
Pacific Journal of
Mathematics

THE FAILURE OF EVEN CONJUGATE CHARACTERIZATIONS
OF H1 ON LOCAL FIELDS

MITCHELL HERBERT TAIBLESON

Vol. 74, No. 2 June 1978



PACIFIC JOURNAL OF MATHEMATICS
Vol. 74, No. 2, 1978

THE FAILURE OF EVEN CONJUGATE
CHARACTERIZATIONS OF H1

ON LOCAL FIELDS

M. H. TAIBLESON

If K is a local field, the Hardy space Hι(K) is defined
as follows: If / is a distribution on K let f(x, k) (defined on
K X Z) be its regularization. Let f*(x) = sup* \f(x, k) |. Then
feH1 iff the maximal function /* is integrable. Chao has
given the following conjugate function characterization of H1.
Let π be a multiplicative character on K that is homogeneous
of degree zero, ramified of degree 1, and is odd. Then fe Lι

is in H1 iff {πfΓeL1. He also shows that if μ is a finite
(Borel) measure then μ is absolutely continuous whenever
{μπT is also a finite measure. In this paper proofs are given
that these results fail if π is not odd.

It is shown that if π is even (but otherwise satisfies the condi-
tions above) then there is a singular measure μ and an integrable
function /.. fίH1 such that πμ = β and πf = /. These results
were announced earlier [Gandulfo, Garcia-Cuerva, and Taibleson,
Bull. Amer. Math. Soc, 82 (1976), 83.-85].

A basic reference for this paper is [4]; in particular, Chapters
I, II, and IV. Regularizations are discussed in detail in IV § 1. The
results proven here are [3; Thm. 1 and Lemma 1]. The theorem of
Chao can be found in [4; IV § 3] or in [1]. Other characterizations
of Hι can be found in [2].

A local field is a locally compact field that is not connected and
not discrete. A complete list of such fields is: the p-adic number
fields and finite algebraic extensions of p-adic fields (these are of
characteristic zero), and fields of formal Laurent series over a finite
field, GF(pn), the so-called pw-series fields (these are of characteristic
p). We note that there is a "natural" ring multiplication for the
dyadic group, 2ω, so that the field of quotients of 2ω is the 2-series
field.

There is a norm, | |, on K that is ultrametric (|x + 2/|^max[|a;|, \y\]
and so if |ίc|^|2/|, \x + y\ = ma,x(\x\, \y\). If xeK, xφQ, then \x\ = qk

for some keZ. The fractional ideals {ψ} are the balls: ψ = {\x\ ^ q~%
We fix a character χ on the additive group of K such that χ is
trivial (identically 1) on © = Sβ° (the ring of integers in K) and is
nontrivial on φ""1. We choose p to be a generator of the prime ideal
φ = ψ (in ®). \p\ = q~\ and ®/5β = GF(q) (the local class field of
K) where q = pn, p a prime. The measure of a set E is denoted
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\E\. \ψ\ = q~k, so I®I = 1. For u e K, we set χu(x) = χ(ux), τuf(x) =
f(x—u). Φk denotes the characteristic function of ^βfc.

DEFINITION. If K is of finite characteristic let hk — χp-kΦQ. If
K is of characteristic zero let hk = Σ ^ 1 ^cf-^Zp-^-i) where {ck} is
a complete set of coset representatives of 5β* in S).

2. (1) If K is of finite characteristic the two definitions
essentially agree. (2) If q = 2, {hk} is the sequence of Rademacher
functions.

LEMMA 1. {hk}k^x is a sequence of independent, identically dis-
tributed random variables on S).

Proof. Each hk is supported on S) and we identify hk with its
restriction to S). The values of Λt are pth. roots of unity. hk is
constant on the qk = pnk cosets of ?fik in ©. On each of the q = pn

cosets of Sβ*"1 in cosets of ^β fcc© it takes on each of its p possible
values exactly pn~x times. Thus, if ε is a pth root of unity
\{hk = ε}| = p~\ We see that the hk are identically distributed. To
show independence we need to observe that if {kόγj=1 is a finite col-
lection of distinct positive integers and {εd} a set of pth roots of
unity then \{hkj = εj9 j = 1, ••, t}\ = p\ Using the facts above we
get this result by systematically counting. This completes the proof.

The Fourier transform of a distribution / is denoted / and for

feL1, /(£) = I f(x)Yξ(x)dx. If μ is a finite Borel measure, μ(ζ) =

\Yt(%)dμ(x). We note that χu = χ_w, (χJT = τj, {τJT = T*f> and

Φk = «"**-*.

