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This paper concerns itself with continuous families of
linear embeddings of triangulated complexes into 2. In [2]
Cairns showed that if f and g are two linear embeddings of
a triangulated complex (C, T') into E? so that there is an
orientation preserving homeomorphism % of E? with kof =g,
then there is a continuous family of linear embeddings #,:
(C, T) > E%(te[[0, 1]) so that h, = fand h, = g. In this paper
we prove various relative versions of this result when C is
an are, a f-curve, or a disk.

Introduction. To appreciate where the results in this paper fit
into the literature, it is useful to be aware of the following ex-
amples which were described in [1, Example 4.1].

ExamprE 1. This example is a triangulated l-complex (C, S)
linearly embedded in E* consisting of a simple closed curve J with
two disjoint spanning arcs in its interior. The complex C is homeo-
morphic to (. There is a homeomorphism g:E*— E* fixed on J such
that f = g|C is linear with respect to S but there is no linear isotopy
hy: (C, S) — E*t €0, 1]) with h, = id and h, = f which keeps J fixed.

ExampPLE 2. Example 1 can be modified by incorporating (C, S)
into the l-skeleton of a triangulated disk (P, T') with boundary J to
produce an example of a disk with properties similar to those of
(C, S). Namely, the triangulated disk (P, T is linearly embedded in
E* and admits a linear homoemorphism % fixed on Bd P for which
there is no linear isotopy h.: (P, T) — E*(te€[0, 1]) with A, = id and
h, = k which leaves the boundary fixed throughout.

It is known that no such example can be found where P is convex
[1, Corollary 4.4] nor could P be star-like if T has no spanning edge
[1, Theorem 4.1}].

In this paper it is shown (Theorem 2.4) that no 1-complex homeo-
morphic to a #-curve can have the properties of Example 1. Then
in Theorem 4.2 it is proved that Example 2 can not retain its proper-
ties under all subdivisions. In fact each triangulation T of a disk P
has a subdivision 7" which is a super triangulation of P. A super
triangulation 7" of a disk P is one which is as flexible as possible.
Namely, any linear embedding of Bd P into E*® extends to a linear
embedding of (P, T') and for any two linear homeomorphisms f, g
of (P, T) into E* with f|BdP = ¢g|Bd P, there is a linear isotopy
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he (P, T")— E¥te|0,1]) with hy= f and k, = g which agrees with
f and g on Bd P throughout. (The formal definition of super trian-
gulation appears in §3.)

DEFINITION. Let (C, T) be a finite complex C with triangulation
T. A linear embedding of C (or (C, T)) into E™ is an embedding
which is linear on each simplex of T. A linear isotopy h,: (C, T)—
E~te|0,1]) is a continuous family of linear embeddings of (C, T)
into E*. A simple push is a linear isotopy which is fixed except on
the open star of one vertex. A push is a sequence of simple pushes
each one performed after the preceding one.

2. Linear isotopies of arcs and f-curves. This section begins
with a theorem which states that two triangulated arcs linearly
embedded in E? with the same endpoints can be linearly isotoped to
a common arc in E*® keeping the endpoints fixed where the movement
takes place only in the closure of the unbounded component of the
complement of the union of the two arcs.

THEOREM 2.1. Let (A, T,) and (B, Ty) be two triangulated arcs
linearly embedded in E* which share common endpoints v and w.
Then there are linear isotopies g,: (4, T )— E*(t €[0,1]) and h,: (B, Tp)—
E¥tel0, 1]) such that

(1) g,=1id and h, = id,

(2) g,(4) = h(B) as subsets of E?,

(8) for all tel0, 1] both h, and g, leave both v and w fixed,and

(4) for 0=s=u=x1,9.,(4)Uh,(B) misses the unbounded com-
ponent of E* — (g,(A) U h(B)).

The proof of Theorem 2.1 uses the following lemma to reduce
bends.

LEMMA 2.2. Let (A, T,) be a triangulated arc linearly embedded
in E* from v to w, a be a vertex of A, and x be another point of
A such that

(1) the segment ax meets A only ot its ends and

(2) the disk D,, bounded by ax U A,, (where A,, denotes the
subare of A from a to x) contains neither v nor w in its interior.
Then there is a push h,: (A4, T,) — E¥te]0, 1]) so that

(1) h=1id,

(2) each h, is fixzed on each of a, v, and w,

(3) for 0=s<u=z=1hr(A)c(A—~ A,)U D;, where D;, is the
disk bounded by ax U h,(A),,, and

(4) h(A)=(4— A,)Uazx.
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Proof of lemma. Hypotheses 1 and 2 imply that D,,NA=A4,,. If
A,, contains only one vertex a; of A other than @, push a; straight
to z, shortening the edge of A containing x2. If x were a vertex
of A and the open arc (A4,,) contains only one vertex a;, a; could
be pushed to the center of ax. If the open arc (A4,,) contains more
than one vertex of A, triangulate D,, without adding interior vertices.
Find a shelling of the triangulation which leaves the 2-simplex con-
taining ax until last. Let the shelling guide a desired push of A.

