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Let E denote a vector space over an algebraically closed
field K of characteristic zero. Our object is to investigate
the location of null-sets of generalized polars of the product
of certain given abstract homogeneous polynomials from E
to K. Some special aspects of this general problem were
studied in the complex plane by Bocher and Walsh and, later,
in vector spaces by Marden. Our present treatment furnishes
further generalizations of the theorems of Marden, Bocher,
and Walsh and offers a systemmatic, abstract, and unified
approach to their completely independent methods. One of
our results, in special setting, relates to the polar of a
product and reduces essentially to the author’s earlier gene-
ralization [Trans. Amer. Math. Soc., 218 (1976), 115-131] of
Hormander’s theorem on polars of abstract homogeneous
polynomials. We show also that our theorems cannot be
further generalized in certain natural directions.

1. Introduction. Let E be a vector space over a field K of
characteristic zero. A mapping P from E to K is called [4, pp.
760-763], [7, p. 55], [8], [14] an abstract homogenecous polynomial
(a-h-p+) of degree n if for every z, yc E,

p(sx + ty) = ki Az, Ykt Vs, te K,
=0

where the coefficients A,(x, y) € K and are independent of s and ¢
for any given z,y in E. We shall denote by P, the class of all
nth-degree a.h.p.’s from E to K. The nth-polar of P is the mapping
(see [5, Lemma 1] for its existence and uniqueness) P(x,, 2,, -, x,)
from E* to K which is linear in each 1z, and symmetric in the set
{x,} such that P(x, z, -+, ) = P(x) for every x in K. The kth-polar
of P is then defined by

P(xlr "':mer):P(xu sy Ty Xy "';x)'

The null-set Zp(x,y) of P (relative to elements z, y in E) is defined
[9, p. 28], [15] by

Zp(x, y) = {sx + ty = 0|s, t € K; P(sx + ty) = 0} .

Now we shall assume throughout that K is an algebraically closed
field of characteristic zero. It is known [5] (see also [2, pp. 38-40],
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536 NEYAMAT ZAHEER

[11, pp. 248-255]) that K = K,(i), where K, is a maximal ordered
subfield of K and —4* is the unit element of K. If 2 =a + e K
(with @, b in K,), we define Z =a — b, Re (2) = (z + 2)/2 and [z| =
(@* + ). If ACK, we call A to be K,-convex if >, pa;€ A for
every a;€ A and y;c K, (the set of all nonnegative elements of K)
such that >, ¢#; = 1. Adjoin to K an element @ (called infinity)
and furnish KU {w} = K, with the following structure: (1) the
subset K of K, preserves its initial field structure; and (2) ¢ + @ =
®+a=w for every acK,a-w =®-¢ =® for every ac K — {0},
and @' =0,0"'= w. A subset 4 of K, is called [16, pp. 353, 373],
[14, p. 116], {13, pp. 256-26] a generalized circular regiow (g-c-7-)
of K, if A is either one of the sets @, K, K,, or A satisfies the
following two conditions:

(1) @A) is K,-convex for every { € K — A, where ¢(2) = (z — O)™*
for every ze K,,

(2) weA if A is not K,-convex.

The empty set @, K, K,, and single-point sets (and their compliments
in K,) are examples of trivial g.c.r.’s. We shall denote by D(K,)
the class of all g.c.x.’s of K,. Zervos’ characterization [16, pp. 372-
387] of this class, when K is the field C of complex numbers, leads
to the following result [16, p. 352], [14, p. 116], [15], namely: The
nontrivial g.c.r.’s of C, are the open interior (or exterior) of circles
or the open half-planes, adjoined with a connected subset (possibly
empty) of their boundary. The g.c.r.’s of C,, with all or no boundary
points included, will be called (classical) eircular regions of C,.

ReEMARK. Through we have defined the g.c.r.’s for an algeb-
raically closed field of characteristic zero, but the definition remains
the same for any maximal ordered field K, (see [16, pp, 353-373],
[13, p. 26] for the definition of the class D(K,) when K is an arbi-
trary field).

We now give some concepts which were introduced earlier by
the author [13, pp. 36-40], [14, p. 117-119], [15] to define circular
cones in K and discuss some of their important properties which are
found useful in later sections. Define an equivalence relation “~”
among elements of E? by “(x, y) ~ («’, ') if and only if &z, y] =
Zla', y'],” where <[z, y] denotes the subspace of E generated by
the elements z, y € E. The equivalence class [(x, )], containing the
element (z, y) € E?, is called nontrivial if x and y are linearly inde-
pendent (it is called trivial, otherwise). The axiom of choice allows
us to choose a unique element from each nontrivial equivalence class.
The set N(S E*®) ef elements thus chosen would be referred to as a
nucleus of E°. Obviously, N = ¢ if dim F = 2. Given a nucleus
N of E* and a mapping G: N — D(K,) (called circular mapping [14]),
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we define (ef. equations (2.1) and (2.2) in [14]) the circular cone
E(N, @), relative to N and G, by

(1.1) E(N, G) = U Tz, y) »
where
1.2) Tz, y) = {sx + ty = 0]s, t € K; s/t e G(=, y)}

and the union in (1.1) ranges over all elements (x, y¥) € N.
REMARK 1.1. If dim E = 2, then [14, Remark (2.1)] every circular
cone E(N, G) is of the form

E(N, G) = {sx, + ty, = 0|s, t e K; s/t e A}

for some A< D(K,), where zx, ¥y, are any two linearly independent
elements of F and where N = {(x,, %,)} and G(z,, ¥, = A.

We define [13, p. 42], [14, p. 117], [15] hermitian comes to be
subsets E, of E of the form E, = {x e Elxz # 0; H(x, ) = 0} (and the
ones got by replacing in this expression the inequality “=" by “>”,
“<” or “<”), where H(z, y) is a hermitian symmetric form [8, p.
270] from E? to K. For the first time, Hormander [5] used hermitian
cones in his attempt to generalize to vector spaces a theorem due
to Laguerre [6], [7, Theorem (13, 2)] on polar derivatives and, later,
Marden [8], [9] exploited these cones in generalizing to vector spaces
certain classical results due to Bocher [1], Grace [3], and to Szego
[10]. Recently, the author [13], [14], [15] succeeded in replacing the
said role of hermitian cones by circular cones. The relationship
between the class of hermitian cones and the class of circular cones
is exhibited in the following propositions due to the author [14, pp.
117-119]. 1In the rest of our work, we assume that dim F = 2.

ProprosiTION 1.2. Let E, be a hermitian cone in E. Given a
nucleus N C E?, there exists a circular mapping G: N— D(K,) such
that E(N, G) = E, and E, N F|x, y] = Tz, y) for every (x, y)eN,
where T; is as defined by (1.2).

