CHARACTERS OF p'-DEGREE IN SOLVABLE GROUPS

THOMAS R. WOLF
CHARACTERS OF P'-DEGREE
IN SOLVABLE GROUPS

THOMAS R. WOLF

We prove that $|I_p(G)| = |I_p(N(P))|$ for $P \in \text{Syl}(G)$, for solvable G. Here p is a prime and $I_p(G)$ is the set of irreducible characters ψ such that $(\psi(1), p) = 1$.

1. Introduction. The groups considered are finite and the group characters are defined over the complex numbers. McKay conjectured $|I_p(G)| = |I_p(N(P))|$ where $P \in \text{Syl}(G)$ for simple G and $p = 2$ [6]. I. M. Isaacs has proven the result when $|G|$ is odd and p is any prime (Theorem 10.9 of [4]). We prove the result for solvable G. In fact we generalize this slightly to sets of primes and normalizers of Hall subgroups.

For characters χ and ψ of G, we let $[\chi, \psi]$ denote the inner product of χ and ψ. Let $N \leq G$ and $\theta \in \text{IRR}(N)$. We write $I_\theta(\theta)$ to denote the inertia group $\{g \in G | \theta^g = \theta\}$. We also write $\text{IRR}(G | \theta) = \{\chi \in \text{IRR}(G) | [\chi_N, \theta] \neq 0\}$. Of course, character induction yields a one-to-one map from $\text{IRR}(I_\theta(\theta) | \theta)$ onto $\text{IRR}(G | \theta)$. If $\chi \in \text{IRR}(G | \theta)$; we say χ (or θ) is fully ramified with respect to G/N if $\chi_N = e\theta$ and $e^2 = |G:N|$. This will occur if $I_\theta(\theta) = G$ and χ vanishes off N.

Suppose that K/L is an abelian chief factor of G; $\gamma \in \text{IRR}(K)$; $\phi \in \text{IRR}(L)$; and $[\gamma_L, \phi] \neq 0$. If $K \cdot I_\theta(\phi) = G$, then one of the following occur:

(a) $\gamma_L = \phi$;
(b) γ and ϕ are fully ramified with respect to K/L, or
(c) $\phi^K = \gamma$.

We note that $K \cdot I_\theta(\phi) = G$ whenever $I_\theta(\gamma) = G$. The results of these last two paragraphs are well known (e.g. see Chapter 6 of [5]); and we will use them without reference. In Theorem 3.3, we use known results about character triple isomorphisms (see §8 of [4] or Chapter 11 of [5]); otherwise, everything should be self-explanatory.

I would like to thank E. C. Dade for his preprint [1].

2. Extendability. A straightforward proof of Lemma 2.1 may be found in Lemma 10.5 of [4].

Lemma 2.1. Assume $N \leq G$, $H \leq G$, $NH = G$, and $N \cap H = M$. Assume $\phi \in \text{IRR}(N)$ is invariant in G and $\phi_M \in \text{IRR}(M)$. Then $\chi \mapsto \chi_H$ defines a one-to-one correspondence between $\text{IRR}(G | \phi)$ and $\text{IRR}(H | \phi_M)$.

267
Theorem 2.2 is a generalization of a result of Dade. He proves the theorem when E is an extra-special p-group and when $p + |L|$ (see Theorems 1.2 and 1.4 of [1]). We use his result to prove this.

THEOREM 2.2. Assume (i) G is the semi-direct product EH, $E \unlhd G$.

(ii) $1 < Z(E) \leq Z(G)$ and $Z(E)$ is cyclic;

(iii) $E/Z(E)$ is an elementary abelian p-group for some prime p;

(iv) $[L, E/Z(E)] = E/Z(E)$ for some $L/C_H(E) \trianglelefteq H/C_H(E)$ such that $p + |L/C_H(E)|$; and

(v) $\lambda \in IRR(E)$ is faithful.

Then Λ extends to an irreducible character ψ of G such that $C_G(\psi) \trianglelefteq \ker(\psi)$.