The proof of Theorem 2.1 uses the following lemma to reduce
the number of components of 4 N B.

LEMMA 2.3. Suppose that (A, T,) and (B, Tp) are triangulated
arcs linearly embedded inm E* from v to w such that each of v and
w 1s accessible from the unbounded component of B> — (A U B). Then
there is o linear isotopy h,: (4, T,) — E*(t<[0, 1]) such that

(1) hy=1id,

(2) each h, is fized on v and w,

(8) for 0=s=u=l, h,(A) misses the unbounded component of
E* — (BUR(A)), and

(4) for each edge bsb;,, of B, bjb;,, N h,(A) is either empty,
connected, or comsists of exactly two points z and y so that x and
y are interior points of two consecutive edges of A.

Proof of lemma. Let b;b;,, be an edge of B.

Case 1. If b;b;,, N A contains a vertex of A, then by repeated
applications of Lemma 2.2, A can be pushed to make b;b; , N A con-
nected.

Case 2. Suppose that (b;6;., N A) = {x, x5, - -+, ,} Where each x,
is an interior point of an edge of A and z <z, <z, < --- <2z, on
b;bii-

If, for some 1%, 4, ., 6 contains two or more vertices of A, trian-
gulate D, , ., without adding interior vertices. As in the proof of
Lemma 2.2, follow a shelling that leaves the 2-simplex containing
%.2;., until last to push A to (4 — A,,.,,)Ux2x,,. Now apply
Case 1.

Suppose each A, , contains one vertex of A and b6,,NA
contains at least three points z, x,, and z,. Let a, and a,,, be respec-
tively the vertex of A between z, and z, and the vertex of A between
z, and x,. By moving @, toward z, and a,., toward x;, pivoting about
%, &; and a,,, can be linearly isotoped down to x, and x; respectively
and Case 1 can again be applied to make the image of A intersect
b;b;., in a connected set.
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The movements we used did not complicate the intersection of
the image of A and the other edges of B so we can finish Lemma
2.3 by considering the edges of B one at a time.

EXAMPLE 6.1. We note that Lemma 2.8 cannot be strengthened
to require a push rather than a linear isotopy as demonstrated by
Figure 2.1.
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@
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FIGURE 2.1

Note that no interior vertex of 4 or B can be pushed at all without
moving A or B partially into the unbounded component of E*— (AU B).

Proof of Theorem 2.1. The proof uses induction on n, the sum
of the number of bends in A and the number in B. If n — 0, A
and B coincide already.

We assume the theorem for % less than n and suppose that the
sum of the bends in A and Bis n. Let {a}>, and {b,)2_, be vertices
of A and B in order so that a,= b, = v, a, = b, = w, and (m — 1) +
(» ~ 1) = n.

Case 1. Suppose v or w (say ») is not accessible from the un-
bounded component of E* — (AN B). In this case find 2 point 2 on
A or B (say A) such that vz N ae, = @, va N bb, = @, and vz meets
A U B only at its ends.

If w¢lnt D,,, apply Lemma 2.2 to push A onto vz U A,, thereby
reducing the number of bends in A.

If welnt D,,, find a point ¥ on Bd D,, so that wy Nvx = @ and
WY N Cp—o@n = D. Let y' be the nearest point of wy N A, _, to w.
Since (4., Uwy’)c D,,, then D,, is a subset of D,, and hence does not
intersect vx. Since w is not in Int D, either, apply Lemma 2.2 to
push A to (A — A4,,)U y'w and thereby reduce the number of bends
in A. One can use the facts that the movement occurs in D,,,
D,, c D,, and D,, misses the unbounded component of E* — (A,. U B)
to show that Condition 4 of Theorem 2.1 is satisfied.

Case 2. Suppose v and w are both accessible from the unbounded
component of E* — AU B. By isotoping A according to Lemma 2.3
and then changing the roles of A and B and isotoping B according
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to the lemma, we can linearly isotope 4 and B to a position where
the conclusion of Lemma 2.3 is satisfied by both 4 and B. If this
adjustment reduced the number of bends in 4 U B, then Theorem
2.1 follows by induction. We assume that it did not and proceed to
congider five subcases of Case 2.

Subcase 2a. Suppose o, = b,. We apply induction to the two
arcs A,, and B,,.

Subcase 2b. Suppose va, < vb, and a,a, N B = {a,}. Then push a,
toward b,, pivoting on a,, until the moved a,a, hits a point of 4,, U
B,,.,. Let a; be the position of @, at that moment. If aia, N 4,,,
contains a vertex a;, push 4 to va, Ua,a; U Aajw by an application
of Lemma 2.2 and thereby reduce the number of bends in A.

