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Let S be a d-dimensional set, d = 2, and assume that for
every (d + 1)-member subset T of S, there corresponds a
(d — 2)-dimensional convex set K C S such that every point of T
sees Kr via S and (aff Kr)N'S = Ki.  Furthermore, assume
that when T is affinely independent, then K is the kernel of T
relative to S. Then S is starshaped and the kernel of S is
(d — 2)-dimensional.

1. Introduction. Let S be asubset of R d=2. For points
x,y in S, we say x sees y via S if and only if the corresponding segment
[x,y] liesin S. Similarly, for T C S, we say x sees T (and T sees x) via S
if and only if x sees each point of T via S. The set of pointsin S seen by
T is called the kernel of T relative to S and is denoted kers T. Finally, if
kers S =ker S is not empty, then S is said tc be starshaped.

An interesting problem is that of determining necessary and suffi-
cient conditions for § to be a starshaped set whose kernel is k-
dimensional, 0 = k =d. Several papers have considered this question
(Hare and Kenelly [2], Kenelly, Hare, et al. {3], Toranzos [4]), and
Foland and Marr [1] have proved that a set S will have a zero-
dimensional kernel provided S contains a noncollinear triple and every
three noncollinear members of S see via § a unique common
point. Hence the purpose of this paper is to obtain an analogue of these
results for subsets of R¢ whose kernel is (d — 2)-dimensional.

The following familiar terminology will be used. Throughout the
paper, conv S, aff S, cl S, bdry S, relint S, and ker S will denote the convex
hull, affine hull, closure, boundary, relative interior, and kernel, respec-
tively, of the set S. The cone of x over S, defined to be the union of all
rays emanating from x through points of S, will be denoted
cone(x, S). Also, if S isconvex, dim S will represent the dimension of S.

2. Proof of the theorem.

THEOREM. Let S be a d-dimensional set, d = 2, and assume that for
every (d+1)-member subset T of S, there corresponds a (d—2)-
dimensional convex set Kr C S such that every point of T sees K via S and
(aff Kr) NS = K;.  Furthermore, assume that when T is affinely indepen -
dent, then Kr is the kernel of T relative to S. Then S is starshaped and the
kernel of S is (d — 2)-dimensional.
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Proof. The proof of the theorem is lengthy and will be accom-
plished by a sequence of lemmas. The first lemma and its corollary are
immediate consequences of our hypothesis, while the second, third and
fourth lemmas present the main arguments in the proof.

LEmMMA 1. If T ={t,, -, tss:} is an affinely independent subset of S,
then U{[t,]:1si<j=d+1}LZS.

Proof of Lemma 1. Otherwise, T C kers T = Ky, contradicting the
fact that K; is a convex set of dimension d — 2.

CoroLLARY 1. Let T ={t,, -, t;..} be a subset of S, with t,,-- -, 1,
affinely independent and conv {t,, -+, 1,} CS. Then K, C aff{t,, -, t.}.

LEMMA 2. Assume that conv (K U{p})Uconv (K U{q})CS,
where K is a convex set of dimension d—2,p&ZaffK, and
q& aff K U{p}). Then forx € S and x € 7w = aff (K U{p}), x sees each
point of K via S.

Proof of Lemma 2. To begin, note that for k,, -+, k,, any d — 1
affinely independent points in K, the set {k,," -, k,_1, p,q} =T is affinely
independent. Hence the set K; described in the theorem is exactly
kers T, and so K C K. Thus without loss of generality we may assume
K = K; and therefore (aff K)N S = K. Also, we assume that x € aff K,
for otherwise x € K, finishing the proof.

Now by the hypothesis of the theorem, the points k;, -+, ky_i, p, X
see via S a convex set D of dimension d — 2 such that (aff D)N S =D,
and since conv{k,, - -, k;.;,p} €S N @, D C 7 also (by the corollary to
Lemma 1). Similarly, k;,- -+, ks-1, g, x see a (d — 2)-dimensional convex
set D' with (af D')NS = D’, and D' C =’ = aff (K U{q}).

