SCHUR INDICES OVER THE 2-ADIC FIELD

Toshihiko Yamada
In this paper it is proved that if \(G \) is a finite group with abelian Sylow 2-subgroups, then the Schur index of any character of \(G \) over the 2-adic numbers \(\mathbb{Q}_2 \) is equal to 1. Examples are given so as to show that this statement is false for each odd prime \(p \).

The problem of determining the Schur index of a character of a finite group was reduced by R. Brauer and E. Witt to the case of handling hyper-elementary groups at \(q \), \(q \) being a prime. Each of these groups has a cyclic normal subgroup with a factor group which is a \(q \)-group. Let \(p \) be a prime and \(\mathbb{Q}_p \) the \(p \)-adic numbers. Let \(G \) be a hyper-elementary group at \(q \) and \(\chi \) an irreducible character of \(G \). It follows from a result of Witt [1] that if \(p = q \neq 2 \) then the Schur index \(m_{\mathbb{Q}_p}(\chi) \) of \(\chi \) over \(\mathbb{Q}_p \) is equal to 1. This statement is false for the case \(p = q = 2 \), because the quaternion group of order \(2^3 \) has an irreducible character \(\chi \) with \(m_{\mathbb{Q}_2}(\chi) = 2 \).

The purpose of this paper is to show that the above statement also holds for the case \(p = q = 2 \), provided the Sylow 2-subgroups of a hyper-elementary group at 2 are abelian. In fact, we will prove more generally the following theorem.

Theorem. Let \(G \) be a finite group with abelian Sylow 2-subgroups. Let \(\chi \) be any irreducible character of \(G \). Then \(m_{\mathbb{Q}_2}(\chi) = 1 \), that is the Schur index of \(\chi \) over the 2-adic numbers \(\mathbb{Q}_2 \) is equal to 1.

Proof. It is well-known that \(m_{\mathbb{Q}_2}(\chi) = 1 \) or 2 (cf. [1]), so \(m_{\mathbb{Q}_2}(\chi) \) equals its 2-part. Let \(n \) be the exponent of \(G \) and let \(L \) be the subfield of \(\mathbb{Q}_2(\zeta_n) \), \(\zeta_n \) a primitive \(n \)-th root of unity, such that \(L \supset \mathbb{Q}_2(\chi) \), \(2 \nmid [L: \mathbb{Q}_2(\chi)] \) and \([\mathbb{Q}_2(\zeta_n): L] \) is a power of 2. By the Brauer-Witt theorem [3, p. 31] there is an \(L \)-elementary subgroup \(H \) of \(G \) with respect to 2 and an irreducible character \(\theta \) of \(H \) with the following properties: (1) there is a normal subgroup \(N \) of \(H \) such that \(\theta = \psi^H \); (2) \(H/N \cong \text{Gal}(L(\psi)/L) \), in particular, \(H/N \) is a 2-group; (3) \(L(\theta) = L \); (4) \(m_L(\theta) = m_L(\chi) = m_{\mathbb{Q}_2}(\chi) = m_{\mathbb{Q}_2}(\chi) \); (5) for every \(h \in H \) there is a \(\tau(h) \in \text{Gal}(L(\psi)/L) \) such that \(\psi(hnh^{-1}) = \tau(h)(\psi(n)) \) for all \(n \in N \); (6) \(m_L(\theta) \) is the index of the crossed product \((\beta, L(\psi)/L) \) where, if \(D \) is a complete set of coset representatives of \(N \) in \(H \) \((1 \in D) \) with \(hh' = n(h, h')h'' \) for \(h, h', h'' \in D, n(h, h') \in N \), then \(\beta(\tau(h), \tau(h')) = \psi(n(h, h')) \). Since \(\psi \) is
a linear character of N, the values of the factor set β are roots of unity.

Denote by N_0 the kernel of ψ. Then the factor group N/N_0 is cyclic. Put $2^rt = |N/N_0|$, $(2, t) = 1$. It is easy to see that there exist elements a, b of N such that $N/N_0 = \langle aN_0 \rangle \times \langle bN_0 \rangle$, $a^t \in N_0$, $b^t \in N_0$ and that the order of a is a power of 2. We have $\psi(a) = \zeta_{2^r}$, $\psi(b) = \zeta_t$, and $Q_4(\psi) = Q_4(\zeta_{2^r}, \zeta_t)$, where ζ_{2^r} and ζ_t are some primitive 2^rth and tth roots of unity, respectively. Let P be a Sylow 2-subgroup of H, which contains a. Since H/N is a 2-group, we may clearly assume that $D \subset P$. By assumption, P is abelian. Hence for each $x \in D$, $xax^{-1} = a$, and so

$$\theta(a) = \psi^H(a) = \sum_{x \in D} \psi(xax^{-1}) = |D| \psi(a) = |D| \zeta_{2^r}.$$

Consequently, $\zeta_{2^r} \in L = L(\theta)$.

Since $L(\psi) = L(\zeta_{2^r}, \zeta_t) = L(\zeta_t)$, $(2, t) = 1$, it follows that the extension $L(\psi)/L$ is unramified. Recall that the values of the factor set β are roots of unity. Hence the crossed product $(\beta, L(\psi)/L)$ is similar to L, i.e., $(\beta, L(\psi)/L) \sim L$ (cf. [3, Lemma 4.2]). This implies $m_{\psi}(\chi) = m_L(\theta) = 1$, and the theorem is proved.