If a/a, contains a vertex b; of B,,, push B to va, Uab; U B,,.
This push moves the vertex b, to the point @, and, therefore, throws
us into Subcase 2a which was already considered.

If a; = b, and aia, N (4., U B,,,) = &, then push a, to b, which
puts us into Subcase 2a.

Subcase 2¢. Suppose va, Cvb, and @, N B # {@,}. By Lemma
2.3, a0, B = {a,} U {y} where y is an interior point of b,b,.

Several things could happen. First, if b,b, intersects A in a point
z other than y, then z is an interior point of a,x, by conclusion 4 of
Lemma 2.3. Furthermore z € yb,. This is true because A4,, cannot
intersect the triangle a.b,w since such an intersection would violate
either Lemma 2.3 or the fact that w is accessible from the unbounded
component of E* — (AUB). We move ¢, to b, and a, to 2z, pivoting
about y. This procedure takes us to Subcase 2a which has already
been considered.

Second, if b, misses A,,,, it may be that the segment b, can
be extended slightly beyond b, without meeting the unbounded domain
of B* — (AU B). In this case, we let # be the first point at which
this extension of b,b, intersects AU B. If ze¢ B, apply Lemma 2.2
to push B to (B — B;,,) Ubx and thereby reduce the bends in B.
If xis a vertex of A push A to (A — A,,) U yx and then to (A — 4,,) U
vb, U by to reduce the number of bends in A. If x is not a vertex
of A but zeca,a, move @, to x and «, to b, while pivoting about y.
This puts us in Subcase 2a. If x ¢ A,,,, triangulate disk bounded by
A,. U yx without adding interior vertices. As in the proof of Lemma
2.2, find a shelling of this disk which leaves the 2-simplex containing
yo until last. Let this shelling guide a linear isotopy of A onto the
set va, Ua,y Uyx U A,,. Now @, can be moved to b, putting us in

Case 2a.
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Third, and last, if 8,6, A,,, = @ and bb, cannot be extended
beyond b, without intersecting the unbounded component of E* —
(A U B) then move b, toward b, as you move b, toward a,, pivoting
about y. If the pivoting segment bb, never meets a point of A,
nor B,, while b, is moved onto a,, then this linear isotopy puts us in
Subcase 2a. If not, then the first moment at which bb, meets 4.,
or B,, locates a vertex a; or bi(j = 3) such that the segment ya;
or yb; satisfies the hypotheses of Lemma 2.2. An application of
Lemma 2.2 would then reduce the bends in A or B.

Subcase 2d. Suppose vb, Cva,. This case is identical to Subcase
2b and 2¢ with the roles of A and B exchanged.

Subcase 2e. Suppose va, N B = v,

Perhaps the segment from v through «, can be extended beyond
a, without going into the unbounded domain of E* — (AU B). If it
can, extend it until the extension hits a point x of AUB. Ifx€ A,
use Lemma 2.2 to push 4 to vaUA,,, reducing the number of bends
in A. If xe B, use Lemma 2.2 to push B to vx U B,,. This either
reduces the number of bends in B or carries us to a previous case.

If va, cannot be extended as considered in the last paragraph,
examine the segment vx as x moves from @, to a, and find the first
z, at which vz, meets BU A,,, in a point other than v.

If vz, meets A,,,, let a; be the point of vz, N A4,,, nearest v.
Lemma 2.2 implies that A can be pushed to wva; U 4,,,, thereby
reducing the number of bends in A.

If vx, misses A,,, use Lemma 2.2 to push A to vz, U A,,. The
first edge vz, of vz, U A,,, contains a point of B other than v and
we are in a previous subcase.

The following theorem is used in the proof of Theorem 4.2.

THEOREM 2.4. Let (JU A, T) be a triangulated 0-curve linearly
embedded im E* so that A is a spanning arc of the disk bounded by
the stmple closed curve J. Let k be a homeomorphism of E? such
that klJ =1d and k|A is a linear embedding of (A, T|A). Then
there is o linear isotopy h,: (JU A, T)— E*te|0, 1]) such that h, =
id, b, = k|JU A, and for each t in [0, 1], h,|J = id.

Proof. Let (A, T|A) and (k(4), k(T|A)) be the two arcs in
the hypothesis of Theorem 2.1. Let f/: (A4, T|A)— E*t<]0, 1]) and
gy (k(A), E(T|A)) — E*(t<]|0, 1]) be linear isotopies satisfying the
conclusion of Theorem 2.1. Each of these linear isotopies can be
extended to J by the identity. We do so and abuse the notation
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slightly by letting f; and g, now denote those linear isotopies of
(JUA, T) and (k(JU A), k(T)) respectively.