Proof. We may extend Λ to an irreducible character of $E \times C_H(E)$ with kernel $C_H(E)$. It is no loss to assume $C_H(E) = 1$. If $E' = Z(E)$, we finish by Dade's result. We assume $E' < Z(E)$.

Fitting lemma (Theorem 5.2.3 of [3]) implies $E/E' = F/E' \times C_{E/E'}(L)$ where $F/E' = [E/E', L]$. As $p + |L|$, the hypotheses yield $Z(E)/E' = C_{E/E'}(L)$. Note $E' = Z(F)$ and $E/Z(E)$ is isomorphic to F/E'.

Let ϕ be the irreducible constituent of $\Lambda_{Z(E)}$. As $\phi_{E'} \in IRR(F')$, Lemma 2.1 yields $\Lambda_{F'} \in IRR(F')$. By induction on $|G|$, $\Lambda_{F'}$ extends to some $\beta \in IRR(FH)$. If $I_0(\Lambda) = G$, we have by Lemma 2.1 that $\beta = \psi_{FH}$ for some $\psi \in IRR(G/A)$. Furthermore, $\psi(1) = \Lambda(1)$. We are done as long as $I_0(\Lambda) = G$. Note that $\Lambda_{F'}$ and ϕ are H-invariant. So, if $h \in H$, $\Lambda^h = \alpha \Lambda$ for a linear $\alpha \in IRR(E/F')$. This implies $\phi^h = \alpha_{Z(E)} \phi$ and $\alpha_{Z(E)} = 1_{Z(E)}$. So $\alpha = 1_{E}$, completing the proof.

The following theorem also generalizes a result of Dade (see Theorem 5.10 of [1]).

THEOREM 2.3. Assume (i) $G = EH$, $E \unlhd G$, $E \cap H = Z(E)$ is in $Z(G)$;

(ii) $1 \neq Z(E)$ is cyclic;

(iii) $E/Z(E)$ is an elementary abelian p-group for a prime p;

(iv) $[L, E/Z(E)] = E/Z(E)$ for some $C_H(E) \leq L \leq H$ such that $p + |L/C_H(E)|$; and

(v) λ is a faithful character of $Z(E)$.

Then there exists a one-to-one correspondence $T: IRR(G|\lambda) \rightarrow IRR(H|\lambda)$ such that for $\chi \in IRR(G|\lambda)$, $\chi(1) = e[\chi T](1)$ where $e = |E: Z(E)|^{1/2} \in Z$.

Proof. Let $\Lambda \in IRR(E|\lambda)$. As E is nilpotent and λ is faithful, Λ is faithful. If $Z(E) < T < E$ with $|T: Z(E)|$ prime, Λ_T has each extension of λ to T as a constituent. It follows that Λ vanishes on
$E - Z(E)$. So A and λ are fully ramified with respect to $E/Z(E)$ and $I_G(\Lambda) = G$.

Let H_i be an isomorphic copy of H_i; say $\sigma: H_i \to H_i$ is an isomorphism. Say $Z(E) = \langle x \rangle$ and $\sigma(x) = x_i$. From the semidirect product $G = E \cdot H_i$. Note, by Theorem 2.2, Λ extends to $\psi \in IRR(G_i)$.

Let $Z_0 = \langle x \rangle \times \langle x_i \rangle \leq G_i$. Define $\lambda_i \in IRR(\langle x_i \rangle)$ by $\lambda_i(x_i) = \lambda(x)$. Define $\tau: G_i \to G$ by $\tau(g) = t \cdot \sigma^{-1}(g)$ for $t \in E$, $g \in H_i$. Then τ is a homomorphism onto G with kernel $Z_1 < Z_0$. So $\tau: G/Z_1 \to G$ is an isomorphism, $\tau(\langle x \rangle \times \langle x_i \rangle) = E/Z(E)$, and $(\lambda \times \lambda_i)^\tau = \lambda$, viewing τ as mapping $IRR(Z_0/Z)$ to $IRR(Z(E))$.