If either D = K or D’'= K, the argument is complete. Hence we
assume D # K and D'# K to reach a contradiction. The set D'UD
cannot contain a set P of d +1 affinely independent points, for these
points would see k,,- - -, ks, x via S, contradicting the fact that kers P is
a convex set of dimension d —2. A similar argument implies that all
points seen by k,,* - -, k,-;, x necessarily lie in the (d — 1)-dimensional flat
aff (D UD’). Then since [aff(D UD')]N a7 NS = D, the subset of 7
seen by k,, -, ks, x is exactly D.

We assert that x €(af D)NS =D: Consider the (d-1)-
dimensional flat 7, and let D;, D, denote distinct open halfspaces of =
determined by D. Since K aft D, without loss of generality assume
k,€ D,. There are two cases to consider, depending on the location of
the remaining k, points.
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Case 1. 1f for every k& D, we have k, € D,, then the sets
conv(D U{k,}), k;Z D, intersect in a (d — 1)-dimensional convex set C in
cl(D,), D Cbdry C, and each point k,,---, k,_; sees C via S. In case
x & aft D, cone(x, D) would intersect C ~ D at some point a, and clearly
[x,a]CS. Therefore each of k,, -, ks, x would see a via S, con-
tradicting the fact that the subset of 7 seen by k,,-- -, k,_;, x is exactly
D. We conclude that if Case 1 occurs then x € aff D.

Case 2. If for some k& D, we have k, € D,, then the sets
cone(k, D), kiZ D, intersect in a (d — 1)-dimensional convex set C,D C
C, and k,, -+, ks, see C via S. Again, if x & aff D, cone(x, D) would
intersect C ~ D at some point, impossible by the argument in Case
1. We conclude that x € aff D if Case 2 occurs, and our assertion
1s proved.

Thus we have x€(@fD)NS =D, so x sees k,, -+, k,y via
S. However, this is impossible since the subset of = seen by
x,ky, -+, ks is exactly D and k, € D. Our original assumption is false

and either D = K or D' = K. In either case, x sees K via S, completing
the proof of Lemma 2.

COROLLARY 2. Assume that conv (K U{p})U conv (K U{q})C S,
where K is a convex set of dimension d-2,p&Z affK, and
gZaff(KU{p). If xE€(SNaf(KU{p))~afK and ye€
(S Naff (K U{q})~ affK, then [x,y]ZS.

Proof. Otherwise the set K U{x, y} would contain d + 1 affinely
independent points with each corresponding segment in S, violating
Lemma 1.

LEMMA 3. Assume that conv (K U{p})Uconv (K U{q})CS,
where K is a convex set of dimension d—2,pZ affK, and
qZ aff (K U{p}). Let w=aff (KU{p}), = =aff(KU{q}). Select
r& U, and let w, and 7| denote the open halfspaces determined by
and w', respectively, and containing r. If u € w Ux' and if [r,u]CS,
then [r,u] C(clm) N (clmy).

Proof of Lemma 3. If u€aff K=wNx', the result is
trivial. Hence without loss of generality we assume that u € 7'~
aff K. Then clearly [r,u]Cclai, and we need only show that
[rbu]Cclm.

It suffices to prove that (r, u) N 7 = (J: Suppose on the contrary that
vE(r,u)Nm. Now v& 7', for otherwise the line determined by u and
v would lie in 7' and r € ', contradicting our hypothesis. Hence



40 MARILYN BREEN

v€m', and so v&aff K. But then we have vE(SN7)~
aff Kue(SNnw')~aff K and [v,u]CS, violating the corollary to
Lemma 2. Our assumption is false, (r,u)0\ 7 =¢, and {r,ujCclm,
finishing the proof of Lemma 3.

