COALLOCATION BETWEEN LATTICES WITH APPLICATIONS TO MEASURE EXTENSIONS

WILLIAM JOSEPHSON
COALLOCATION BETWEEN LATTICES WITH APPLICATIONS TO MEASURE EXTENSIONS

WILLIAM JOSEPHSON

It is well known that in a locally compact Hausdorff space every countably additive measure on $R_\sigma(K_\delta)$, the σ-ring generated by the compact G_δ sets, can be extended to a countably additive measure on $\sigma(F)$, the σ-algebra generated by the closed sets. In a locally compact Hausdorff space F, the lattice of closed sets, countably coallocates (Definition 4.7) the lattice of compact G_δ sets. Our purpose is to show that coallocation and countable coallocation are properties basic to many extension theorems.

Dubins [5] considered the following situation. $K \subseteq L$ are two lattices containing the null set (a lattice is a collection of subsets of some set closed under finite unions and intersections). u is a bounded measure defined on K. Dubins asked when u_*, defined by $u_*(b) = \sup\{u(k)/k \subseteq b, k \in K\}$, is a measure on L. A necessary and sufficient condition is for L to allocate K. L allocates K if the following is true. For any $k \in K$ contained in the union of two sets l and h from L there exist sets p and q from the lattice K such that $k = p \cup q$ and $p \subseteq l$, $q \subseteq h$.

With two lattices $K \subseteq L$ and u a measure on K, we show that a sufficient condition for u^{**}, defined by $u^{**}(b) = \inf\{u_*(l')/b \subseteq l', l' \in L:\}$, to be a measure on the algebra generated by L is for u_* to be modular on L'. l' is the complement of the set l and $L' = \{l'/l \in L\}$. It follows that if u is a K inner regular measure on $R(K)$, the ring generated by K, then u^{**} is a L inner regular extension of u to $A(L)$, the algebra generated by L.

Thus when L coallocates K (i.e. L' allocates K) Dubin's result shows that for every K regular bounded measure u on $R(K)$, u^{**} is a L regular extension of u to $A(L)$. If L countably coallocates K then u^{**} is countably additive when u is countably additive. From this we obtain the stated result on locally compact Hausdorff spaces [Halmos 7] as well as a related result by Levin and Stiles [8]. Countable coallocation also yields an extension theorem by Marik [9] on countably paracompact normal spaces and a theorem by Berberian [2]. In most instances we can and do prove our results for measures that are not bounded.

We also look at measures that are τ-smooth. A measure u on K is τ-smooth if for any net $\{k_a\}$ decreasing to \emptyset, $k_a \in K$, $\lim_{a} u(k_a) = 0$. We
show that any bounded K regular measure u on $R(K)$ that is τ-smooth on K can be extended to a bounded measure on $A(\tau(K))$ that is τ-smooth on $\tau(K)$. $\tau(K)$ is the smallest lattice containing K that is closed under arbitrary intersections. We prove u_* is modular on $\tau(K)'$ and obtain u^{**}, defined with respect to $\tau(K)$, as the desired extension.

2. Definitions and notation. All lattices are collections of subsets of an abstract set X that are closed under finite unions and intersections. The fact that X contains points has no importance in this paper — the boolean algebra of all subsets of X can be replaced by any complete boolean algebra. Subsets of X will be denoted by lower case letters. If we are considering a lattice L and a set l, it will usually be assumed that l belongs to L.

l' denotes the complement of the set l in X and $L' = \{l'/l \in L\}$. $R(L)$ is the ring generated by L; $A(L)$ the algebra generated by L. $\sigma_r(L)$ is the σ-ring generated by L and $\sigma(L)$ is the σ-algebra generated by L.

A measure u on a lattice A is an extended real valued set function such that for $a, b \in A$

(i) $u(a) + u(b) = u(a \cup b) + u(a \cap b)$.

(ii) $u(a) + u(b) = u(a \cup b)$ whenever $a \cap b = \emptyset$.

(iii) $a \subseteq b$ implies $u(a) \leq u(b)$.

Let K be a lattice contained in A. A measure u on A is K inner regular if for every $a \in A$, $u(a) = \sup\{u(k)/k \subseteq a, k \in K\}$.

A measure u on a lattice A is σ-smooth if for any sequence $\{a_n\}$ decreasing to \emptyset, $\lim_n u(a_n) = 0$. u is countably additive on A if $\Sigma^*_i u(a_n) = u(\bigcup^*_i a_n)$ whenever $\{a_n\}$ is a disjoint sequence of sets from A such that $\bigcup^*_i a_n \in A$. For a ring A any finite valued measure u which is σ-smooth on $K \subseteq A$ and K inner regular is countably additive on A.

A measure u on a lattice A is σ-finite if for every $a \in A$, a is contained in $\bigcup^*_i a_n$ where $a_n \in A$ and $u(a_n)$ is finite for all n. If A is a ring then by the Caratheodory extension theorem any countably additive, σ-finite measure u on A can be uniquely extended to a countably additive measure on $R_\sigma(A)$. The extension is the outer measure defined by $\hat{u}(b) = \inf\{\Sigma^*_i u(a_n)/b \subseteq \bigcup^*_i a_n, a_n \in A\}$.