Hence, we need just show there is a one-to-one correspondence $T: IRR(G_i|\lambda \times \lambda_i) \to IRR(H_i|\lambda_i)$ such that $\chi(1) = e[(\chi T)(1)]$.

If $\beta \in IRR(H_i)$, then β is $\beta^* \vert H_i$ for a unique $\beta^* \in IRR(G_i/E)$. Now $\beta \to \beta^* \psi$ defines a one-to-one correspondence from $IRR(H_i)$ onto $IRR(G_i|\lambda) = IRR(G_i|\lambda_i)$. As $\psi(1) = e$, it suffices to show for $\beta \in IRR(H_i)$ that $\beta \in IRR(H_i|\lambda_i)$ if and only if $Z_1 \leq \ker (\beta^* \psi)$. If μ is the irreducible constituent of β restricted to $\langle x_i \rangle$, then $\beta^* \psi(x, x_i^{-1}) = e\beta(1)\lambda(x)\mu^{-1}(x)$. So $Z_1 \leq \ker (\beta^* \psi)$ if and only if $\mu = \lambda_i$, completing the proof.

3. The McKay conjecture. If π is a set of primes, let $I_\pi(G) = \{\chi \in IRR(G) | (p, \chi(1)) = 1 \text{ for all } p \in \pi\}$. Now G is π-solvable if G has a normal series where each factor is either a π'-group or a solvable π-group. If G is π-solvable or π'-solvable, the Schur-Zassenhaus theorem implies G has a Hall-π-subgroup and that any two Hall-π-subgroups are conjugate in G (see 6.3.5 and 6.3.6 in [3]). Proof of the following lemma, due to Glauberman [2], requires the conjugacy part of the Schur-Zassenhaus theorem and thus uses the Odd-Order theorem to ensure the solvability of either A or G.

Lemma 3.1. Assume A acts on G by automorphisms and $(|A|, |G|) = 1$. Assume A and G act on a set T such that G is transitive on T and $(t \cdot g) \cdot a = (t \cdot a) \cdot g^a$ for all $t \in T$, $g \in G$, $a \in A$. Then

(a) A fixes an element of T, and

(b) $C_\sigma(A)$ acts transitively on the fixed points in T of A.

Proof. See [2] or 13.8 and 13.9 of [5].

Corollary 3.2. Assume A acts on G by automorphisms, $N \leq G$ is A-invariant, $(|G:N|, |A|) = 1$, and $C_{G/N}(A) = 1$. Let $\chi \in IRR(G)$ and $\phi \in IRR(N)$ be A-invariant. Then

(a) χ_N has a unique A-invariant irreducible constituent; and
(b) If G/N is abelian, ϕ^G has a unique A-invariant irreducible constituent.

Proof. Now A and G/N act on the irreducible constituents of χ_N and G/N is transitive. Thus, part (a) follows from Lemma 3.1.

For (b), note A and $\text{IRR}(G/N)$ act on the irreducible constituents of ϕ^G and $\text{IRR}(G/N)$ is transitive in this action. We are done by Lemma 3.1 if A acts fix point free on $\text{IRR}(G/N)$. If $\psi \in \text{IRR}(G/N)$ is A-fixed, then A centralizes $G/\text{Ker}(\psi)$ and $\text{Ker}(\psi) = G$. This completes the proof.

Theorem 3.3. Assume that G is π'-solvable with a Hall-π-subgroup S; $N = N_0(S)$; $K, L \subseteq G$; $H = LN$; K/L is an abelian π'-group; $KH = G$; and $K \cap H = L$. Let $\theta \in \text{IRR}(K)$ such that $S \unlhd I_G(\theta)$. Then

(a) θ_L has a unique S-invariant irreducible constituent ϕ; and

(b) There is a one-to-one and onto map $T: \text{IRR}(G|\theta) \rightarrow \text{IRR}(H|\phi)$ such that $\chi(l)/(\chi_T(l))$ is an integer dividing $|G:H|$.