PRrOPOSITION 1.8. The class of all circular cones in E contains
properly the class of all hermitian cones.

2. A generalization of BOcher’s theorem. Before taking up
our main result of this section, we shall give some definitions and
useful properties. First, we establish the following proposition which
expresses essentially the fact that any two circular cones can always
be expressed relative to a common nucleus.
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PROPOSITION 2.1. Given a circular cone E{N, G) and an arbitrary
nucleus N' < E?, there exists a circular mapping G': N — D(K,)
such that E(N, G) = E(N’, G').

Proof. From the definition of nucleus, we can define a mapping
7n: N'— N by assigning to every element (2', ¥') € N’ a unique element
(x, y) € N such that (x,y) ~ («’,%'). Then % is a 1 —1 and onto
mapping. Consequently, every element (x’, ¥’) € N’ determines uniquely
an element (x, ¥) € N, a set of scalars a, 8, 7, d € K, and a homographic
transformation [16, p. 353], [13, pp. 24-25] U of K, such that

(2.1) ', y) =@, 9),

2.2) % =ax + By, y = Tx + 0y, ad — BY = d(say) # 0,
and

(2.3) U(o) = (00 — DI(—Bp + a)Vpe K, .

Let us now define G'(«', ') =U(Gn(x', ¥'))) = U(G(x, y)) for every
(z', ') € N’, where the element (x, %) and the corresponding homographic
transformation U satisfies (2.1)-(2.8). Since G(z, ¥) € D(K,) and since a
homographic transformation permutes the class D(K,)(cf. [16, p. 353],
[13, p. 28]), we immediately infer that G'(«’, ') € D(K,) and, hence,
G’ is indeed a circular mapping from N’ into D(K,). First, we claim
that

(2.4) E(N, G) S E(N', G") .

If z€ E(N, G), then there exists an element (x, ¥y) € N and scalars
5, t€ K such that z = sx + ty and s/t = p(say) e G(x, y). Since 7 is
1 — 1 and onto, the above element (xz, ¥) of N determines a unique
element (2', ') € N’ and the corresponding homographic transformation
U satisfying the relations (2.1)-(2.3). This implies that z=4"'(0x"—By"),
y = 4 ey’ — 7x'), and hence that

2 = A7 (s — 1t)x’ + (—Bs + at)y'] = 47(s'zs" + t'y’), say .

Since p = s/t € G(z, y), the relations (2.1)-(2.3) and the definition of
G’ implies that o' = §'/t' = (0p — V)/(—Bp + @) =U(p) € G'(«’, y'). That
is, ze Tola', ') < E(N’, G') and (2.4) holds.

Next, we claim that

(2.5) E(N', G") S E(N, @) .

For, if 2/ e E(N’, G’), then 2z’ = s’x’ + t'y’ for some (x',y’)e N’ and
s, t'e K such that s'/t' = p'(say)e G’ (2, ¢'). Now, 7 determines
uniquely an element (z, y) e N, scalars a, 8,7, 6 € K, and the corre-
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sponding U satisfying (2.1)-(2.8). Therefore,
=+t + ('8 + oy =sx+ ty (say),

and since s'/t’ = o’ € U(G(=, ¥)), it implies that

ot = QO Yy
o = st B0 10 U0 .
Obviously, then o’ =U(p)ec U(G(z, ¥)) and, hence, peG(x, y). That
is, 2’ € Ty(zx, y) and (2.5) holds. The containments (2.4) and (2.5) finally
establish the desired result.

In view of the above proposition, we shall assume (without loss
of generality) that all the circular cones, whenever they appear in
a particular theorem, have a common nucleus.

Conventionally speaking, the word “composite (a.h.) polynomial”
has been used [7, pp. 65-106], [9], [15] to designate, in general, any
(a.h.) polynomial which has been derived from given (a.h.) polynomials
via certain kinds of composition. In what follows we define [8, p.
271], [13, pp. 118-119] a special kind of composite a.h.p.’s, derived
from certain given a.h.p.’s and their first polars, and study the
location of the null-sets of such polynomials.

DEFINITION 2.2. Given a.h.p.’s P,e P, and scalars m, €K, k =
1,2 -.-,q, let us set

Q(x) = Py(x)- Pyx) « -+ Py(x) ,
Qux) = P(x) - -+ Pp_y(x)- Py, () - - - Py(w),

and define
(2.6) 0, ©) = 3, mQuw)- Pu(w, o)Ve, @, ¢ B .

We shall call &(x,, x) as a generalized polar of the product Q(z). If
n =mn, +n, + --- + n, let us note that Qe P,, Q. € P,_,, and P,(x,, x)
is an a.h.p. of degree n, — 1 in z and of degree 1 in #,1<k <q.
Therefore, @(x,, x) is an a.h.p. of degree n — 1 in 2 and an a.h.p.
of degree 1 in z,. The following proposition justifies the terminology
for &(x,, x) as “a generalized polar of Q(x)”.

PROPOSITION 2.3. In the notations of Definition 2.2, if m, = n,
for k=1,2,:--,q, then the generalized polar @(x,, x) of the product
Q(x) is essentially the first polar Q(x,, x) of Q(x), exept for a nonzero
constant factor. More precisely,

O(x,, «) = n-Qx,, )V, 2, e K,
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where n = N, + Ny + +++ + n, (m, being taken as m, for all k).

Proof. For each k(1 < k < ¢), we use the properties of the n,th
polar of P, and the fact that K is algebraically closed to obtain (for
every =, x, € K)

P.(sx + tx,)) = P,(sx + tw,, sz + tx, ++-, sx + tx,)

m
nE — e
(2-7) = Z_‘OC(”’"’ m)'Pk(x, e, Xy Xy 0y, wl)'smt“k—m
g
(2.8) = ;,l.—:.[l(a:ik's — Vi+t) , say
2.9) - zf', (—1)"~"S(m, k) s™t™ |

where 8;;, = 0;,(, ), Vi = Vi(2, ,) and where S(m, k) denotes the sum
of all possible products obtained from [8,,0s «** Ope* Vmiss =+ = Vuul BY
permuting the subseripts 1, 2, ---, n, in all possible ways. The steps
(2.7) and (2.9) imply that

(2.10) Py(x) = S(ma, ) = 11 b5

@11 Puay, @, @, -+, 2) = Pya,, @) = —%S(m ~1,k)

k

for al k=1,2, ---,q. If we let r,=0, r,=m, + %, + -+ + m,
(with 7, = ») and define

(2.12) l:"/"(jyk):rk—1+jv.7’:1’2;"',nlnlékéqr

we easily notice that + determines a 1 — 1 correspondence between
the set {1, 2, - -+, n} and the set {(4, k)|[1=<i=<n,; 1<k=<q}. We may
then write

q Tk 3
(2.13) Q(sx + tx,) = kI:I1 :[=I1 (058 — Vb)) = l_]:[1 (s — vit) , say,

where p, = 03 and v, = 73 if and only if [ = (7, k). Next, (2.10)
and (2.11) gives, respectively,