The bounded measures on the algebra $A(L)$ are denoted by $M(L)$. It is easy to verify that if u is bounded and L inner regular then $u(a) = \inf\{u(l')/a \subseteq l', l \in L\}$ for $a \in A(L)$. A measure satisfying the last equality is called L' outer regular. If a measure is both L inner regular and L' outer regular then it is L regular. The L regular, bounded measures on $A(L)$ are denoted by $M_r(L)$. Those measures belonging to $M_r(L)$ which are σ-smooth are denoted by $M^S_r(L)$. These
measures are countably additive and hence can be uniquely extended to a countably additive measure on $\sigma(L)$.

For a measure u on a lattice K which contains \emptyset, u_* is defined as in the introduction. The definition of u^{**} as given in the introduction depends on the lattice L used (L must also contain \emptyset).

3. The modularity of u_*. Let $K \subseteq L$ be two lattices containing \emptyset and u a measure on K. u_* is modular on L' if $u_*(l_1') + u_*(l_2') = u_*(l_1' \cup l_2') + u_*(l_1' \cap l_2')$. We now show that if u_* is modular on L' then u^{**} is an L' outer regular measure on $A(L)$ where u^{**} is defined with respect to L. Furthermore, u^{**} is a complete measure on $A(u,L') = \{e/u^{**}(l') = u^{**}(e \cap l') + u^{**}(e' \cap l') \text{ for all } l \in L \}$. The easy proofs of the following lemmas are omitted.

Lemma 3.1. Let u be a measure on K. If u_* is modular on L' then for a, b subsets of X,

$$u^{**}(a \cup b) + u^{**}(a \cap b) \leq u^{**}(a) + u^{**}(b).$$

Lemma 3.2. Let u be a measure on K and u_* be modular on L'. Suppose $l' \cap a = \emptyset$, where a is any subset of X. Then $u^{**}(l') + u^{**}(a) = u^{**}(a \cup l')$.

u_* is σ-smooth on L' if $\lim_n u_*(l_n') = u_*(\bigcup_1^\infty l_n')$ whenever $\{l_n\}$ is an increasing sequence such that $\bigcup_1^\infty l_n' \in L'$.

Theorem 3.3. Let u be a measure on K.

(i) The modularity of u_* on L' is equivalent to u^{**} being an L' outer regular measure on $A(L)$.

(ii) If u_* is modular on L' then $E(u,L')$ is an algebra containing $A(L)$ and u^{**} is a complete measure on $E(u,L')$.

(iii) Suppose L is closed under countable intersections. If u_* is modular and σ-smooth on L' then $E(u,L')$ is a σ-algebra containing $\sigma(L)$ and u^{**} is countably additive on $E(u,L')$.

Proof. (i), (ii). That modularity is necessary is obvious. The sufficiency of (i) and (ii) will be proved. If u_* is modular on L' then $E(u,L')$ is closed under complementation and by Lemma 3.2 it contains L'.

Fix $l' \in L'$. It is sufficient to assume $u_*(l')$ is finite. Let e_1, e_2 belong to $E(u,L')$. By Lemma 3.1,

$$u_*(l') \leq u^{**}((e_1 \cup e_2) \cap l') + u^{**}((e_1 \cup e_2)' \cap l').$$
For the reverse inequality choose \(l', h' \) from \(L' \) such that \(l' \supseteq e_i \cap l', \ h' \supseteq e_i' \cap l' \) and

\[
(2) \quad u_*(l') \geq u_*(l'_i) + u_*(h'_i) - \epsilon/3 \quad j = 1, 2.
\]

We claim that

\[
(3) \quad u_*(l') \geq u_*(l'_1 \cup l'_2) + u_*(h'_1 \cap h'_2) - \epsilon.
\]

This inequality is implied by

\[
u_*(l'_1 \cup l'_2) + u_*(h'_1 \cap h'_2) \leq u_*(l'_1) + u_*(h'_1) + \frac{3}{2} \epsilon
\]

which is equivalent to

\[
u_*(l'_2) + u_*(h'_2) \leq u_*(l'_1 \cap l'_2) + u_*(h'_1 \cup h'_2) + \frac{3}{2} \epsilon
\]

by the modularity of \(u_* \). The last inequality is true by (2) and the modularity of \(u_* \).

(3) implies the reverse direction of (1) and hence \(e_1 \cup e_2 \) belongs to \(\mathcal{C}(u, L') \). Hence \(\mathcal{C}(u, L') \) is an algebra containing \(L \).