Now f/(A) = g,°k(A) as sets; however, it may not be the case
that f/|A equals g,ok|A. (See Figure 2.2.) In order to rectify this
situation find a linear isotopy fi':(JUA, T)— E*t <0, 1]) such that
v =fi, f'|A=g,°k|lA, and for each ¢t in [0, 1], fi'|J =1id. The
linear isotopy f;’ simply moves the vertices of f/(A) until they are
in the position to which they are mapped by kog,. Note that for
any ¢ >0 f’ can be chosen so that for each t in [0, 1], f;"(4) lies in
the e-neighborhood of f/(A); however, as illustrated in Figure 2.2,
it may not be possible to have f;'(4) = f/(4) for each ¢.

A linear isotopy h, satisfying the conclusion of Theorem 2.4 can
now be obtained by performing three linear isotopies in succession.
First perform f/(¢€[0,1]), second perform fi'(t€[0, 1]), and finally
perform g, .o k(¢ €[0, 1]).

Note that for any ¢ > 0, h, could be chosen so that for ¢, h,(A4)
almost misses the unbounded cOmponent C of E* — (A U k(A)) where
“almost” means that h,(A4) misses C except for an e-neighborhood of

fi(4).

FIGURE 2.2

3. Super triangulations. A triangulation T of a disk P is super
if and only if it has the following three properties.

(1) Every linear embedding of Bd P in E*® can be extended to
a linear embedding of (P, T).

(2) If f and g are two linear embeddings of (P, T) which
agree on Bd P, then there is a linear isotopy &.: (P, T') — E*t €0, 1])
such that %,=f, h, = ¢, and for all ¢te[0, 1], 2,|BdP = f|BdP =
g|Bd P.

(8) If hy, and h, are two linear embeddings of (P, T) into E?
and f; is a linear isotopy of Bd P into E* from h,|Bd P to h,|Bd P,
then f; can be extended to a linear isotopy of P from h, to h,.

It may be noted that Properties 1 and 2 imply Property 3. To
see that this is true one could use Property 1 and the compactness of
[0, 1] to cover [0, 1] with subintervals [¢, ¢, [¢, &1, - - -, [t._,, £.] such



314 R. H. BING AND MICHAEL STARBIRD

that for each 7 there is a linear isotopy hi: (P, T) — E? t&lt, t,..] with
hi|BAP = f;|BdP. Although h{,, and k! need not agree on interior
vertices of T, Property 2 can be used to adjust them so they do.

In this section we produce (in Theorem 3.4) for each integer
n{n = 3) a super triangulation T, of a disk P, which has n 1-simplexes
on the boundary. For n = 3, T, could be chosen to be a single 2-
simplex. For n =4 or 5, T, could be chosen to be obtained by
coning from an interior point to Bd P,. This T, is super since any
linear embedding of Bd P,(n = 4, 5) would bound a star-like disk.
To produce T,, we add an annulus A to P, so that A has five 1-
simplexes in the boundary component which is Bd P,, but six in the
other. This annulus is given a specific, simple triangulation. It is
shown in Theorem 3.3 that if one begins with a super triangulation
of a disk with # sides and enlarges the disk and triangulation by
the addition of an annulus which is triangulated as specified in Theorem
3.3, then the new triangulation of the new disk is also super. Thus
to produce T, another annulus is added on to P;. This process is
continued to produce triangulations 7', where each T, has a bull’s-eye
pattern. ‘

Theorems 3.1 and 3.2 have the same general form as Theorem
3.3 except where different triangulations of the added annulus are
considered. They are included in this section because their proofs
contain techniques used in the proof of Theorem 3.3. They are used
explicitly in the next section.

DEFINITION. Let J be a PL simple closed curve in E®. A point
z in Int J can see J if and only if for each point ¥ in J the segment
2y meets J only at y.

THEOREM 3.1. Suppose (P, T) is a triangulated disk, A is a
subcomplex of T which is an annulus containing Bd P, the closure
of P— A is a disk D, and A has the following triangulation.
Namely, A is the union of n 4-sided disks v,v, . w, W, (t =1,2, -+, m,
counting is mod n) where for each i, v,€ BA P and w,cBd D and the
2-simplexes of T im A are precisely those of the form vww,., or
WV Wipy. Then T super of T s restricted to D is super.

Proof. Let h be a linear embedding of Bd P in E* with h(v,) = vi.
To show that (P, T) has Property 1 we can pick the image of w, to
be w;, a point in Int 2(Bd P) near v; on the bisection of angle v;_vivi,,.
This linearly embeds A. The fact that T restricted to D is super
ensures that the embedding can be extended.

Next, we show that (P, T') has Property 2. For convenience we

suppose that f is the identity and g(w,) = w: is as described in the
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preceding paragraph. Our plan is to push each w, to w; and use
the fact that D has Property 3 to show that (P, T) has Property 2.