@10 @@= T (L) =t it e,

i=1,1%k \j=1

and
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we Pty 0) = —33] 11 85} e7e

m=1\ =1, j#m

(2.15) " n
= - Zk{ Zk #rk_m'}'”rk—ﬁm .

m=1\gj=1,j#m

Consequently, (2.14) and (2.15) imply that
ng
N+ Q)+ Py, ) = ~mz=1‘1(#1.u2 w0 Popems) (im0 Pa)Vrpim
Tk
= — 3, (Ml s Vil e M)
l=rp_y+1

Finally, if m, = n, for all k, we obtain

q Tk
O(x, x) = — gi[zﬂ,, +1(M e My eVl e #n)]
- é(ﬂl S MV Pttt )
= n-Q(x,, ),

due to the corresponding formula (2.11) for the polynomial Q.

REMARK 2.4. If ¢ =1, m, = n,, the above proposition tells us
that &(x,, x) = n,- P(x, x).

Now we prove the following main result [13, Theorem (18.1)] of
this section which generalizes a theorem due to Marden [8, Theorem
(8.1)], concerning the generalized polar @(zx,, ) of the product Q(x)
as defined by (2.6). The complex plane version leads to certain
improvements in Bocher’s theorem [1], [13, Corollary (19.3)] and in
Walsh’s theorem [7, Theorem (20.1)]. We prove

THEOREM 2.5. Let E® = E,(N, G,), © = 1, 2, be two disjoint
circular cones in K and let P,e P, (k= 1,2, ---, q) such that

To(ax,y), E=12,---,0(<q)

2.16 Zp (2, y) S
(2.16) =@ ) To(x,9), k=p+1, -, ¢

for all (x,y)e N. If &(x,, x) is the generalized polar of the product
Q(x) (¢f. Definition 2.2) with m, >0 for k=12, -+, p and m, <0
for k=p+-1, .-+, q such that

(2.17) kzj my =0

then O(x,, 2) = 0 for all linearly independent elements x,x, of E
such that x€ B — EM U EP.
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Proof. Let P,(sx + tx,) be as given by the Equation (2.8) in the
proof of Proposition 2.8. Let «, 2, be linearly independent elements of
E such that xe F — E» U E®. Then g, x, are nonzero elements such
that z ¢ E® U E®, so that P,(x) # 0 for 1 < k < ¢ and (due to (2.10))
dp#0for 1<j=<m,1=<k=<gq. Let pj =74/0% Now, z and z,
determine uniquely an element (x, ¥,) € N and a set of scalars
e, B, 7, 6K (with @d — B7 # 0) such that (x,, y,) ~ (¢, ) and such
that ¢ = ax, + BY, £, = Y2, + 0Y,. Since (for each £k =1,2, ---, q),

Ploax + a) = Pil(@pu + 7% + (Bos# + )yl =0 VI j=m,
we see (due to (2.16)) that

Te(20 ¥o) V1= J

= b
W+ ) € = =
((ojk ) {ng(oco, Y) V1=j=mn,, p+1£lc$q

and, hence, that

n, 1=kE=Sp

<apjk + '7) c Gy, ¥) Y1=7]
n,, p+1l1=k=q.

,3,0,-,, + 0 Gz(xo; ?/o) Vi = .7
Let us put o}, = (@o; + 7)/(Bes + 0), so that
P = (005 — N(—BPh + @) = U(o)

for all 7, %k, where U is the homographic transformation given by
U(p) = (00 — N/(—Bp + @) for pe K,. That is,

UG(xy ¥o) VIS j=m, 1Zk=D
UGz ¥) VIS Ji=m, p+1=5k=q

where U(Gy(x,, ¥,)) € D(K,) for ¢ =1, 2, because Gz, ¥,) € D(K,) and
U preserves the class D(K,) (cf. [16, p. 353], [13, p. 28]). But
clearly w ¢ U(G{x,, ¥,) for + =1, 2. For, otherwise, a/B ¢ G,(x,, ¥,) U

Gy(z,, 9,) (since U(p) = w if and only if p = @/B) and, hence, x = ax. +
BYo € Ta, (2o, Yo) U To(0 ¥o) & Es U E¥, contradicting the choice of z
already made. Now, the definition of g.c.r. implies that the sets
UG (2 ¥0), © = 1, 2, are K-convex g.c.r.’s of K, and, hence, (2.18)
implies that

A TIA

(2.18) Oix €

U(G (@ %)) Vi=hk=0p

1
2.19 =0
(219) gn U@MWW>VP+1<kSq

If welet A, =m, +m,+---+m, and 4, = m,,, +--++m,, we infer
from the hypotheses on the m, that the scalars m,/4, (resp. m;/A,)
are positive elements of K, fork=1,2, -+-, p(resp. k=p+1, .-+, ¢)
with sum as 1. This fact, together with the statements (2.19) and
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the K,-convexity of the sets U(G(x, ¥,) for ¢ =1, 2, implies that
Ll A € UG (xy, 9o) for © =1, 2, where

2 Tk q 2k m
= Z Z —.Oun = Z Zl "‘—klo.ik .
k=1 j=1 k=p+1 j=1 ’ﬂ,k

Therefore, there exist elements p, € G,(x,, ¥,), © =1, 2, such that y,/A,=
U(p;) for ¢« = 1,2, and we have

p: = [(p/Ada + YV A)B + 0] € Gy, Yo)
That is,

[(p/Ada + 7]z, + [(e/ADB + o]y, € TGi(wm Yo)

and, hence, (t/A)x + %, € Ty (2, yo) for 4 =1, 2. We claim that
th + t,# 0. For, otherwise, since 4, + 4, =m, +m, + +++ + m, =0,
we observe that p/A, = /A, and that (p/A)x + x, belongs to
To,(@o Yo) N T,(®s ¥o). That is, (tu/A)x + 2, € B’ N Ef?, contradicting
the hypothesis that E{" and E{® are disjoint. Hence

(2'20) H =+ e = 2 Z e pﬂc

=14=1 N0

Since P,(x) = 0 for all k, we obtain (ef. (2.10) and (2.11))
1 /&

(2.21) Py(w, ) = —=(3} ox)-Pula) for 1sk=q.
p M=

Finally, since Q,(x)-P,(x) = Q(x) = 0 for all k (cf. Definition 2.2), we
get (due to (2.20) and (2.21))

(2.22) Oz, z) = —[g é%pk] <kI=I Pk(x)> -0

as was to be proved.

