Vol. 75, No. 1, 1978

Recent Issues
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Vol. 299: 1  2
Vol. 298: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Editorial Board
Subscriptions
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Author Index
To Appear
 
Other MSP Journals
Peak-interpolation sets of class C1

Walter Rudin

Vol. 75 (1978), No. 1, 267–279
Abstract

Let D be a bounded strictly pseudoconvex domain in Cn, with C2-boundary ∂D. Let A(D) be the algebra of all f C(D) that are holomorphic in D. Let M be a C1-submanifold of ∂D whose tangent space Tw(M) lies in the maximal complex subspace of Tw(∂D), for every w M.

The principal result of the present paper is that every compact subset of M is then a peak-interpolation set for A(D).

Mathematical Subject Classification 2000
Primary: 32E25
Secondary: 46J15
Milestones
Received: 6 April 1977
Published: 1 March 1978
Authors
Walter Rudin