Special Case. If v, w, w,; is convex we could push w; to a
point near »; along w.v, and then push it to a point near v, so that
if w} is the new w,, both v,_vwiw,_, and vw, w, w; are convex.
Similarly, w,_, can be pushed to w;i_,, a point near v,_, so that both
VgV Wi w,_, and v,_vww; , are convex. Continuing back through
the w,’s (and counting mod n) each w, can be pushed to w; a point
near v, so that each quadrilateral v;v;,,w;,,w; is convex. Now we

can push each w; onto the bisector of v,_,v,v,,, and then to w;.

General Case. Finally we show that some w,,, can be pushed
to wi!, so that the resulting v, wiyw, is convex. To do this, we
pick an ¢ so that w,w,,, is a spanning arc of D. (If » = 3 there is
no spanning arc and we use w,w, for w,w,.,.) We note that w,,, can
see Bd v;,,v;,,w;,,w; s0 it can be pushed in a straight line to a point

1424 0

w;;, near the side w,v,,, so that w;}, can see Bd vv, v, . w; ., w;. The
resulting v,v,. . wi},w; is convex and we proceed as in the Special Case.

THEOREM 3.2. Suppose (P, T) is a triangulated disk and A 18
o subcomplex of (P, T) such that A is an annulus containing Bd P,
the closure of P — A is a disk D, and A has the following trian-
gulation. Namely, A is the union of m 4-sided disks v,v,. W . W,
(t=1,2, «--, n, counting s mod n) where for each j,v;€BdP and
w; € Bd D, and T restricted to A is determined by coming over the
boundary of each of these 4-sided disks from an interior point. (See
Figure 3.1.) Then T is super tf T restricted to D is super.

U1

Y2

=
/

v;

Fieure 3.1

Proof. To show that (P, T) has Property 1 we let & be a linear
embedding of Bd P in the plane and place the image of w, near h(v,)
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in Int A(Bd P) and on the bisector of angle A(v,_)h(v,)h(v;.,). The
linear embedding of P can be completed since T restricted to D is
super.

To show that (P, T) has Property 2 we suppose that f is the
identity and g(w,) = w; is near v, and on the bisector of angle »,_,v,v,...
We wish to push w, to wi.

Let X, be an interior diagonal of the disk vw,,w,, w, If the
disk is convex, there are two choices of X,, but if it is concave,
there is only one choice.

If the X’s can be chosen so that some w; is not the end of any
X, push this w; along w;v; to a point near »;. Then push it to a
point w; near wv; so that v;_v,wiw;_, and vw; w;, W, are convex.
Now their diagonals can be chosen in two ways. We pick them to
contain w; and find that there is another w, with no X containing
it. It in turn is moved into a position w, analogous to w; above.
Continuing, we find that if we can get started and can move one
w, to a good position, the others can be pushed into position also.
Once each w; has been moved to a point w) near »; so that each
quadrilateral v;v;,, w}, w; is convex, each wj is pushed to a point
on the bisector of angle v;_v;v;,,. Finally, each w; is moved along
the bisector to wj. As the boundary of each quadrilateral disk
VWV WiV, 1S moved it is a minor matter to move the vertex that
is on the interior of the quadrilateral.

If the X’s are chosen so that each w; is the end of an X then
each w; is the end of precisely one X since there are the same
number of X’s as w’s. By considering a new triangulation 7’ of A
whose 2-simplexes are those into which the X’s divide the quadrila-
terals, we note that the new triangulation of A4 makes it satisfy
the hypothesis of Theorem 3.1. The result then follows from Theorem
3.1.

The next theorem is a generalization of Theorem 3.2 in which
we allow the annulus to have a slightly different triangulation.

THEOREM 3.3. Suppose (P, T), A, D, are as in Theorem 3.2
except that Bd P has an extra wvertex v,,.,, counting is mod n in
subscripting the w’s but modn + 1 in subscripting the v's and T
restricted to A has an additional 2-simplex v, . vw,.. Then T is
super if T restricted to D is super.

Figure 3.2 gives a schematic view of the quadrilaterals in 4. It
does not show the vertices of T in the interiors of these quad-
rilaterals since these interior vertices can be dragged along as the
boundaries of the quadrilaterals are moved.
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Ficure 3.2

Proof that (P, T) has Property 1. Let H be a linear embedding
of BAP in E?. For convenience we denote h(v;,) by v, and the disk
bounded by A(Bd P) by P. We cannot hope to put the images of
the w’s near the corresponding v’s if wv,v, is not a spaninng arc
of P,

Let & be the largest of 1,2, -+-,n + 1 for which v,_,v,,, is a
spanning arc of P. The image of w, is denoted by w; and is located
as follows: w; is in Int P near v, and on the bisector of angle v,_,v,v,,,
if ©=1,2,+--,k—1; w; is near v,,, and on the bisector of angle
VWV if 1 =1, o0, m.