L E M M A 2. Lβέ gh = Re hk and

0*0 Π ώ ( l — flΓί(ίc)) 9 x e ©, Λ ̂  — l

0 , otherwise.

Then μ(x, k) is the regularization on K of a nontrivial, real-valued,
finite Borel measure μ, that is singular, supported on £), \μ\ < 1,
μ(©)=0, and μ is supported on C— UΛ^I {(P~k+?β~k+1) Ό (—p~k+?$~k+1)}.
If q ~ 2, μ is supported on a two point set. If q > 2, μ is con-
tinuous.

Proof. From Lemma 1 we see that {gk} is a sequence of inde-

pendent, identically distributed random variables on ® (are i.i.d. on

£)). Observe that if J is a coset of ψ, I < k, then \ gk = 0. We
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break the proof into smaller steps.

I. μ(x, k) is regular. Since gb is constant on cosets of ϊβk, μ(x, k)

is constant on cosets of $β~fc. Next we see that I μ(x, — 1) = \g1 =

0 = μ(x, 0). Finally we need to show that if J = y + ξβ-<*+1> c S),

k < - 1 , then ί μ(α, ft) = f μ(α, A; + 1) = qk+1μ(y, k + 1). But, ju(cc, jfc) =

jκ(α, * + 1)(1 - 9-k), so J ^ ( i *) = J"(Λ ft + 1)^(1-0-*) = MΛ ft W l

, ft + 1 )

II. |μ(#, ft) I is regular on the domain, ® x {k <; —1}. The proof
for I works since (1 — gt(x)) ^ 0 for all x.

III. μ(xf ft) is regularization of a nontrivial, real-valued, finite

Borel measure, that is supported on SB, and μ(S)) = 0. Using [4; IV

(1.8)(e) and (1.9)(b)] we only need observe that μ(x, k) is real-valued;

μ(x, k) = 0 if α&gS); and show that U(χ, fc)ώ = 0, ί e Z ; and

[\μ(x, k)\dx = (lί/J > 0, & ̂  - 1 . [μ(x, k)dx = 0 follows I. For fc ̂  0

it is trivial, for ft ^ — 1, μ(x, ft) is regular so

\ μ(x, k)dx = \ «(sc, fc)^ = I jMte, 0)dx = 0 .
Jx js> Js

That \jM(flf, fc) = llflrj follows from II. | jw(a?, &)| is regular for ft ^ — 1,

so if k ^ —1,

\μ(x, ft)Idte = ( |Ai(a?, fc)|da? = ί|^(x, - l ) |da j - t | A
JS Jφ JϋΓ

0 .

IV. μ is a singular measure. To see that μ is not absolutely
continuous we use [4; (1.8)(d)]. This implies that the regularization
of an absolutely continuous measure is Cauchy in L\ We use the
fact that {gk} is i.i.d. on 2). Then for ft ^ - 1 ,

\ \μ{x,k) - μ{x,k- 1)| - ί | j / i | ( l - flr«) (1 - flT-*) 19-k
JK JΦ

Note that |{(1 - gh(x)) = 0}| = p" 1, so |{/ι(a?, fc)} ^ 0}| = (1 - p- ι

and so jte(o?, ft) -> 0 a.e. From which it follows that μ*(x) < °o a.e.
[4; V (2.3)]. Let EN = {̂ *(cc) <iVr}. By the dominated convergence
theorem \μ\(EN) = 0 (use II) and so I ^ I ( U Λ Γ ^ ) = 0̂  but UΛΓ^Λ is
a set of full measure, so μ is supported on a set of measure zero.
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Actually we can do the whole thing in one simple step if we care-
fully analyse the set in S) on which μ(x, k) — 0. That set, call it
Fk, is a union of cosets of S$~k, \ Fk | -> 1, {Fk} is increasing. Thus
μ is supported on the set ~(Ufc ^*) which *s a closed set of measure
zero.

V. If q — 2 μ is a 2-point measure. If # > 2, μ is continuous.
For g = 2 a little computation shows that there are decreasing se-
quences of cosets {I}}, i = 1,2, such that II is a coset of ^rk and

μix, k) =

0 , otherwise.

