformly on bounded X\ intervals.

REMARK 3. The theorem remains true if H satisfies hypothesis
H — 2 rather than the more restricted H — 1. The proof is very
similar.

3. A global alternative theorem. In this section we will show
that the local bifurcation exhibited in Theorem 2.1 is a global prop-
erty with an alternative-type result.

For 7" C &, a subcontinuum of 7 is a subset of 7 which is
closed and connected in &. & will denote the closure of the set
of nontrivial solutions of (1.1) in &. Let &, denote the maximal
subcontinuum of & U (A, 0) containing (A, 0). B, will denote the
open ball in <Z centered at 0 and having radius p. L and H will
be as in §2.
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LEMMA 3.1. Suppose N, and ©, are distinct normal eigenvalues
of L. Then & = £5,D 5, D A, a direct sum of subspaces, where
N = N3N AN, and P = P, + P, projects onto &5 & &, along
A% [5)

LEMMA 3.2. Let K be a compact metric space and A and B
disjoint closed subsets of K. Then either there exists a subcon-
tinuum of K meeting both A and B, or K= K,UK; where K, and
K, are disjoint compact subsets of K containing A aend B re-
spectively.

Proof. See [9].

For ), as before, define

(M) = sup (NN < Ny, M €SP, (L)}
Bi(xg) = inf (M| > N, M €8D,; (L)} .

These values will be + o respectively if the vacuous case results.
For ¢; > 0, consider I(e, &) = [@,(Ny) + &, Bi(N) — &,]. (Here assume
both are finite.) Let P, . = X, P, where the summation is over all
eigenvalues of L in I(¢,’s,), and let Q. ,,=I— P, .. Select & >0
and ¢ >0 such that ([(L —N\)7Q. ,I[Y(H)<1 on I,¢). Let
[@(\)y BN = Iey ). If @(\) or B,(\,) are infinite, select a(r,) or
B(n,) to be any appropriate finite number.

LEMMA 3.3 Suppose N\, ts an isolated normal eigenvalue of L
having finite multiplicity. Assume @, s bounded, (Z3)xN
{a(ny), BN} = ¢, and Z3 N{RX{0}} = (A, 0). Then &5, is compact
and there _ex_z'sts a bounded open set & such that &, C <, i N
S = @, () N8P (L) = @, the trivial solutions contained in &
are the points (N, 0) where [N — N\| < € for some € < g = dist (\,,
sp L\[W)), and [|(n, w) — (&, 0)|]| = 2¢, for some positive &, whenever
(\, )€ o and pe sp L.

Proof. &, is compact. Indeed, let {(\,, u,)},c.- be elements of
%, Since &, is bounded, we may find a » and a subsequence . /]
such that lim, .. X\, =X. Let P be the projection for (Z). and

neSy
Q = I — P. Consider {u,}ncs.

a({un}newi’l) = a({Cl(A"M u'n) + Cz(k'm un)}ned’x)
é a({Cl()’nr uﬂ)}ne/ﬁ‘l + {CZ()"IL’ un)}ne/l)
= a({C(nay %adlaer,)
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(similarly) = ¢({(L — X)"'Q@H W)} ne )
= a({((L — N7RHw)}e )
+ a({((L — X) ™ — (L — M)THRHW) ne )
= a({(L — M7QHu.) e r,)
= I = N7 Rlla({H(wa)lner,)
= L = M7RIIYH)e(uatne )
< a({tatner,) -

Thus a@({#,}sc.s,) = 0 meaning the set is compact, meaning it has a
convergent subsequence. Thus, C; is compact.

The remainder of the proof follows from [5] and [8] using
Lemma 3.1.

The following theorem is modeled after one in [5] given for the
case when H is compact.

THEOREM 3.1. Suppose n, is an isolated eigenvalue of L of odd
multiplicity. L is as before and H satisfies H — 1. Furthermore,
let ||[(L — N) '@, [|V(H) < 1. Then (\, 0) is a bifurcation point of
(1.1) possessing a maximal continuous branch =, such that exactly
one of the following alternatives occurs.

(i) B, ts unbounded.

(il) &%, 18 bounded and (Z3,)r N {&(N), B} # 0.

(ii) &%, 18 compact, (B)rN{AN), BN} =D and &, N{R x{0}}=
Moy My ** 0y Nu} X {0} where Ay, <<+, N, are mormal eigenvalues of L
distinct from N, and the sum of the multiplicities of Mgy My, ==, Ny
18 even.