Proof that (P, T) has Property 2. We suppose f is the identity
map and g(w;) = w; is as described in the preceding paragraph. The
cases where n = 3, 4 need a slightly different approach so we do not
include them. '

We start by retriangulating A as was done in the proof of
Theorem 8.2. This is done by removing the vertex inside each
quadrilateral v,v,,,w, ., w, and using a diagonal X to divide the quadrila-
teral into two 2-simplexes. If the quadrilateral is convex there two
choices for X but if it is concave there is only one choice. Note
that with the new triangulation T” of A, the sum of the orders of
the vertices on Bd D is 4n + 1.

The proof is now broken into steps with Steps a, b, and ¢ being
used to push certain w’s near their corresponding %’s, Steps d and
e to push all w’s near Bd P, and Step f to push the w’s to the w'’s.

Step a. Pushing one w. If some w, (¢ # 1) is not on any X, it
is of order 3 in 7" and we push w, along w,v; to a point near v, and
then to a point w; near v; so that both v,_vwiw,_, and v, ,w, . w;
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are convex. We do not claim that w'; is near w; since w; may be
near v,,, rather than near v,.

If no w, is of order 3, then one w is of order 5 and the others
are of order 4. In this case we pick a w; of order 4 such that
w;_W;., is a spanning arc of D. Figure 3.3 shows one possibility
where 7 = 1 and dotted

FIGURE 3.3

X’s lean one way. For any spanning segment (w;,,v;) of a 5-sided
planar disk (w;_,w;,,v;,,v;%;_,) one end or the other is in the closure
of the points which can see the whole boundary. Let z be a point
which can see the boundaries of both w;_,w;,,v;v;_, and w;_ w;, v;,,v;v;_,
and push w; to x. For convenience suppose that x = w;. Note that
Ww;w;. Vi v; 1S convex and its triangulation can be changed by re-
placing X; by the other diagonal. This makes w; of order 5 in the
new triangulation and causes some other w, to be of order 3. While
the above argument is based on Figure 3.3 the argument is similar
if the X’s lean the other way or if 5 = 1.

Since the new triangulation made w, of order 3, it can be pushed
near v, as previously described. We say that w, was crushed. Since
each of the quadrilaterals containing this crushed w, is convex, we
suppose that the triangulation of the adjusted A is such that the
crushed w, is of order 5.

Step b. Pushing another w. By considering another spanning
segment w,w,,, of D, it can be shown that we can move other w's
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(leaving the one fixed considered in Step a) and get a new triangulation
of the resulting A such that another w; is of order 3 in the new
triangulation. This w; is pushed to a point w; near v; so that the
quadrilaterals of A containing w) are both convex.

Step c¢. Pushing a string of w’s. We continue pushing the
w,’s (1 # 1) to points near their corresponding v,’s as long as this can
be done. It can be shown that if both w,; and w; have been crushed
with 7 # j then all w’s between them have been crushed. Hence a
string of adjacent w’s have been crushed and the string has at least
two crushed w’s. Figure 3.4 shows the situation. The diagonals in
the quadrilaterals with a crushed vertex are not shown since they
are convex and the X’s can lean either way. The quadrilaterals
which do not have a crushed vertex are concave and have their X’s
as drawn. (Figure 3.4 is schematic and shows them as convex rather
than as concave.) Let w; and w, be the first and last w’s respectively
that are crushed.

FIGURE 3.4 (Schematic)

Step d. Leaning w’s. Let w;_w;., be a spanning segment of
D. Since w; can be adjusted and the triangulation adjusted to make
w; of order 5, we note that je{f —1,f, ---,[,1 + 1}. We suppose
7 was selected to be minimal. It is not ! or I + 1.

If j=f — 1, we consider the 5-sided disk w;_,w;vsv,_v,_, and
note that w;_, can either be pushed to a point near w;, or to a point
near v,_,. Since we are assuming that v, w;_w; ,vs_, is not convex,



320 R. H. BING AND MICHAEL STARBIRD

we know that w;_, cannot be pushed to a point near v,_,. Therefore
we push w,_, to a point near w; and say that w,_, leans forward.

After w,;_, is moved to a point near w,, w; is moved to a point
near vs,, Wy, t0 a point near v;,, ---, w, to a point near v,., w,
to a point near v, ---, and w;_, to a point near v, ,. In this case
we have pushed all the w’s near the #’s but not necessarily to the
corresponding ?'’s.

Similarly, if j = f + 1, ---, l — 1 we can lean certain w’s forward
and send others near their corresponding v’s.