LEMMA 4. Assume that conv (K U{p})Uconv(K U{q})CS,
where K is a convex set of dimension d-—2,pZaffK, and
qZ aff (K U{p}). If z €S, then z sees K via S.

Proof of Lemma 4. As in the proof of Lemma 2, let 7=
aff (K U{p}), ' = aff (K U{q}), and assume that K = (aff K)N S. Fur-
thermore, we may suppose that z& 7 U 7', for otherwise the result is an
immediate consequence of that lemma. Then for ki, -+, ks, affinely
independent in K, the points ki, -+, ks, p, z are affinely independent
and see via S a unique (d —2)-dimensional convex subset A. By the
corollary to Lemma 1, since convi{k,, -, ks ,p}CSNm we have
A Cw,andby Lemma?2, A sees K via S. Similarly, k,," -+, ks-1, g, z see
a (d — 2)-dimensional convex set A’,A’'C 7', and A’ sees K via S.

As in Lemma 3, let 7, and ] denote the open halfspaces deter-
mined by 7 and 7', respectively, and containing z. Since A UA'C
7 Umn’, it follows directly from the lemma that conv(A U{z})U
conv(A'U{z})Cclm Neclai.

If A =K or A’'= K, the argument is complete. Hence we assume
A#K,A'#K, to reach a contradiction. The argument is given in
two steps.

Step 1. We show that for an appropriate choice of point ¢ in 7" and
convex set D in a =aff(A U{z}),[,d]UK UA lies in $ and in the
boundary of its convex hull for every d in D ~ A. To begin, select
t € (relintconv(K UA'))~a and let a, denote the open halfspace
determined by @ and containing t. Then ¢t € m, N a, and, by Lemma 3,
conv(K U{t}))Cclm Ncla,. By the corollary to Lemma 1, for
a,, -, as,-; affinely independent in A, the points a,," * *, @4-1, 2, see some
(d —2)-dimensional convex set D in @ and (affD)NS=
D. Furthermore, by Lemma 3 applied to 7 and a, conv(D U{t})C
clm, Necla,. Similarly, by the results in Lemmas 2 and 3, D sees A via §
and D and A are in cl7|. We conclude that conv(D U{t}) lies in
cm QclaiNcla,.

Note that K and D lie in some common hyperplane: Otherwise, for
T a subset of K U D consisting of d + 1 affinely independent points, the
corresponding set K; would contain A U {t}, contradicting the fact that
K, = kers T is a convex set of dimension d —2. Since A and D also lie
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in a common hyperplane, we have KNA C(aff K)N(aff A)C
af(KuD)Naff(AuD)=aff D, KNA C(aff D)N S = D, and D con-
tains KNA. Similarly, DNACKNA, and DN7w=DNA =
KNA. (Of course, KN A may be empty.) By our choice of t,¢ and
K ~ A lie in the same open halfspace determined by . Moreover, for
any point d in D ~ A, K ~ A and [¢, d) lie in «,, and it is easy to see that
[t,d]UK U A lies in the boundary of its convex hull, the desired result
for Step 1.

Step 2. Next we show that conv([, d]JUK UA)CS. This will
violate Lemma 1, since conv([t,d] U K U A) s a convex set of dimension
d. Recall that d€ 7 so [t,d]N 7 = . By previous comments, for z,
on [t, d], there corresponds a (d — 2)-dimensional convex set E,,= E,in 7
such that z, sees E, via S and E,= (aff E;)N'S. Lemma 3 implies that
conv(E,U{zg})Cclm NclmiNcla;. Also, using Lemma 2, z, and A
see all points of E,UD via S, so E,UD cannot contain d + 1 affinely
independent points. Thus E, and D lie in a common
hyperplane. Hence for z, and z, on [¢, d], the corresponding sets E; and
E, are in hyperplanes containing D, E, =K and E; = A. If K and A