The above theorem deduces as corollary the following result due
to Marden in terms of hermitian cones (a proper subclass of circular
cones).

COROLLARY 2.6 (Marden [8, Theorem (3.1]]). Let
={xeH|x+0; H(z,x) >0}, +=12,

be two hermitian cones corresponding to the hermitian symmetric
forms Hyz,y) from E* to K such that (E—E,U{0)N(E—E,U{0)=0
and let P,e P,(k=1,2,---,q) such that PJx)+ 0 for xcE, when
k=12 ---,p and such that P,(x)+ 0 for xc K, when k=9 + 1,
p+2 --,q. If the scalars m, sotisfy the hypotheses of Theorem
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2.5, then @(x,, x) #= 0 for all linearly independent elements x, x, of
E such that x € E, N E,.

Proof. Starting with the hermitian cones £ — E,U{0} = E; (say),
1 == 1, 2, and taking an arbitrary nucleus N of E*?, we can always get
(due to Proposition 1.2) two circular mappings G,: N— D(K,) for
1=1,2, such that E;= E,(N, G,) = E{(say) and such that H;N
LNz, yl = Tex, y) for every (x, y)e N and + = 1, 2. We easily notice
that

TGL(x’ y) Vk = 1’ 2: D

Zo (2, y) &
7@ ) Te(2,9y) Ve=p+1, -+, ¢

for all (x, y) e N. Since E{" and E® are disjoint circular cones, all
the hypotheses of Theorem 2.5 are satisfied and we conclude that
O(x, ) = 0 for all linearly independent elements «, x, of & such
that z¢ B U E®. Since x = 0 and since E{ = E — E,U {0}, we
see that @(x, x) = 0 for all linearly independent elements x,, © such
that v € B, N E,. This completes the proof.

Our second application of Theorem 2.5 gives the following
corollary, which is an improved version of a theorem due to Bocher
[1], [7, Theorem (20.2)], [13, Corollary (19.3)] on the vanishing of the
Jacobian of two binary forms in complex variables. The improvement
is in the sense that we use g.c.r.’s, whereas Bocher used the (classical)
c.r.’s in his theorem. Our result runs as follows:

COROLLARY 2.7. Let C,, C, be two disjoint g.c.r.’s of C, and let
Cr={s,t)eC?(s,t) %= 0; s/teC),1=1,2. If

P(s, ) = Saus*, i=12,

are two binary forms in the complex variables s, t such that all the
nontrivial zeros of P, lie in CF for + =1, 2, then all the nontrivial
zeros of the Jacobian of P, and P, lie in C; U Cf¥. (Note that the
origin (0, 0) e C? is the trivial zero of every binary form).

Proof. Letting 2, = (1, 0), ¥, = (0, 1), N = {(%y, ¥o)}, and Gy(x,, ¥,) =
C,, we observe (cf. Remark 1.1) that the sets C} are precisely the
disjoint circular cones E{" = E(N, G,) = T4y, ¥,) for 1 =1, 2, and
that the P, are basically the a.h.p.’s of degree n (from C? to C),
given by

PJx) = Psx, + ty,) = Z‘ a4, S HVE = (s, )eC?, i=1,2,

such that Z,,(2y,) S To, (%, ¥o) for ¢ = 1, 2. For all element » = (s, £)
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and z, = (s, t,) of C? we know [8, Equation (2.4)] that

P, o) = 1(s e 41 200) i1z,

and, for z, = z, it gives

oP, oP, .
P(x) = L gL}, =1,2.
(@) n< 6s+ 3t> i=1
If we take ¢ =2, p =1, and m, = —m, =1, then &(x,, x) in Theorem

2.5 is given by
O(,, x) = Py, x)- Py(x) — P(x)- Py(x,, )

(2.23) S stl).[aPl 9P, _ 9P, 8P2]
n’ s ot ot 0s

= —17<slt — st,)-J(s, t), say,
n

where J(s, t) denotes the Jacobian of P, and P,. Since &(x, z), the
a.h.p.’s P,, and the circular cones E{® = C} satisfy the hypotheses of
Theorem 2.5, we conclude that @(z,, ) = 0 whenever z, x, are linearly
independent and z¢C} UC¥, i.e., given any nonzero element x =
(s, t) ¢ C¥UC¥, we can always choose an element z, = (s,, ¢,) € C* which
is linearly independent to z (so that st — st, = 0) and for which
&(x,, )#0. The equality (2.23) then says that J(s, t)=0. Therefore,
all the nontrivial zeros of the Jacobian J(s, t) lie in C}UCy, as was
be to proved.

If Corollary 2.7 is restated in terms of ordinary polynomials
(from C to C), it reduces essentially to an improved version of the
second part of the two-circle theorem due to walsh [12], [7, Theorem
(20, 1)] on the derivative of the quotient of two polynomials. The
improvement is in the sense in which Corollary 2.7 improves upon
Bocher’s theorem.

COROLLARY 2.8. If all the zeros of the complex valued polynomial
f(z) of degree n lie in the g.c.r. C,of C,(t =1, 2) and if C,N C, = @&,
then all the finite zeros of the derivative of the quotient f(z) =
fi)/f2) lie in C, U C,.

Proof. Let us take the sets Cf in the manner of Corollary 2.7
and, writing fi(z) = 3\, 02" for 2 = 1, 2, let us define

(2.24)  Pfs, t) = t*F(sft) = kz', @it Ys, teC, i=1,2.
=0

Then the Jacobian of the binary forms P, and P, is given by (cf.
[7, pp. 93-94]).
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(2.25) J(s, t) = nt** M. fl(s/O) f(s/t)} Vs, telC.

Next, we notice from (2.24) that s/t is a zero of f; if and only if
(s, t) is a nontrivial zero of P, and, from (2.25), that s/t is a finite
zero of f’ if and only if (s, t) is a nontrivial zero of J(s, £). The
proof is now self-evident in view of Corollary 2.7.

REMARK. Since there do exist [14, pp. 123-125] circular cones
(both hermitian and otherwise) and a.h.p.’s satisfying the hypotheses
of Theorem 2.5, it follows from Proposition 1.3 that our Theorem
2.5 is a strengthened generalization of Marden’s theorem expressed
in Corollary 2.6.

The following example shows that Theorem 2.5 cannot be gene-
ralized for vector spaces over nonalgebraically closed fields of charac-
teristic zero.