If 7=, we are faced with a different situation. See Figure
3.5. Although w;_w;,, is a spanning arc of D, v,_,v;,, need not be
a spanning arc of P. However, we push w; along w;w;,, to a point

Figure 3.5

wy~2

Vf/Z

W1

Wyr+1 Vyio
Fi1Gure 3.6



SUPER TRIANGULATIONS 321

near wy.,, which is close to v;,,. This move may destroy the convexity
of vywyw;_v,,. However we push w,,, to a point near v, «++, w,
to a point near v,., w, to a point near v, ---, and w;_, to a point
near v;_,. Figure 3.6 shows the difficulty of proceeding to push w,_,
down to a point near wv,_,.

Step e. Pushing the last w close to Bd P. If wyw;_,v;_v; were
convex we could push w,_, to a point near v,_,, but if it is concave,
v, may block the edge w;_,w;. We suppose this is the case and push
wys_, toward v,_, but stop before w;_,w; hits »;,. Now there is a
point = on w,;_,w; very close to v, so that x can see v,_, and v;,,.

Let w;_,w;,, be a spanning arc of the new D such that 5 = f —2
or f—1. If j=f, consider w; v, v;w;_, and push w; to x. Now
w, is near v; and w;_, can be pushed along w,_,v;_, until it is near
Vy_qe

Ifj=f+1,.--,n, we push w; to a point near »;, then w;_, to
a point near v;_,, ---, w; to a point near v, and w;_, to a point near
v, I 5=12---,f—38 we push w; to a point near wj,;, then
w;., to a point near v;,, ---, and finally w;_, to a point near v,.
It is to be noted that each w, is now near either v, or v,,,, that a
string (perhaps null) of w’s lean forward and the rest are near their
corresponding v’s.

Step f. The final moves. We recall that & is the largest of
1,2 ---,n + 1 for which v,_,v, is a spanning arc of P. Hence it is
not 1 or 2.

If there is no w near wv,, the w’s are now in their standard
position.

Suppose some w is near v,. This w is either w,_, or w,. We
let v, be the v with no w near it.

We now show that w, is not near v,. If it were, w,, w, ---, w,
would be near v, v,, -+, v, respectively and r =%k + 1,k + 2, ---, or
n 4 1. But then there would be a spanning arc v,._,v, of P and this
violates the definition of %.

If w,_, is near v,, we push w,_, to a point near v,_, w,_, to a
point near v, -+, and w, to a point near »,. Each w is now near
the correct » and only a small adjustment is necessary to move each
vertex w to standard position.

THEOREM 3.4. For each integer n = 3, there is a triangulated
disk (P,, T,) such that P, has n sides and T, is super.

Proof. For n =4 or 5 we can produce T, by coning over Bd P,.
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Once a (P,_, T,_,) is obtained, one can construct a (P,, T,) by putting
an annulus A as described in Theorem 3.3 about P,_,.

Question 3.1. It may be noted that for n > 4, the T, we described
has 2n" — n — 40 2-simplexes. How low could one go?

Question 3.2. Let T be a triangulation of a disk which satisfies
Property 1 of a super triangulation. Is 7' super?

4. Super subdivisions. In this section we prove (Theorem 4.2)
that every triangulation of a disk has a subdivision which is super
and does not subdivide the boundary. Theorem 4.1 is the principal
tool used in the proof of Theorem 4.2 and is of the same type as
Theorems 3.1, 3.2, and 3.3.

THEOREM 4.1. Suppose (P, T) is a triangulated disk and A s
a subcomplex of (P, T) such that A is an annulus containing Bd P,
the closure of P — A is & disk D, and A has the following trian-
gulation. Namely, A is the union of n 4-sided disks Vv, Wi\, Wi,
t=1,2, , n, counting s mod n, and for each j and Fk, v,eBdP
and wj,,,eBd D) together with 2-simplexes vw; W, ;. (J=1,2, -
k, — 1) where T restricted to A contains the 2-simplexres viwi,,-wi,,-ﬂ
together with those determined by coning over the boundary of each
4-sided disk from an interior point. (See Figure 4.1.)

Then T is super if T restricted to D vs super.

i+2

FIGURE 4.1

Proof. Theorem 3.2 is a special case of this theorem and is
actually the most difficult case.
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The proof that (P, T') has Property 1 is essentially identical to
that in Theorem 3.2 so we do not do it.

If k, =1 for each ¢, then (P, T) satisfies the hypotheses of
Theorem 3.2 and, therefore, T is super.

We assume that there is a 7 for which k; # 1 and proceed to
prove that T has Property 2. We assume that f is the identity and
that for each 4 and 7, g(w, ;) is a point near v, and near the bisector
of angle v, v,v,,,.

For each j where 1 < j < k,, push w, ; straight along »w,; to
a point near v,.