"are parallel, then since each E, set is in a hyperplane containing D, the
sets E; and E, must be parallel. In case aff K intersects aff A, then
af KNaff A Caff(KUD)Naff(AUD)=aff D, and aff KNaff AN
af D=aff K Naff A# . Also, for every E, set, af DNaff A C
aff (D UE)) Naff(A UEy))=aff E,, and aff E, contains the (d—3)-
dimensional set aff D Naff A Naff K = aff K Naff A. Therefore each
pair of distinct aff E, sets will intersect in exactly aff KN
aff A. Furthermore, it is not hard to show that for z,# z,, the sets
conv(E,U{z)})~7 and conv(E,U{z;})~# are disjoint: If
conv(E, U{z,}) intersected conv(E, U {z,}) at point b& =, then E, U E, U
{b} would contain d + 1 affinely independent points with corresponding
segments in S, violating Lemma 1. Hence the sets must be disjoint.

Now we select ¢ Econv([t,d]UKUA) to show that c €S,
and without loss of generality, we assume that c€&
conv((t,d)UK UA). Ourargument is motivated by a planar construc-
tion employed in [1, Lemma 2]. For z, € [t, d] and E, the corresponding
subset of 7 seen by z,, we have conv(K U A)N (aff E;) C E,, so either
¢ Econv([t,z)) UK UE,) or ¢ Econv([z¢,d]UA UE,). Thus we may
define sets F,G in the following manner: Let F ={z,: z,E€[t,d]
and c €Econv([t, zo)) UK UE,)}, G ={z,: z,E€[1,d] and
c €conv([z,,d]UA UE,)}. By previous comments, if t < z,<z,<d,
then conv(E,U{z;})Nconv(E,U{z,})) CKNA. Hence, if z,EF, we
have z, € F, and similarly if z, € G, then z, € G. Therefore, F and G
are connected intervals whose union is [, d], and each of F and G is
nonempty since t€G and d €EF. Clearly we may select a point
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u € (t,d) such that [t,u) C G and (u, d] C F, and without loss of general-
ity, we assume that u € F. We will show that for this u and for E, the
corresponding subset of 7 seen by u, ¢ € conv(E, U {u}).

Select a sequence {u, } in (¢, u) converging to u, and let {E, } represent
the corresponding sequence of (d —2)-dimensional convex sets in
a. Since the sets aff E, either are parallel to both A and K or intersect
in the (d — 3)-flat aff A N aff K, and since each E, lies in the subset of 7
bounded by aff A and aff K, clearly the sequence {E, Nconv(A U K)}
converges to a (d — 2)-dimensional convex set E’ in conv(K UA)CS.

We assert that E’'C E,. First we remark that for w in (w N S)~
A, w cannot lie in aff (D U{t}). Otherwise, by Lemma 2, w would see
both A and D via S, and the set A UD U{w} would contain d + 1
affinely independent points with corresponding segments in S, violating
Lemma 1. Therefore, by previous arguments, each point w of
(wNS)~A sees via S a unique (d —2)-dimensional subset J, of
aff (D U{t}),J, = (aff J,) N S, and either aff J, is parallel to sets A, K, and
D or affJ, contains the (d—3)-dimensional flat aff A NaffK =
aff A Naff K Naff D. Furthermore, for w in E,, the set J, necessarily
contains u,, so J, is uniquely determined by n, and therefore each w in E,
is associated with the same (d — 2)-dimensional subset of aff (D U {t}),
call it J,. Similarly, let J, and J’ denote the (d — 2)-dimensional subsets
of aff (D U {t}) seen by E, and E’, respectively, and note that u € J,. By
an earlier argument involving Lemma 1, distinct sets conv(E, U J,)~
are disjoint, and each of these is disjoint from conv(E, UJ,)~ 7 and
from conv(E'UJ')~ 7. Also, conv(E, UJ,)~ 7 and conv(E'UJ')~
7 are either disjoint or one is a subset of the other. In any event, J' is
necessarily bounded in aff (D U{t}) by aff J, and aft J, for every n, and
since {u,} converges to u, this implies that u € J'. Therefore, J' and J,
both contain u, and J'=J,. Then by Lemma 1, for w' in E’, w’' must
belong to E,, E'C E,, and the assertion is proved.