ExampPLE 2.9. Let K, be a maximal ordered field (so that K, is
a nonalgebraically closed field of characteristic zero [11, pp. 233,
250]) and let C, = {—1} and C, = {1} be two generalized circular
regions of K, (see Remark in §1 concerning the definition of g.c.r.’s
in K,). With 2, = (1, 0), ¥, = (0, 1) as basis elements of the vector
space E = K, if we define N = {(z, ¥,)} and Gz, y,) = C; for
4 =1, 2, then the corresponding circular cones E{” = E|(N, G,), for
i1 =1, 2, are disjoint. If we take two a.h.p.’s P, P,c P,, defined by

P(x) = P(sx, + ty,) = 8 + 38’ + 3st? + t* = (s + tP
Pyx) = Py(sx, + ty, = s* + bs’t + 4st* — 10¢°
= (s — O)[(s + 3t} + ¢*]
for all © = (s, t)e B, then Z,(x, ¥,) & Ts (%, 9,) for i=1,2 (since

[(s + 8t)* + t*] cannot vanish unless s = ¢ =0 (cf. [1, p. 36])). Also,
we know [8, Equation 2.4] that

Py, x) = %-[34332 + Bst + 3t%) + £,(3sF + Bst + 38
Pz, @) = %-[sgw + 108t + 48) + 4(55° + 8st — 306%)]

for all elements x = (s, t) and #, = (s, ¢,) in K. Let us set
O(x,, x) = Py(,, ) Py(x) — Py(x)- Py, @) .

Now, @(x,, ), the polynomials P;, and the circular cones K’ satisfy
the hypotheses of Theorem 2.5, whereas it can be easily verified
that @(x,, ) = 0 for the linearly independent elements z, = (1, 1) and
x=(1+169 2) in E, violating the conclusion in Theorem 2.5.
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Next, we ask ourselves a natural question as to whether or not
the g.c.r.’s G(x, ) or C, (employed in the hypotheses of Theorem 2.5
and Corollaries 2.7 and 2.8) can be replaced, in general, by g.c.r.’s
adjoined with arbitrary subsets of their boundary, without effecting
the conclusion therein. The answer is in the negative in view of
the following

ExampLE 2.10. With E=C, K=C, z,=(1, 0), ¥, = (0, 1), and
N = {(z,, ¥,)}, let us define the g.c.r.’s of C, by

G, (x,, Yo) = {z € Cw“:m (2) > 0} and Gz(xo: Yo) = {z eC, I Im (z) < O}

so that the corresponding circular cones Ky’ = E(N, G;) = Tg,(%, %),
1 = 1, 2, are disjoint. If we put 4, = G.(%, ¥o) U {1, 2}, A, = Gy(x,, ¥,) U
{—1, —2}, and

S, = {sx, + ty, = 0ls,teC; s/tc A}, i=1,2,
then

S, = BV U {sx, + ty, # 0[s/t = 1, 2},
S; = E U {sx, + ty, = 0]s/t = —1, —2},

so that S, S)(resp. 4,, 4,) are disjoint subsets of E(resp. C,) none of
which are circular cones (resp. g.c.r.’s). Next, we define

P(x) = P(sx, + ty,) = s — 3st + 28 = (s — t)(s — 2¢),
Py(x) = Py(sx, + ty,) = §* + 3st + 28* = (s + t)(s + 2t),

for all x = (s,t)eC*. Then P, P,¢ P, such that Z,(, ¥,) S S, for
1 =1,2. Now, the generalized polar &(x, x) of P, and P, with
g=2 p=1m, = —m, = +1, is given by (cf. (2.23))

(2.26) B(x,, @) = 3(s,t — st,)-(s* — 2t

for all elements z = (s, t) and =, = (s, t,) of H. But, we see that
&(z,, ) = 0 for the linearly independent elements z = (1/2,1) and
x, = (1, 1), where x ¢ S,US,. L.e., Theorem 2.5 no longer holds when
the g.c.r.’s Gz, y,) are replaced, in general, by the above sets A,.
In the language of Corollary 2.7, the above example says the
following: The nontrivial zeros of the binary forms P, (defined above)
lie in AF (cf. definition of C} in Corollary 2.7) for i = 1, 2, but the
Jacobian J(s, t) =12(s* — 2t*) = 0 for the element (12, 1) ¢ A*UA?#. L.e.,
Corollary 2.7 does not hold, in general, when the sets C, are replaced
by the above sets A,. Similarly, as in passing from Corollary 2.7 to
Corollary 2.8, we may express the above result in terms of ordinary



548 NEYAMAT ZAHEER

polynomials and infer that Corollary 2.8 does not hold, in general,
when the sets C; are replaced by the type of sets A, chosen above.

3. A generalization of Marden’s theorem. In the previous
section, we have studied the generalized polars @(z, x) subject to
the condition that the scalar multipliers m, are nonzero elements of
K, with a vanishing sum. This section primarily deals with a similar
study in the case when all the m,’s are taken as positive. Qur main
theorem generalizes a result of Marden [8, Theorem (4.1)] and it
involves essentially the generalization of a theorem each due to the
author [14, Theorem (3.1)] and to Hormander [5, Theorem 1]. We
prove

THEOREM 3.1. Let E, = E(N, G) be a circular cone in E and
let Pe P, (k=1,2, -+, q) such that Zp(x, y) < Ts(x, y) for all (z, y) €
Nand £=1,2,---,q. If O(x,, ) ts a generalized polar of the
product Q(x) (ef. Definition 2.2) with m, >0 for k=1,2, ---,4q,
then @(x, x) = 0 for all nonzero elements x, x, € K — E,.

Proof. Take any two nonzero elements «, x, ¢ B — E, If z,x,
are linearly dependent (i.e., if x, = ax for some nonzero scalar «a),
then Pz, z) = PJazx, z) = aP(x) for all k¥ and hence

(3.1) Oz, @) = a<k§=j, m,,) . ,E Pux) # 0

due to the fact that P,(x) = 0 for all k.
Now, we prove the theorem for the case when z, x, are linearly
independent. Let

e
Pk(sx-l‘-txl):H(5]k8——’73k-t), k:l’ 2’ .-.’q_
i=1

Since Pp(x) = 0,20y *** Opye = 0 and Pp(x) = (—1)" Yy Vop o v+ Ve = 0
for all %k, we see that d;;, V; # 0 for all 7 and k. Consequently, the
elements 7;, /05 = 0 (say) #0 for 1 < j<m, and 1 <k <q. Now,
proceeding exactly as in the proof of Theorem 2.5, we easily conclude
(cf. (2.18)) that p;, € U(G(x,, ¥,)) for all j and k, where (2, ¥,) € N such
that = = awx, + BY., ., = 7%, + 0Yy,, and where U(p) = (60 —7)/(—poB + @)
for all pe K,. As before, U(G(x, ¥,)) € D(K,). Since x, x, & Te(2,, ¥o),
we notice that «/B, /6 ¢ G(x,, ¥,) and (hence) that 0, ¢ U(G(x,, ¥,))-
That is, U(G(x,, ¥,)) is a K,convex g.c.r. of K, which does not contain
the origin. Hence, (2.19) and the succeeding arguments in the proof
of Theorem 2.5 imply that py/ne U(G(%, y,), where n =n, + n, +
+++ + n, and where
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q "k
r=2 Zi (m/ny)- 05 # O (since 0¢ U(G(x,, 40)) -
Since P (z) = 0 for all k, we obtain (cf. (2.22))
0w, @) = —p - I Py(®) # 0

and the proof is complete.

