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The set <% consists of all real biaxially symmetric poten-
tials U“@P(x, y) = X0 a.(@*+y*)" Pl O —yt a+y?) P £(1),
a > B> —1/2 which are regular in the open unit sphere X
about the origin in FE2“*#*®, Three problems appear re-
garding < and subset <%, whose members have the first
m+ 1 coefficients a, -+, @, specified. (1) For U“.f e,
determine I(U“.#) = inf {U“.#(x, y)|(x, y) €2} as limit of a
monotone sequence of constants {i,.(a,, ---, a,)}-, which can
be computed algebraically. (2) Find U{*-#’ ¢ <%, and the con-
stant Zpn(ao, -+ -, a,)=sup {I(U «P)|UP e Z}=L[U*P). (3)
Determine necessary and sufficient conditions from the Fourier
coefficients so that U‘-» ¢ < and U*-# is nonnegative in .
We develop solutions using operators based on Koornwinder’s
Laplace type integral for Jacobi polynomials, along with ap-
plications of the methods of ascent and descent to the
Caratheodory-Fejer and Caratheodory-Toeplitz problems which
focus on the properties of harmonic functions in E2.

1. Introduction. Real biaxially symmetric potentials (BASP)
U“# which are regular in some domain £2 about the origin in
E*=t8 may be expanded uniquely as a series

(1) U2z, y) = a,+ 23 a,UeP (@, 9), B> —1/2

in terms of the complete set of biaxially symmetric harmonic poly-
nomials

(2) UP(x, y) = (0° + ¢ PP — o*fa* + )PP (1),

defined from the Jacobi polynomials [1, p. 9]. These functions are
necessarily even, satisfying the Cauchy data

(3) U0, y) = Uy, 0) = 0

along the singular lines =0, y = 0 in 2.

Symmetry about one axis reduces U®* to zonal harmonics (a=2),
identifying U'*# as a generalized axially symmetric potential (GASP)
[1, p. 10; 5, p. 167] which corresponds to the real part of an an-
alytic function of one complex variable when & = 8 = —1/2. This
simple correspondence provides characterizations of the fundamental
properties of harmonic functions in E* from their Fourier coefficients
in circular harmonics as they are determined by those of the as-
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sociated analytic functions; serving as a point of reference in seeking
the singularities, zeros, and extremal values for other parameters
a, B.

R. P. Gilbert [5, 6] employed properties of the Jacobi polynomials
to represent each (complex valued) BASP as the integral transform
of a unique associated analytic function of one complex variable and
conversely. Then reasoning as in the “Envelope Method” [4, 5], a
generalization of the Hadamard argument in the Singularities Theo-
rem [3, 5], he showed that the classical criterion of Hadamard and
Mandelbrojt [3] for determining the location and structure of the
singularities of harmonic functions in E? from their Fourier coef-
ficients provides analogous information for BASP in FEX*tétd,
a, B> —1/2,

M. Marden [11] and P. McCoy [12, 13] applied convexity argu-
ments and conformed mapping techniques to the Bergman <7, [2, 5]
and Gilbert .7 [4, 5] integral representations of GASP, describing
their value distribution as in the classical Cauchy [10, p. 123],
Caratheordory-Toeplitz [16, p. 158] and Schur [17, p. 159] coefficient
theorems for harmonic functions in E®. T. Koornwinder’s [1, 9] new
Laplace type integral for Jacobi polynomials was used by P. McCoy
and J. D’Archangelo [15] to extend properties developed by Marden
for the zeros of axijally symmetric harmonic polynomials to harmonic
polynomials with biaxial symmetry.

Further applications of Koornwinder’s integral by McCoy [16]
produced operators mapping analytic functions of one complex vari-
able onto (complex valued) BASP and conversely. These operators,
valid for limited ranges of the parameters, permitted a partial ex-
tension of the Caratheodory-Toeplitz and Schur theorems. Moreover,
a new aspect of the coefficient problem—that of the extremal properties
of the real axially symmetric potentials of the Caratheodory-Fejer
[8, p. 145ff] type—was introduced by operators related to <&, and
. -

’ This article provides a unified treatment of the above mentioned
theorems and properties, extending them to real BASP without re-
striction beyond Koornwinder’s on the parameters. Taken in union
with Gilbert’s theory of singularities, it completes the generalization
of the classical coefficient theorems pertaining to real harmonic (or
analytic) functions in H®. These may be also viewed as a means of
calculating the infimum (supremum) of solutions to the biaxially
symmetric potential equation [5, 9] from the Fourier -coefficients
which taken with the methods of ascent and descent [4] indicates
similiar possibilites for solutions to more general partial differential
equation generated by operators whose properties are analogous to
those found in
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2. Basic formulas and definitions. Koornwinder’s formula [9,
p. 130] represents the biaxially symmetric harmonic polynomials as

(4) U@ ) = | | Cdpantty ), a>p> -1
(5) = — ¥y’ + 12xyt cos s
with nonnegative measure