Now since u, € G, we have ¢ € conv([u,, d]U A UE,) for each n,
and so ¢ Econv([u,d]UA UE,). Since c Econv([t,u]UK UE,), we
have ¢ € conv(E, U{u})C S, the desired result. We conclude that
conv([t,d]UK UA)CS, finishing Step 2.

To complete the proof of Lemma 3, notice that conv([t,d] UK U A)
is a d-dimensional subset of S. Clearly we have a violation of Lemma 1,
our preliminary assumption must be false, and one of the sets A, A’ must
be K. (In fact, by Lemma 1, it is easy to see that A=A'=
K.) Therefore z sees K via S, and Lemma 4 is proved.

At last, using the lemmas above, the proof of the theorem is
immediate. Select a set T consisting of d +1 affinely independent
points of S, and let K =kers;T. Since dimK =d —2, clearly we may
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select points p,q in T such that pZ aff K and q&Z aff (K U{p}). Hence
K, p, and g satisfy the hypotheses of Lemmas 2, 3 and 4, and so for
z€S,z sees K via §S. Thus K CkerS, and since kerS Ckerg T, we
have K =kerS. Therefore S is indeed starshaped, and kerS has
dimension d — 2, the desired result.

The author would like to thank the referee for his conjecture of the
following corollary.

CoroLLARY 3. The hypothesis of the theorem above provides a
characterization of d-dimensional sets S, d = 2, for which K = kerS has
dimension d — 2, (aff K)N S = K, and the maximal convex subsets of S
have dimension d — 1.

Proof. If set S satisfies the properties above, then clearly to every
(d + 1)-member subset T of S, the set K serves as an appropriate Kr
set. Furthermore, if T is affinely independent, we assert that K =
kers T: Clearly we may select points ¢, and ¢, in T with {4 &K
and t,& aff(K U{t,}). For y any point which sees T via S, if y&
aff (K U {t,}), then conv (K Uy, t;]) would be a full d-dimensional subset
of S, contradicting the fact that maximal convex subsets of S have
dimension d —1. Hence y € aff (K U{t,}). Similarly y € aff (K U{t,}),
and y € (af K)N'S = K. We conclude that K = kers T, and S indeed
satisfies the hypothesis of the theorem.

Conversely, if S satisfies the hypothesis of the theorem, then the
dimension of K =kerS is d —2 and (aff K)NS = K. We need only
show that for M a maximal convex subset of S, dimM =d —1. Clearly
dimM=d-1, and since KCM, dmM=d—-2. If dmM=d-2,
then MC (af K)NS =K, and M = K. However, since M is maximal,
this implies that there are no points of S not in K, impossible since S is a
full d-dimensional. Thus dimM =d — 1, finishing the proof of the
corollary.

In conclusion, note that for d =3, the result fails without the
requirement that (aff K;) N S = K, as the following example illustrates.

ExampLE 1. Let {S,} be a sequence of (d — 1)-dimensional simp-
lices in R% {E,} a corresponding sequence of (d — 2)-dimensional simp-
lices, so that E, is a facet of S,, E,.,CE,, N{Si:1=i=n+1}=E,.,
and K = N{E,: 1= n}is a singleton set. Define S = cl(U{S,: 1= n}).
Then for T any finite subset of S and k the largest integer such that
ScNT#J, EcCkersT. Moreover, if T contains d + 1 affinely inde-
pendent points, then E, =kersT. However, dim(kerS)=dimK =
0. Hence for d =3, the theorem fails without the requirement that
(aff K;)NS = Kr.  Of course, if d =2, each set K is a singleton set so
that (aff K;) N S = K; will be satisfied automatically.
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An easy adaptation of Example 1 shows that S need not even be
starshaped unless (aff K;)N S = K.
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