If p is an odd prime, then Witt [1] determined that $m_{\psi}(\chi)$ divides $p - 1$ for an irreducible character χ of a finite group G. Let d be a natural number that divides $p - 1$. We now give an irreducible character χ of a finite group G with abelian Sylow p-subgroups such that $m_{\psi}(\chi) = d$: The group G is generated by the elements x, y with defining relations

$$x^p = 1, \quad y^{d(p - 1)} = 1, \quad xyx^{-1} = x^r,$$

where r is a primitive root modulo p. (This group was dealt with in Appendix of [2].)

Now put $H = \langle x \rangle \times \langle y^{p-1} \rangle$. Then H is a normal, cyclic subgroup of G of order pd, the factor group G/H is cyclic of order $p - 1$, and $G = H \cup Hx \cup \cdots \cup Hx^{p-2}$. Let ψ be the faithful linear character of H given by $\psi(x) = \zeta_p$, $\psi(y^{p-1}) = \zeta_d$. For each $i = 1, \ldots, p - 2$, the character ψ^{si} of H defined by $\psi^{si}(z) = \psi(y^izy^{-i})$, $z \in H$, is algebraically conjugate to ψ over the field $Q_p(\zeta_d)$, and $\psi^{si} \neq \psi$. It follows that the induced character $\chi = \psi^G$ is irreducible and that the simple component of the group algebra $Q_p[G]$ which corresponds to χ is isomorphic to the cyclic algebra $B = (\zeta_d, Q_p(\zeta_d), \zeta_p)/Q_p(\zeta_d)$, where $\langle \sigma \rangle = Gal(Q_p(\zeta_d), \zeta_p)$, $\sigma(\zeta_p) = \zeta_p$, $\sigma(\zeta_d) = \zeta_d$ (cf. Propositions 3.4, 3.5 of [3]). Since $p \equiv 1 \pmod{d}$, then $Q_p(\zeta_d) = Q_p$, so $B = (\zeta_d, Q_p(\zeta_d))/Q_p$, σ. It is easy to see that the index of this cyclic algebra is equal to d (see also Theorem 4.3 of [3]). Thus we conclude that $m_{\psi}(\chi) = d$.
The above example shows that the similar statement to the theorem for each odd prime p does not hold.

REFERENCES

Received May 27, 1977.

Tokyo Metropolitan University

Tokyo, Japan
Gerald Arthur Anderson, *Computation of the surgery obstruction groups* $L_{4k}(1; \mathbb{Z}_p)$.. 1
R. K. Beatson, *The degree of monotone approximation* .. 5
Sterling K. Berberian, *The character space of the algebra of regulated functions* 15
Douglas Michael Campbell and Jack Wayne Lamoreaux, *Continua in the plane with limit directions* ... 37
R. J. Duffin, *Algorithms for localizing roots of a polynomial and the Pisot-Vijayaraghavan numbers* ... 47
Alessandro Figà-Talamanca and Massimo A. Picardello, *Functions that operate on the algebra $B_0(G)$* ... 57
John Erik Fornaess, *Biholomorphic mappings between weakly pseudoconvex domains* 63
Andrzej Granas, Ronald Bernard Guenther and John Walter Lee, *On a theorem of S. Bernstein* ... 67
Jerry Grossman, *On groups with specified lower central series quotients* 83
Surjit Singh Khurana, *A note on Radon-Nikodým theorem for finitely additive measures* ... 103
Garo K. Kiremidjian, *A Nash-Moser-type implicit function theorem and nonlinear boundary value problems* ... 105
Ronald Jacob Leach, *Coefficient estimates for certain multivalent functions* 133
John Alan MacBain, *Local and global bifurcation from normal eigenvalues. II* 143
James A. MacDougall and Lowell G. Sweet, *Three dimensional homogeneous algebras* ... 153
John Rowlay Martin, *Fixed point sets of Peano continua* 163
R. Daniel Mauldin, *The boundedness of the Cantor-Bendixson order of some analytic sets* ... 167
Richard C. Metzler, *Uniqueness of extensions of positive linear functions* 179
Rodney V. Nillsen, *Moment sequences obtained from restricted powers* 183
Keiji Nishioka, *Transcendental constants over the coefficient fields in differential elliptic function fields* ... 191
Gabriel Michael Miller Obi, *An algebraic closed graph theorem* 199
Richard Cranston Randell, *Quotients of complete intersections by C^* actions* 209
Bruce Reznick, *Banach spaces which satisfy linear identities* 221
Bennett Setzer, *Elliptic curves over complex quadratic fields* 235
Arne Stray, *A scheme for approximating bounded analytic functions on certain subsets of the unit disc* ... 251
Nicholas Th. Varopoulos, *A remark on functions of bounded mean oscillation and bounded harmonic functions. Addendum to: “BMO functions and the $\overline{\partial}$-equation”* ... 257
Charles Irvin Vinsonhaler, *Torsion free abelian groups quasi-projective over their endomorphism rings. II* ... 261
Thomas R. Wolf, *Characters of p'-degree in solvable groups* 267
Toshihiko Yamada, *Schur indices over the 2-adic field* ... 273