Since \Ik\ = 2k, we see that μ{ ,k) converges TF* to a 2-point meas-
ure with mass 1/2 at one point and mass —1/2 at the other. More
generally we note that | μ(%, k) | <; 2~k~1 for all x, so that if Ik is a
coset of yyk

9 then

= l im I I μ(x, I) \ dx

= \ I μ(x, k) I ̂  I Ik 12~&~1 = (l/2)(g/2)"* • 0

as ik —> — oo if g > 2. Thus, if {/fc} is a decreasing sequence of cosets,
I μ I (Ifc) —> 0 and so μ has no atomic component.

VI. μ is supported on G. It will suffice to show that each
μ('9 k) is supported on C. Note also that for q = 2, this is an
uninteresting statement since C = E " ^ © . To show that μ( ,k) is
supported on C it will be sufficient to show that if {kj} is a finite
set of distinct positive integers with ks = max,- fcy then (^1 gky
is supported on

{(p~k* + φ-**+l) u ( - r * s + φ-**+1)}.

We consider two cases. If K is of finite characteristic,

9h &, = 2-'(χ,-*1 + χ_,-0 (%„-*. + χ_,

= 2"s Σ χ±»-*i x±P-*.Φo = 2~s Σ

Thus,

(ί/fc, ' * * &βΓ = ΣΣ f{±p

Each term is the characteristic function of a coset of SD in one or
the other of p~k* + φ"^ + 1 or - t r * + ^β~fcs+1. For ίΓ of finite char-
acteristic we proceed more carefully.
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9kx ΰks = 2~s(hkl + 7Q (ft*,. + Ίh) .

Since c?"1 e © it follows that the term in the "square" brackets is
constant on cosets of 3). τp-kΦ_k+1 is the characteristic function of
p~~k + *β-fc+1 so hk is a finite linear combination of characteristic func-
tions of cosets of 3D contained in p~k + sβ~k+1. Thus hk is a finite
linear combination of terms of the form χuΦ0, u e p~k + 5β"'fc+1, & > 0.
Similarly, ftfc is a finite linear combination of such terms with u e
— p~k + 5β-*+1. The proof now proceeds as in the finite characteristic
case.

This completes the proof of Lemma 2.

Note, μ is defined as a local field version of a Riesz product.
See [5; V §7]. It should then come as no surprise that μ is a con-
tinuous singular measure when q ^ 3. We also note that if q = 3,
then μ (except for a trivial factor) is the Cantor-Lebesgue measure
supported on the Cantor set, if one identifies 3) with [0, 1] in the
usual way.

COROLLARY. Let π be a multiplicative character on K that is
ramified of degree 1, homogeneous of degree zero, and is even. Let
μ be the real-valued, singular measure defined in Lemma 2. Then
πμ - μ.

Proof. We show that π(x) = 1 on C. π is ramified of degree 1
so π is constant on each coset ±pk + ̂ 3&+1 so we only need to de-
termine π(pk) and π(—pk). π is homogeneous of degree zero so we
only need to determine ττ(l) and π(—1). π is even so ττ(—1) — π(ΐ).
π is a multiplicative character so π(l) = 1. This completes the proof.

THEOREM. Let μ be as above, and let {ck} be a collection of
distinct coset representatives of 3) in K. Then there is a sequence
{ak} of real numbers such that if f(x) — Σt=iCt>k?'ckμ(%, —k), then
feL\ but fίH1. Furthermore, f is supported on C.

Proof. Let fk = τβfcμ( , —k). fk is supported on ck + ®.

(μ(x-ck, I) , l> -k
fk{Xf l) ~ (μ(x-ck, -&) , l£ -k .

Thus Λ( , i) is supported on (ck + ®) x Z. Consequently,

and
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We claim that jl (/*)*[ is unbounded. If this claim is valid we

simply choose {ak} so Σ l ^ t l < °° a n ( * Σ G * \ ( / * ) * = °°. To prove

the claim suppose j\(/*)*[ is bounded. We note that (/*)*(&) =

8MPiit-k\Kχ"cktl)\f s o {(fk)*(% + Ck)} is a nondecreasing sequence with
limit μ*. By the Lebesgue monotone convergence theorem μ*eL1.
But μ(x9 k) converges a.e. so by the Lebesgue dominated convergence
theorem {μ( , k)} converges in L1 and hence is Cauchy in IΛ But
{μ(*f &)} is n ° t Cauchy in L1, a contradiction.

We need to show that j is supported on C. But / = Σ #*%«*/*(•» k)9

and μ( 9k) is supported on G for all k, so / is also supported on C.
This completes the proof of the theorem.

Acknowledgment* Ms. Anna Gandulfo provided some heroic
calculations for a variety of special cases of Lemma 2. These ex-
amples established the background for the more general results that
appear in this paper.
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