Proof. As $C_{K/L}(S) = 1$, part (a) is a consequence of Corollary 3.2. To prove (b), induct on $|G|$. By induction, it is no loss to assume K/L is chief in G and H is maximal in G. Note $KN = G$. For $n \in N$, θ^n and ϕ^n are S-invariant. If $R = I_G(\theta)$, it then follows from Corollary 3.2 that $R \cap H = I_H(\phi)$. Now character induction yields one-to-one maps from $\text{IRR}(R|\theta)$ onto $\text{IRR}(G|\theta)$ and from $\text{IRR}(R \cap H|\phi)$ onto $\text{IRR}(H|\phi)$. As $|G:R| = |H:H \cap R|$, we finish by induction on $|G|$ if $R < G$.

So, we assume $I_G(\theta) = G$ and $I_H(\phi) = H$. If $I_G(\phi) = H$, $\phi^G = \theta$ and character induction defines a one-to-one map from $\text{IRR}(H|\phi)$ onto $\text{IRR}(G|\phi) = \text{IRR}(G|\theta)$. As H is maximal in G; we assume $I_G(\phi) = G$.

If $\theta_L = \phi$, we are done by Lemma 2.1. With no loss, we assume $\theta_L = e\phi$ and $e^2 = [K:L]$. Replace (G, L, ϕ) by an isomorphic character triple (G^*, L^*, ϕ^*) where ϕ^* is faithful and linear (8.2 of [4]). Now θ^* is fully ramified with respect to K^*/L^* and consequently vanishes off L^*. So $Z(K^*) = L^* \leq Z(G^*)$. Note $SL \subseteq H$ and that Fitting's lemma (5.2.3 of [3]) implies $[K/L, S] = K/L$. Also, $G^*/L^* \cong G/L$. For $\chi \in \text{IRR}(G|\phi)$ and $\psi \in \text{IRR}(H|\phi)$; $\chi^*(1)/\psi^*(1) = (\chi^*(1)/\phi^*(1)) \times (\phi^*(1)/\psi^*(1)) = \chi(1)/\psi(1)$. As $\text{IRR}(G|\theta) = \text{IRR}(G|\phi)$; the character triple isomorphism and Lemma 2.3 yield here a one-to-one and onto map $F: \text{IRR}(G|\theta) \rightarrow \text{IRR}(H|\phi)$ such that $\chi(1) = e(\chi^F)(1)$. This completes the proof.

Theorem 3.4. Let G be π'-solvable and let P be a Hall-π-subgroup of G. Then $|I_\pi(G)| = |I_\pi(N_0(P))|$.

THOMAS R. WOLF
Proof. Induct on $|G|$. Let $N = N_G(P)$ and $K = O^{\pi'}(G)$. We assume $K \neq 1$, else $N = G$. The Frattini argument yields $KN = G$. Let K/L be a chief factor, so that K/L is an elementary abelian q-group for a prime $q \in \pi'$. Let $H = LN$, so that $G = KH$. By definition of K, $C_{K/L}(P) = 1$. So $H \cap K = L$. It suffices via induction to show $|I_\pi(G)| = |I_\pi(H)|$.

Corollary 3.2 gives us a one-to-one correspondence between all P-invariant irreducible characters θ of K and all P-invariant irreducible characters ϕ of L, in which θ and ϕ correspond if and only if $[\theta_L, \phi] \neq 0$ or, equivalently $[\theta, \phi^K] \neq 0$. Furthermore, this correspondence is invariant under conjugation by N. Since $G = KN$ and $H = LN$, we conclude that this correspondence carries G-conjugacy classes of θ's one-to-one and onto the H-conjugacy classes of ϕ's.

Let $S_1 = \{\chi \in IRR(G) | \chi_K \text{ has a } P \text{-invariant irreducible constituent}\}$ and $S_2 = \{\psi \in IRR(H) | \psi_L \text{ has a } P \text{-invariant irreducible constituent}\}$. The last paragraph and Theorem 3.3 yield a one-to-one and onto map $F: S_1 \rightarrow S_2$ such that $\chi(1)/(\chi F)(1)$ is an integer dividing $|G: H| = |K:L|$. If $\chi \in IRR(G)$ (or $\chi \in IRR(H)$) and $p\chi(1)$ for all $p \in \pi$; then $\chi \in S_1$ (respectively, $\chi \in S_2$). Hence $\chi \in I_\pi(G)$ if and only if $\chi \in S_1$ and $(\chi F) \in I_\pi(H)$. The proof is complete.