The above theorem deduces as corollary the following result due
to Marden and may thus be regarded (cf. Remark following Corollary
2.8) as a strengthened generalization of his theorem.

COROLLARY 3.2. (Marden [8, Theorem (4.1)]). Let
E, ={xeFE|x+# 0; Hx, x) > 0}

be a hermitian come in E, when H(xz, y) is a hermition symmetric
Jorm from E* to K, and let P,e P, (k= 1,2, ---, q) such that Py(x)+#0
for all e E, and k=1,2, ---,q. If &z, x) s the generalized polar
of the product Q(x) (¢f. Definition 2.2) with m, >0 for k=1,2,---, q,
then @(x,, x) + 0 for all nonzero elements x, x, € K,.

Proof. The proof is exactly similar to that of Corollary 2.6.

The following corollary is an immediate consequence of Theorem
3.1. If ¢ =1, this corollary reduces essentially to the author’s
generalization [14, Theorem 3.1] of Laguerre’s theorem, and if, in
addition, E, is taken as a hermitian cone, it is essentially (due to
Remark 2.4) a result due to Hormander [5, Lemma 2].

COROLLARY 3.3. Let E, = E(N, G) be o circular cone in E and
let Poe P, (k=1,2,---,q) such that Zp(x, y) = Ts(x, y) for all (x, y) €
N and k=1,2,---,q. If Q(x) = P,(x)Py(x) --- P(x) then the first
polar Qx, x) = 0 for all nonzero elements x, x,€¢ K — E,.

Proof. The proof is obvious in view of Proposition 2.3 and
Theorem 3.1.

REMARK. In view of the examples given earlier by the author
[14, p. 122], Corollary 3.3 and hence Theorem 3.1 cannot be further
generalized in the two directions already discussed in case of Theorem

2.5.

4. On two-circle theorems of Walsh. In Theorem 2.5, the
circular cones E{"(i = 1, 2) were assumed to be disjoint and the con-
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stants m, were taken as nonzero elements of K, such that 32, m, =
0, whereas Theorem 3.1 uses only positive elements m, e K, (so that
S m, # 0) and utilizes only one circular cone. In this section, we
study the same problem for the case when the constants m, are
nonzero elements of K, such that >/, m, #* 0 and the two cones
E® and E® are not necessarily disjoint. In fact we establish two
main results in this section. The first one, which is somewhat like a
theorem due to Marden [8, Theorem (4.2)], deduces as corollary the
first part of Walsh’s two-circle theorem [12], [7, Theorem (20.1)]
on the critical points of rational functions. (The second part of
Walsh theorem has already been considered as a corollary of Theorem
2.5.) Our second result is essentially a generalization of Walsh’s
two-circle theorem [7, Theorem (19, 1)] on the critical points of the
product of two polynomials. Before we take up these results, we
give the following definition and some relevant explanations.

DEFINITION 4.1. Given distinct elements po,, 0,, 0;€ K, we define
the cross-ratio mapping (with respect to o, 0., 0;) to be the homo-
graphic transformation [16, p. 353], [13, pp. 24-25] h: K,— K, given by

4.1 ho)y=0=0 . 0=0 — (o 0,0,p) VoekK,.
(4.1) (©) 0—0, 0—p (0, 01, 02 05) YPEK
We call (o, p,, 0; 0.) as the cross-ratio of o with p,, 0,, 0. In the case
when any one of the p,’s is taken as @, we define the corresponding
cross-ratio to be the expression got by deleting in (4.1) the factors
which thereby involve w. E.g., (p, ®, 0, 05) = (0 — 0,)/(0 — ), ete.
It is trivial to verify that the homographic transformation in
(4.1) maps p,, 0, 0, to 1,0, w, respectively, and that there is no
other homographic transformation with this property. Consequently,
identity mapping is the only homographic transformation which can
map 1,0, ® to 1,0, w, respectively. Furthermore, cross-ratios are
invariant under every homographic transformation T, i.e., (0, 0,, 0., 0;)=
(Tp, Tp,, To., Tp;). This follows from the fact that 77 is also a homo-
graphic transformation and that 27 is 2 homographic transformation
which maps Tp,, To,, Tp; to 1, 0, w, respectively. Now we prove

THEOREM 4.2. If all the hypotheses of Theorem 2.5 are assumed,
except that the circular cones E"(1 = 1, 2) are not necessarily disjoint
and that (2.17) is replaced by the condition >i_.m, # 0, and if A, =
Seamy, and A, = S\i_p My, then O(x, x) %= 0 for all linearly inde-
pendent elements x, x, of E such that xt,e E—E" N E® and x€ E—
EPUEPU Ts(wy yo), where (x, %) € NN L[, x.], 2, = Ya, + 0y, and
where
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(4-2) S(xoy yo) = {P € Kw I (p, ’7/8, 01 102) = _AAl y0: € Gi(xo: yo), 1= 1; 2} .

2

(Of course, ®(x,, x) = 0 for any two nonzero and linearly dependent
elements x, x, such that xe E — E"’ N E®.)

Proof. The statement within parenthesis is self-evident in view
of (8.1). In order to prove the other case, we first observe that
every linearly independent pair (z, x,) of elements z, x, € K determines
a unique element (z,, ¥,) € NN |z, x.], a unique set of scalars e, 5,7, 0
(with @d — B7 # 0) such that x = ax, + By, and x, = 7z, + 0y,, and,
thereby, a unique set S(x,, %,) defined by (4.2). Let us take two line-
arly independent elements x, , of E such that v, ¢ F— E’ N E? and
xeE— EPUE®PU Ty(x, ¥,), where S(x,, ¥,) is the unique subset of
K, determined in the above manner by the pair («, «,). If P,(sx + tx,)
is given by (2.8), then proceeding as in the proof of Theorem 2.5 we
see that g,/ A, € U(G(x,, ¥,)) for i =1, 2, where U(p) = (6p — 7)/(—Bp + @)
for pe K, and where

» Tk q
=320, and pm=3 3 T, .