Al sty 8) = Vo s(L — t2)*7#71420 Y (gin s)**dtds

(6) Yo = 2T(a + T2 @ — B8 + 1/2)

normalized so that

(7) |Vt =1.
0Jo
The real harmonic polynomials

(8) (%, Y) = u(2* — ¥, 20y)
v(%, Y) = v (" — ¥, 209)
are defined by
(%, Y) + a2, Y) = (2 + )" .
Expanding the vector {" in terms of these as
(9) {r = u,(x* — y*t%, 2xyt cos s) + v, (x* — Yt 2wyt cos s)

and transforming according to Koornwinder’s formula establishes that
v,, the harmonic conjugate of u,, is in the null space of (4). This
suggests the relation

10) U, w) = |\t — v, 200t cos s)dpttt, 5)

0Jo
associating the real (even) BASP (1) and the real (even) harmonic
function

11 w@, ¥) = @, + 2 g @ Un(Zy Y)
viz. i
u(x® — ¥, 20y) = a, + 2 g‘i a,u, (@' — ¥, 22Y)
by the operator
(12) U? = A, (w)

whose definition is



334 PETER A. McCOY

1«
(13) Ued(x, y) = S S u(x® — Y3, 2oyt cos 8)d e, (L, s) .

0J0
Evidently, if # is harmonic in the open unit disk D, of radius p
about the origin in E?, U“? is a BASP in the open unit sphere X,
of radius p about the origin in E*té+®,

The inverse operator (related to Z;% [see 6]) uses orthogonality
of the Jacobi polynomials

| Per@PEt @ — 0L + 0Pdr = B, @, 8> — 1
—1
to define the measure

dua,ﬁ(é) 7, T) = Sa,ﬂ(s’ 7, T)(l _ T)a(l + T)ﬂdT )

4o Susle 1, 7) = 36, DPEAEPEAD

inverting the relation (10) as

+ —
(2, Y) = S 1U£:"“<r\/1 5 5 r\/l ;L T)dva,ﬂ(m“, yr, o),
—1

determining the inverse operator
w = A7 (U*P)

as

A 1—-7 J1+T P
— (a,$) 1 grpe—t
1) e, = | e (r Lo e B D e, ).

An absolutely and uniformly convergent dominant of S, ; for (&, », 7)
on compact subsets of [0, 1) x [0, 1) x [—1, +1] is the Poisson kernel
[1, p. 11]. By construction of the operators, it follows directly that
A, and A% are one-one onto maps between the families

=0 = (U8 |expansion (1) regular in XY,}, a>8> —1/2

and
4, = {u|expansion (11) regular in D,}

which share the normalization
Anp(l) = Azs(1) = 1.
A principle interest is in the values of the functionals
I( U(a:ﬁ)) — lnf U(“:ﬁ) , U(&,.ﬂ) ey/(%ﬂ)
z

w(u) = infu , UE £
D
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(subscripts p = 1 are dropped) as they are determined by the minimal
eigenvalues Ay (@, * -+, a;) of the Toeplitz matrices

a 0 a, 0 @, 0 a,--- a;

0 ¢,0 @, 0 0,0 --- 0
(16) Tty »++, ) =@, 0 @, 0 @ 0 a,--- Qs

a, 0 --- a,

found by applying theorem (a) [8, p. 147] to the function F(z) =
f(z). We now turn to

3. Extremal properties. The following is an extension of theo-
rem (a) [8, p. 147] referred to in an equivalent form [7, p. 499ff]
as the Caratheodory-Fejer theorem which is how we identify it.

THEOREM 1. Let Uz, ¥) = @y + 2D o1 a0, U (x, y) be a real
BASP regular in the sphere 3 and {Mu(@y, <+, ap)lies be the sequence
of smallest eigenvalues associated with the Toeplitz matrices

{Tolay, <+, ap)lie. Then
17) IU?) = lim Np(@g ++y ), @> B> —1/2.

Proof. For the nonnegativity of the measure (6) and the nor-
malization (7), it is immediate that
UP(z, y) = Agp(w) =2 W(u), a>F> —1/2
and

(18) LU= = a(w) = Um Moo, =+, @) -

The smaller functional is evaluated by the Caratheodory-Fejer theo-
rem [8, p. 147]. Anticipating the reverse inequality, we define the
functionals

I (U@?) = inf U®#
Z'po

To,(%) = inf u
Do,

with
00 = sup{0|Ses(& 1, 7) >0, &+ < <1, ce[-1,1]}.

The number p, exists since S, is continuous in a cylinder of small
enough radius with center on the z-axis, ve[—1, +1], and p, is
positive as S, (0, 0, 7) = 1 there.