Actually the above results yield a one-to-one map $T: I_\pi(G) \rightarrow I_\pi(N)$ such that $\chi(1)/(\chi T)(1)$ divides $|G: N|$. In the case $\pi = \{p\}$, the above theorem states precisely that $|I_p(G)| = |I_p(N(P))|$ for G solvable, where $P \in Syl_p(G)$.

REFERENCES

1. E. C. Dade, Characters of groups with normal extra-special subgroups, Mimeographed preprint.
2. G. Glauberman, Fixed points in groups with operator groups, Math. Z., 84 (1964), 120–125.

Received January 17, 1977.

MICHIGAN STATE UNIVERSITY
EAST LANSING, MI 48824
Gerald Arthur Anderson, *Computation of the surgery obstruction groups* $L_{4k}(1; \mathbb{Z}_p)$... 1
R. K. Beatson, *The degree of monotone approximation* .. 5
Sterling K. Berberian, *The character space of the algebra of regulated functions* ... 15
Douglas Michael Campbell and Jack Wayne Lamoreaux, *Continua in the plane with limit directions* .. 37
R. J. Duffin, *Algorithms for localizing roots of a polynomial and the Pisot Vijayaraghavan numbers* ... 47
Alessandro Figà-Talamanca and Massimo A. Picardello, *Functions that operate on the algebra $B_0(G)$* .. 57
John Erik Fornaess, *Biholomorphic mappings between weakly pseudoconvex domains* ... 63
Andrzej Granas, Ronald Bernard Guenther and John Walter Lee, *On a theorem of S. Bernstein* ... 67
Jerry Grossman, *On groups with specified lower central series quotients* 83
William H. Julian, Ray Mines, III and Fred Richman, *Algebraic numbers, a constructive development* ... 91
Surjit Singh Khurana, *A note on Radon-Nikodým theorem for finitely additive measures* ... 103
Garo K. Kiremidjian, *A Nash-Moser-type implicit function theorem and nonlinear boundary value problems* ... 105
Ronald Jacob Leach, *Coefficient estimates for certain multivalent functions* 133
John Alan MacBain, *Local and global bifurcation from normal eigenvalues. II* 143
James A. MacDougall and Lowell G. Sweet, *Three dimensional homogeneous algebras* ... 153
John Rowlay Martin, *Fixed point sets of Peano continua* ... 163
R. Daniel Mauldin, *The boundedness of the Cantor-Bendixson order of some analytic sets* ... 167
Richard C. Metzler, *Uniqueness of extensions of positive linear functions* 179
Rodney V. Nillsen, *Moment sequences obtained from restricted powers* 183
Keiji Nishioka, *Transcendental constants over the coefficient fields in differential elliptic function fields* ... 191
Gabriel Michael Miller Obi, *An algebraic closed graph theorem* 199
Richard Cranston Randell, *Quotients of complete intersections by \mathbb{C}^* actions* 209
Bruce Reznick, *Banach spaces which satisfy linear identities* ... 221
Bennett Setzer, *Elliptic curves over complex quadratic fields* .. 235
Arne Stray, *A scheme for approximating bounded analytic functions on certain subsets of the unit disc* ... 251
Nicholas Th. Varopoulos, *A remark on functions of bounded mean oscillation and bounded harmonic functions. Addendum to: “BMO functions and the $\overline{\partial}$-equation”* ... 257
Charles Irvin Vinsonhaler, *Torsion free abelian groups quasi-projective over their endomorphism rings. II* ... 261
Thomas R. Wolf, *Characters of p'-degree in solvable groups* ... 267
Toshihiko Yamada, *Schur indices over the 2-adic field* ... 273