k=137=1 W,
At this point, we note that g, and g, cannot vanish simultaneous-
ly. For, otherwise, 0¢ U(G,(%, ¥,)) N U(Gy(x,, ¥,)) and, therefore, v/
would lie in Gy(xy, ¥,) N G2y ¥,)- This would imply that x, = vz, +
0Yo € To,(%y Yo) N Ta(@ Yo), contradicting the fact that =, ¢ E{"' N EP.
Next, we observe that g, + t, # 0 whenever g, =0+ g, or g, +
0 = . In case, however, 1, t, # 0, we again show that g+, +0
as follows: Since p,/A; belongs to U(G(x, ¥,) for i =1, 2, there
exist elements p; € G(%,, ¥,) such that p, /A, = U(p,) = (00,—7)/(—Bo;+ )
for i =1,2. If (on the contrary) g, + f, = 0, then g /¢, = —1 and
v/, 0., 0, are distinct elements (since g, g, = 0 and A,/4; # —1) and
hence

00, — 7 -—'8‘01+a=—AA
—Bo, +a o —7 s

That is (cf. Definition 4.1),

— a/B"‘lO1 . 7/5_(’2 —
@[8, V[0, 01 02) = — 5o, o—p, A/ A4,
and, hence, /B € S(x,, ¥,). This implies at once that x = ax, + By, €
Ts(%,, ¥,), contradicting the choice of x already made above. (In the
above arguments, let us note that 8 and é cannot vanish simultaneously
(since A,/A, # —1).) We have, therefore, shown that in all cases
M + . # 0. Finally, the proof follows from (2.20) — (2.22).
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The above theorem leads to the following corollary, which is the
first part of the (so-called) two-circle theorem due to Walsh on the
critical points of rational functions. In the following result we shall
write D(e,r) ={2z€C||z —¢| £ r} and call it a disc with center ¢
and radius 7.

COROLLARY 4.3 (Walsh [7, Theorem (20, 1)]). If f, (resp. f,) s a
polynomial from C to C of degree n, (resp. n,) such that all the zeros
of f. (resp. f,) lie in the disc D(e, ) = D, (resp.D (¢, 7,) = D,) and
if n, %= n,, then all the finite zeros of the derivative of the quotient
f(z) = £i(2)/f(z) lie in Ui, D(c;, 7;), where

N6, — NG N1y + mr,

(4.3) €= 212, =
Ny — Ny ln2—n1l

Proof. Letting x,= (1, 0), %, = (0, 1), N = {(@, ¥0)}, Gi(®o ¥o) =
D, f(z) = Dk, a,2" for ¢ =1, 2, we notice (ef. Remark 1.1) that the

sets
E» = E(N, G;) = {sx, + ty, = 0{(s, t) e C* s/t e D;}(i = 1, 2)

are circular cones in C® and that the mappings P,: C* — C, defined by
Px) = P(sx, + ty,) = nﬁ] a8t Vo = (s, t) e C?
k=0

for i+ =1, 2, are a.h.p.’s of degree =, such that Z, (%, ¥,) & Ts (% ¥o)
for + = 1, 2. Now the generalized polar @(x,, x) of the product

P(x)P(x), given by
(4.4) O(x,, ) = 1, Py(x,, 2)Py() — n,Py(0)Py(2,, @)

for all elements z = (s, t) and x, = (s, t,) of C?, satisfies all the hypo-
theses of Theorem 4.2 with m, = A, = %, and m, = 4, = —n,. For
the special choice of x, as x, (so that s, = 1 and ¢, = 0), we proceed
as in the proof of Corollary 2.7 and observe that (for nonzero elements
z and for ¢ =1, 2) P,(x) = t*if,(s/t)oP,/os = t™f;(s/t), OP,/ot =
n it (sft) — st*2f{(s/t) and (hence) that

1 [ 0P, oP, oP, 0P, (. 0P, oP, ]
o (x, — . 2 t 2 ) 2 t
(& ) M, " 3s<8 s | 8t> "o N s at>
(4.5) = gt [ fl(s/E)f(s/t) — Si(s/t)fi(s/t)]
= gmrm fi(st)-{ fuls/DY .
Since x,¢ E¥ N E®, Theorem 4.2 implies that @(x, x) # 0 whenever

2 is linearly independent to z, such that z¢ B U EP? U Ts(x, ¥o)-
That is @(x, x) #= 0 for all elements x = (s, t) for which £+ 0 and
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s/te D, U D, U S(x,, ¥,), where S(x, %,) is given by (since ¥ =1 and
0 = 0 in the notations of Theorem 4.2).

S(ay, yo) = {‘0 € C,,,|(p, @, Py, 102) = Zl ) 0: € G(%o Yo)y + =1, 2}

= {peCwl(p»— o) — o) = =25 p.e Dy i =1, 2}

= {(n,0, — 'nmoz)/(nz — n,)| 0, € D, 0, € Dy}
= D(¢yy 75) (due to (4.3)).

From (4.5) it follows that f'(s/t) = 0 for all s, te€C such that ¢t # 0
and s/t¢ D, U D, U D(c,, r;) and, hence, the corollary follows.

In the above theorem, the constants m, € K, have been assumed
to have a nonvanishing sum, with at least one m, > 0 and at least
one m; < 0. Next, we deal with a case when all the m,’s in Theorem
4.2 are taken as positive elements of K, and obtain the following
corresponding result.

THEOREM 4.4. If the a.h.p.s P, (k= 1,2, -+, q) and the circular
cones EV and E® (not mecessarily disjoint) satisfy the comditions
2.16 of Theorem 2.5 for some L =< p < q and tf m, >0 for k=1, 2,
«ee, q, then O(x, x) = 0 for all linearly independent elements x, x,
of E such that x,c B — E® N E® and xc B — E" U E® U Ts(x,, ¥,),
where S(x,, ¥,) s as defined in Theorem 4.2. (Of course, ®(x,, x)+# 0
whenever x, x, are nonzero and linearly dependent such that &
E — EM U E®P.)

Proof. The proof is exactly the same as in Theorem 4.2.

An application of this theorem furnishes the following result on
the zeros of the formal derivative of the product of two polynomials
(from K to K). For K = C, this result reduces essentially to the
two-circle theorem due to Walsh [7, Theorem (19, 1)]. By the formal
derivative [16, p. 360], [14, p. 121] f’ of a polynomial f(2) = >r_, a,2*
(from K to K), we mean the polynomial f'(z) = >, ka,2*"'. If,
however, P(s, t) is a polynomial (from K* to K) in s and ¢, we define
the formal partial derivative oP/os of P with respect to s (say) as
the formal derivative of P when P is regarded as a polynomial in
s(t being held fixed). In the following corollary, we shall write
D(c,r)={2e€K||z — ¢c| < r} and call it a ball with center ¢ (¢ being
in K) and radius 7 (= being in K,,). The balls are usually called
discs when K = C.
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COROLLARY 4.5. If f. (resp. f;) is a polynomial from K to K of
degree m, (resp. m,) such that all the zeros of f, (vesp. f,) lie in the
ball D(e,, r,)= D, (resp. D(c,, r,)=D,), then all the zeros of the formal
dertvative of the product f(z) = f(2)-f,(z) lie in Ui, D(e, 7;), where

H 3
n, + N, Ny + N,

(4.6) ¢, = NGy + Ny o = Tul + N7y .
Proof. Proceeding as in the proof of Corollary 4.3, with C replaced
by K and &(zx, ) in (4.4) replaced by

(., 00) = nlpl(xlr x)Pz(x) + n2P1<w)'P2(x1’ x) ,

we notice that @(zx,, x) satisfies the hypotheses of Theorem 4.4 with
m, = 4, = n, m, = A, =n,. Following the computation used for
obtaining (4.5), we can easily verify that (for all nonzero elements
z = (s, t) e K?)