386 PETER A. McCOY

Now, if U®"(x, y,) is a BASP which is nonnegative for x? +
y? < ot and the A7’ associate is u,, then

(2 ¥) = AZR(USH)
= AL (UE™) = L(UE?)
so that

(19) i) Z Ly(UEP)

The homothetic transformations x,=p0,x, ¥,=p0,y, and the homogeneity
of the harmonic polynomials

U(%, Y) = 05 " U, (200 Y0O,)
and

Ui?(z, y) = 05 Ui * (200 Y0,)
produce harmoric functions
Uiy Y1) = Qo + 2 3, 0,06 U0, )
and

Ug:x’ﬂ)(xu yl) = @ + 2 i;“ amOO—MU’%x’?)(x“ yl)

regular for «} + yi < p; corresponding to the regular functions (1)
and (11) in 2* + 9* < 1. Evidently,

L(UE) = (U
iy (1ty) = JU?)

and because of inequality (19),

(20) W) = (U=,
Thus,
(21) t(u) = I(U'“P)

and because of (18) the theorem is proved.

We next define the set S£7&# = s#7 @ (q,, ---, a,) as the subset
of 2## whose members have their first m + 1 coefficients a,, - -, @,,
fixed and turn to the analogy of the second classical theorem [8, p.
151].

THEOREM 2. Let U“? e 578 (a,, -, a,) be expanded as in (1)
and NGy, *++, @,) be the smallest eigenvalue of the Toeplitz matrix
Tty *+*, @,). Then

KUY < Ny @> 8> —1/2
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and
sup {I(U'*#)|U'“? € 2" (ay, -+, @n)}
= I(UFP) = Mo

for unique U* e 2P (ay, -+, a,) expanded as

7
U (@, 4) = Mo + 23 0. WiP(2, 9)
=1

P (@, y) = Aus(we)
wi(x, ¥) = [1 — (@ + y)]lgulz, I,
gz, ¥) = 1 — 2(2* + 9*) cos {2 arc cos 2/V 22 + ¥ — o}
+ (@ + ¢y

(22)

for unique 1 £ j =< m, ¢,€[0, 2r), 0, > 0 provided ¢ + --- + ¢, =0,
otherwise 1f and only +f

(23) Ui P(x, y) = ¢ = My, -
Proof. For the subfamily 22°{# we associate the subfamily

£, = AZS{(U@P | UP ¢ 22¢P)} whose members u satisfy the requisite
inequality [8, p. 151},

(24) z(u) = )"2m(a0, Y a’m) .

The matrix T,.(ay, -+, a,) is identified from [8, p. 146] by u(zx, y) =
Re f((x + iy)*). Because of the relation (21), we find

IU*P) = Mau(@y +++, @)

The A7 associate of the extremal function U{# is

J
U Xy Y) = Mgy + ,; owi(%, Y) ,

wi(®, ¥) = 1/2[g:(2°) + gu(Z)], 2= + iy
0x(2) = (1 + &2)/(L — &42), |el =1.

Because of (12), u, transforms onto the required extremal function
(22) as defined.

The final result is the generalization of the Caratheodory-Toeplitz
theorem [8, p. 152; 17, p. 157] which classified nonnegative harmonic
functions in D from their coefficients.

THEOREM 3. Necessary and sufficient conditions for the expan-
ston U™P e 227" and

U, ) =20, ©+9¥¥<1l, a>L>—1/2
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spectfy that the determinants
A'n(am ) an) = det Tm(aor M) 0/,,,)

generated from the coefficients of the expansion are either

(i) An(a’()}“'ran)>0, %'—“0,1,---
or 1n case
(ii) A’ﬂ(a’o,""a’n)>0’ ’ﬂ=0,'-~,m,

Aﬂ(aoy..'ran)zoy n:m+1,"',
where U=z, y) = U (%, ¥) — Nam -

Proof. When u, the associate of U'*#, is nonnegative and regular
in D so must U“? be nonnegative and regular in Y because the
measure of the transform is nonnegative. This is indeed the case
[see 8, 18] if (i) or (ii), establishing the sufficiency. Conversely,

U@y Y1) = Ay (UEP) Z 0
when
UeP(z,y) =0, ot + 9t <pf.
However,

sgn (%, ¥) = sgn u(x, ¥)
sgn U (x, y,) = sgn U“P(x, y)

so that U# nonnegative and regular in X implies % nonnegative
and regular in D which asserts (i) or (ii).

4. Generalizations. For £ > «, the symmetry relations found
from [1, p. 8]

U (s, ) = (—1) U2, 3)

may be employed with the proper interpretation of the biaxially
symmetric potential equation [6, 9]. The axisymmetric case @ = £,
may be interpreted with a | 8 in Koornwinder’s formula which be-
comes Gegenbauer’s integral for the Jacobi polynomials.

The classical theorems of Caratheodory-Fejer and Caratheodory-
Toeplitz have analogous calculations for the supremum [see 8] and
bounds on the maximum modulus (Caratheodory-Schur [see 17]) which
generalize directly by the methods contained here in. Domains
2 c B¥«t# gbout the origin which are not spheres are defined by
their projections into w C E* as

Q={@& y|Clew,0=s=7m —-1=t=< +1},
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® being a simply connected domain about the origin. To consider
extensions of theorems and 1 and 2, w is mapped conformally onto
D. The required connection coefficients between U“*# a regular
BASP in 2 and the “associated” BASP regular in ¥ may be found
as in [13, 14]. The methods of ascent and descent may be utilized
to extend the above properties.
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