In each quadrilateral v,v., w,,, ,w;,, draw a diagonal X,. We
have added » diagonals. Since for some j, k; # 1, there is a vertex
Wy, OF w;, Wwhich is not met by any X. Suppose w,, is not met.
(The other case is analogous.) That vertex w,, can be pushed straight
along vw,, to a point near v, and then to a point w;, so that
Vi VWi Wiy ,_, 1S convexX. Replace its diagonal by the one that
contains w;,. This change guarantees the existence of another vertex
Wj,, OF w;,; Which is not met by any diagonal. This vertex can now
be pushed toward v; as was done before. Continuing in this fashion,
all the vertices w,; can be pushed near their corresponding vertices
v;. An additional slight adjustment will bring each w,; to the
desired location g(w; ;).

THEOREM 4.2. Every triangulation T of a disk P has a super
subdivision which does not subdivide the boundary.

Proof. The proof is by induction on %, the number of interior
vertices of T.

Case m = 0. Suppose T is a triangulation of a disk P which
contains no interior vertices. Suppose Bd P has & sides.

Let {A.}:=} be the 1l-simplexes of T which hit Int P. Subdivide
each A, by adding %k interior vertices. The super subdivision 7" of
T is now obtained by examining each 2-simplex o of T, noting that
Bd o has been subdivided and giving ¢ a super triangulation without
further subdivision of Bd ¢ using Theorem 3.4.

We now claim that 7’ is super. First notice that any linear
embedding of Bd P can be extended to a linear embedding of the
A/’s since they each have so many bends that they can be laid along
the embedded Bd P. Since each subdisk has a super triangulation,
this embedding of Bd P U (UJ:=? A,) can be extended over each subdisk
into which the A4,’s divide P.

Next we show that 7" has Property 2. Suppose g, h: (P, T") — E*
are two linear embeddings which agree on Bd P. The plan is to push
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both g(A,) and h(A4,) to a common arc for each ¢ and then use the
properties of the super triangulations of each subdisk of P into which
the A,’s divide P to complete the proof.

Suppose A, = v,v, is a 1-simplex of T belonging to a shellable
2-simplex v,v,v;, of T. Use Theorem 2.4 to push g(A4,) to an arc ¢g'(4,)
with a push that leaves g(Bd P U (Ui 4,)) fixed and makes g’(4,) lie
smoothly near g(v,9, U v,,) so that ¢'(4,) N k(v,v,v,) = g(v,) U g(w,).

Next use Theorem 2.4 to push i(A,) to the arc #'(4,) with a push
that leaves A(Bd P U (Ut 4,)) fixed and makes h'(4,) = ¢’(4,). Fol-
lowing a shelling of T and repeating the above process of moving
g(A,) first and then moving h(A,) to agree, the g(A,)’s can be made
to agree with the h(4,)’s.

Using the fact that each subdisk into which the A,’s divide P
has a super triangulation, these pushes of arcs can be extended to
make the pushed g agree with the pushed .

The inductive step. Suppose T has n interior vertices and the
theorem is true for triangulations with fewer than » interior vertices.

Let w be an interior vertex of T so that Lk (w)NBd P contains
a vertex v. Let A be a tight annular reighborhood of Bd P which
contains no interior vertices of P. Let D=Cl(P — A). Let z =
vw N BdD. Let 2’ and 2" be two points on Bd D on either side of
z and very close to z. Let A" be the larger annulus whose inner
boundary component contains z’w and 2w rather than 2’z and 2"z.
Find a triangulation T(A*) of A" which is a subdivision of T and
makes A* into an annulus as described in Theorem 4.1. Now
CI(P — A*) can be given a triangulation T(Cl(P — A%)) which is a
subdivision of T, which has no additional interior vertices, and so that
T(AT)|Bd (C1 (P — A7")) is a subcomplex. By induction T(Cl (P — A™))
has a super subdivision 7’ which does not subdivide Bd (C1(P — A™)).
By Theorem 4.1, T" U T(A") is a super triangulation of P.

The following result is an immediate corollary of Theorem 4.2.
It appears with a different proof in {1, Theorem 5.2].

COROLLARY 4.3. Let f be o PL homeomorphism of a PL disk P
in E* which is fized on BAP. Then there is a triangulation T of
P and a push of (P, T) which takes the identity to f and leaves
Bd P fized throughout.

Question 4.1. Let T be a super triangulation of a disk P. Is
every subdivision of T which does not subdivide Bd P also super?

Note. Example 2 in the introduction can be constructed with
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only three interior vertices. No such example could have only one
interior vertex. In a preprint of this paper we posed the question
of whether such an example could be constructed with only two
interior vertices. C. W. Ho has recently answered this question in
the negative by proving that the space of all linear homeomorphisms
of an n-cell (C, T) which agree on Bd C and where T has only two
interior vertices is a contractible space given the compact-open

topology [3, p. 2].
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