0wy ) = 5[0 S(618) + Fls/H)-Fi(s/D)]
= et fsft)

where x, = x,¢ E¥ N E®, (since ¢ Gy, 9,) = D, for 1=1,2) and
fi, £, [’ denote the formal derivatives of f, f,, f respectively. By
Theorem 4.4, &(x,, x) = 0 whenever the element x = (s, t) is linearly
independent to x, and is such that z¢ E{" U E® U Ts(x, ¥,). That is,
J(s/t) # 0 for all s, te K such that ¢ == 0 and s/t¢ D, U D, U S(x, %,),
where

S(xo, ¥o) = {10 € Km‘(p: @, 0y 0:) = — W[5 P; € Gi(Zoy Yo)y 1 = 1, 2}
={oe K,|(0 — p)/(o — 0.) = —m/n,; p;€ Dy, i =1, 2}
= {(n,0, + 10,)/(n, + n)| 0, € D,, 0, € Dy}
= D(e,, ;) (due to (4.6)).

Hence, all the zeros of f lie in Ui, D(e, 7;), as was to be proved.

If Theorem 4.4 is specialized for the case when G(z, y) =
Gy(, ¥) = G(z, y)(say) for all (x, y) € N (so that B\ = E» = E(N, G) =
E,, say) we easily conclude that @(x,, ) = 0 for all linearly independent
elements z, x, such that 2,€¢ E — E, and x € F — E, U T(x,, 9,), where
(@, ¥o) €N N L2, x.], 2. = Y, + 0y, and (cf. (4.2))

Sy, ¥o) = {IO e K,|(p, /0, 01y 0s) = — A,/ A,; Py P2 € G (4 Yo)} -

Since ¢ = 7/d ¢ G(x,, ¥,) and since p,, p, can vary over only distinct
elements of G(x,, ¥,), we see that every element o of S(x,, ¥,) is given
by

0= (Auoz + A2p1>/(A1 + Az) if o=w
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or
g’a(lo) = [A19Do(p2) + A2¢a<p1)]/(A1 + 4,) if c#£w

for some distinct elements o, o, in G(x,, ¥,), where p,(2) = 1/(z — 0)Vz €
K,. In the first case, G(x, %, happens to be K,-convex (since ® ¢
G(xy, 9,)) and o€ G(x, ¥,). While in the second case, @, (G(x, ¥,)) is
K,-convex (cf. definition of g.c.r.) and so ¢,(0) € p,(G(x, ¥,) and o€
G(x,, ¥,). Consequently, in either case, we discover that S(x, ¥, &
G(x,, ¥,) and so T(xo, ¥o) & Te(x,, 9,) & K,. Therefore, we conclude
that &(x,, ) = 0 for all linearly independent elements x, x, € E — E,.
This fact together with the statement of Theorem 4.4 within par-
enthesis, suggests that in the present set up Theorem 4.4 reduces
essentially to Theorem 3.1. In view of this and the remark following
Corollary 3.3 we again notice that Theorem 4.4 and Corollary 4.5
cannot be further generalized in the two directions in which Theorem
2.5 could not be extended.

Next, we give an example to show that Theorem 4.2 cannot be
generalized to vector spaces over nonalgebraically closed fields of
characteristic zero.

ExampPLE 4.6. In the notations of Example 2.9, take E = K¢,
Gz, ¥) = C, = {0} for 7 =1, 2 (so that the circular cones E{” and
E? are identical), and define

P(x) = P(sx, + ty,) = s* + st* = s(s* + t*)
Pz(x) = Pz<sxo + tyo) = s
O(x,, ®) = 2P (x,, x)- Py(x) — P (x)- Pyx,, x)

for all elements x = (s, t) and %, = (s, t,) of E. Proceeding as in
Example 2.9, we can easily verify that Z,(x, y,) & Ts,(, ¥, for
4 =1, 2 and that &(x,, ) = (1/3)s*8s* — t*) if we take x, = x, = (1, 0).
In the notations of Theorem 4.2, let us note (sincev=1,0 =0, 4, =
2, A, = —1) that S(x, ¥,) consists of all elements pe€ K, such that
((O, @, O, (02) = (AO - (01)/((0 - (02) = 2. That iS, S(xoy yo) = Q. NOW’
the polynomials P, and the generalized polar @(x, x) satisfy all the
hypotheses of Theorem 4.2, but @(z,, ) == 0 for the linearly independent
elements 2, = (1,0) and = (1,V 3), where 2, ¢ E’ N E® and ¢
EP N EP U Tyxy, ¥o), contrary to the conclusion in Theorem 4.2.

FINAL REMARK. At the end, let us recall that the condition
“EMNEY = @” has been used as hypothesis only in case of Theorem
2.5. In what follows, we show that this hypothesis is necessary in
order for the conclusion in Theorem 2.5 to hold. To this effect, we
reconsider Example 2.9 with necessary modifications: In fact, we
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replace the maximal ordered field K, by an algebraically closed field
K of characteristic zero and take the same polynomials P,(x), P,(x),
o(x,, ) and the same g.c.r. C, = G,(x,, ¥,) as in Example 2.9, but this
time we define

C, = Gy(x, ¥o) = {2€ K, |82 + 9| = 17T}
={z2eK,||642Z + T2(z + Z) — 208 < 0} .

Indeed, C,c D(K,) [14, p. 116] and the elements z = 1 and z =
—8 4 7 belong to G, so that C, N C, = { — 1} and (hence) E"' N B +
@. Also Zp (%, Yo) & To,(@, ¥,) for 7 = 1,2. Therefore, all the
hypotheses of Theorem 2.5 are satisfied by the polynomials P,(x),
P,(z), O(x,, x) and the circular cones E{", E{® (except that they are
disjoint), whereas @(x,, x) = 0 (see Example 2.9) for the linearly inde-
pendent elements z, =(1, 1) and = (1 + V69,2) ¢ B’ U E® (since
(1 +1769)/2¢ C,). This is contrary to the conclusion in Theorem 2.5.
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