Proof. With the use of Lemma 3.3, the proof is similar to Theo-
rem 2.1 and Theorem 2.2 [5].

REMARK 1. Thehypothesesof this theorem are unnecessarily strin-
gent. The same results hold with H(\, ) if [|(L — No)7'@u, [[Y(H (N, +)) <
1, where H satisfies H — 2. The preceding proofs, however, become
a little more complicated mainly due to notation.

REMARK 2. Suppose that H(\, -), when restricted to a ball cen-
tered at u =0, has |[(L — N)7'@;, || V(H,,») <1 (but this hypothesis
fails on the entire space). One can do the degree work on these
balls (by reworking all previous proofs) and obtain a theorem similar
to that in [4]. (It was necessary to make a change in that theorem
due to an error committed in [4] (see the next section).)

Assign F(e) = [a(n,) + ¢, BO) — €]. Let P, correspond to F(e),
and Q. = I — P.. When restricted to a ball of radius » centered at
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0, let H;., be a v, (H(\, -))-set contraction, and define 7.(H) to be
strictly monotone increasing.

THEOREM 3.2. Let \, be an isolated eigenvalue of L having odd
algebraic- multiplicity. L is as before and H satisfies H — 2. Then
Aoy 0) 28 @ bifurcation point of (1.1) and emanating from it is a
maximal continwous branch %, which obeys exactly one of the fol-
lowing alternatives for each suitably small ¢ > 0.

(i) &5, 18 unbounded.

(i) &, s bounded and %, meets S, = {(\, u)|Ne F(e) and
lull =7 where 7.(HN, -)) = |[(L — NTQ.[7} U {(alw) + &) x Z}U
(B — &) x . .

(iii) &5, 18 compact, &, does not meet S,, and & N{0 X B} =
oy My <00y Ny}, €ach a distinct mormal eigenvalue of L, and the sum
of their algebraic multiplicities is even.

REMARK 1. In the case where L is self-adjoint, [|(L —\)7Q.|| =
1/dist (A, sp (L)/F(¢)) where dist (-) is the standard distance function
in R. This simplifies the statement of (ii).

REMARK 2. If (a(\,), B(\)) N sp (L) consists of a finite list of
eigenvalues, there is an ¢, > 0 such that whenever 0 <¢, <g, < ¢,
S., and S,, are identical in F(e,) X B. This is because ||(L — 1)@, ||
is constant in ¢ for 0 < e < ¢, This leads to an improvement in
(ii) and (iii).

(iiy &3, is bounded and &, meets S = {(\, )|\ € (@(\), BO))
and |lul] = where Y.(H(\, -))=[(L—N"Q,l™"} U{alw) x BjU
(B0w) x B, _

(iiify &, is compact, &7, does not meet S, and &, N{0 X B} =
{Ne» Agy * <%, Ny}, €ach a distinct normal eigenvalue of L, and the sum
of their algebraic multiplicities is even.

4. Other results. The theorems I proposed in [4] are unfortu-
nately incorrect as stated and require modification as in §3 of this
paper. The hypothesis of continuity on H had to be strengthened.
My error was in a proof that if one restricted H to a ball centered
at 0 in B and on that ball ||H|| =k, then H was a k-set contrac-
tion on the ball. This is true for linear operators.

This error was found by Professor Norman Dancer, The Uni-
versity of New England, Armidale N.S.W., Australia. He con-
structed a counterexample to Theorem I of [4], which I present
here. There is an operator V:c¢,— ¢, such that if xz = AV(x), then
x=0and »=0. Set B=¢, Xx R, L: B— B is defined by L(w,t) =
(2w, t) and H: R X B— B is defined by H(\, (w, t) = (0, M2 V(w)).
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» =1 is an eigenvalue of L of multiplicity 1. If ) is near 1 and
Lu = »u + H(\, u) where w = (w, t), then ¢t =t and 2w = zvw +
AMEV(w).  w = AMV(w)/(2 —N) which implies w = 0, and together
with A being near 1 imply ¢ = 0. Thus, for A near 1, the only solu-
tion is w = 0. Many thanks to Professor Dancer. The operator V
is due to Ana and Vasile Istratescu and appeared in the Proceeding
of the Amer. Math. Soc., Vol. 48, No. 1, page 197.
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