To show \(u^{**} \) is a measure suppose \(l' \) contains \(e_1 \cup e_2 \) and that \(u(l') - u(e_1 \cup e_2) < \epsilon \). Then by (3)

\[
u_*(l'_1) + u_*(l'_2) \leq u_*(l') + u_*(l'_1 \cap l'_2) + \epsilon.
\]

Therefore

\[
u^{**}(e_1) + u^{**}(e_2) \leq u^{**}(e_1 \cup e_2) + u^{**}(e_1 \cap e_2) + 2\epsilon.
\]

By Lemma 3.1 \(u^{**} \) is modular on \(\mathcal{C}(u, L') \) and by Lemma 3.2 \(u^{**}(\emptyset) = 0 \). It is easy to verify that \(\mathcal{C}(u, L') \) contains all \(e \) such that \(u^{**}(e) = 0 \).

(iii) Let \(\{e_n\} \) be a sequence from \(\mathcal{C}(u, L') \). Choose \(l'_1 \supseteq e_n \cap l', \ b'_n \supseteq e_n' \cap l' \) such that

\[
u_*(l') \geq u_*(l'_n) + u_*(h'_n) - \epsilon/2^n.
\]

We can show using (4) and the modularity of \(u_* \) that

\[
u_*(\bigcup_{1}^{n} l'_i) + u_*(\bigcap_{1}^{n} h'_i) \leq u_*(l') + \sum_{1}^{n} \frac{\epsilon}{2^i}.
\]

Since \(u_* \) is \(\sigma \)-smooth on \(L' \) there exists an \(n \) large enough such that
It follows that

$$u_*(l') \equiv u_*(\bigcup_1^\infty l_i') + u_*(\bigcap_1^n h_i') - 2\epsilon. \tag{6}$$

Therefore by Lemma 3.1, $\bigcup_l e_i \in \mathcal{E}(u, L')$.

To show u^{**} is countably additive, we can assume $\Sigma_l u^{**}(e_i)$ is finite. Choose $f_i' \supset e_i$, $f_i' \in L'$ such that $u_*(f_i') - u^{**}(e_i) \leq \epsilon/2^i$. Let $l' = \bigcup_l f_i'$. Then since u_* is σ-smooth and modular on L',

$$u_*(l') \equiv \sum_l u_*(f_i') < +\infty. \tag{7}$$

Inequality (7) holds for l' and since $l' \supset \bigcup_l^\infty e_i$,

$$u^{**}\left(\bigcup_1^\infty e_i\right) \equiv u_*(l') \leq \sum_l u_*(f_i')$$

$$\leq \sum_l u^{**}(e_i) + 2\epsilon.$$

Thus u^{**} is countably additive on $\mathcal{E}(u, L')$.

We now give sufficient conditions for u^{**} to extend u.

Theorem 3.4. Let u be a K inner regular measure on $S(K)$ which represents either $A(K)$ or $R(K)$. If u_* is modular on L' and u^{**} is finite on K then $u = u^{**}$ on $S(K)$.

Proof. $u(b) = u^{**}(b)$ when $u(b) = +\infty$. If $u(b)$ is finite then $u^{**}(b)$ is finite. This follows because every $b \in S(K)$ is of the form $\bigcup_{j=1}^n k_j \cap h_i'$ where for all $j, h_i \in K$ and either $k_j \in K$ or $k_j = X$.

Choose $l' \supset b$ such that $u_*(l') - u^{**}(b) \leq \epsilon/3$. Choose $k_0 \subset b$ such that $u(b) - u(k_0) \leq \epsilon/3$ and choose $k_1 \subset l'$ such that $u_*(l') - u(k_1) \leq \epsilon/3$. Let $k = k_0 \cup k_1$. Then since u is K inner regular, $|u(k) - u(b)| \leq \frac{2}{3}\epsilon$. Then $u_*(l') - u(b) < \epsilon$. Hence $u^{**}(b) = u(b)$.

A set function v on a collection of subsets \mathcal{H} is σ-finite with respect to $\mathcal{L} \subset \mathcal{H}$ if for every $h \in \mathcal{H}$, $h \subset \bigcup_l^\infty s_i$ where $s_i \in \mathcal{L}$ and $v(s_i)$ is finite for
all \(j \). Note that since our measure \(u \) is finite on \(K \), \(u \) is \(\sigma \)-finite with respect to \(R(K) \) when \(u \) is defined on \(R(\sigma)(K) \).

Theorem 3.5. Suppose \(L \) is closed under countable intersections. Suppose \(u_* \) is modular and \(\sigma \)-smooth on \(L' \) where \(u \) is a countably additive measure defined on

(i) \(\sigma(K) \), \(\sigma \)-finite with respect to \(A(K) \). If \(u^* \) is finite on \(K \) then it is a countably additive extension of \(u \) to \(\sigma(L) \).

(ii) \(R(\sigma)(K) \). If \(u^* \) is finite valued on \(K \) then \(u^* \) is a countably additive extension of \(u \) to \(\sigma(L) \).

Proof. If \(u \) is a countably additive, \(\sigma \)-finite measure on a \(\sigma \)-ring generated by a ring \(S \) then for all \(b \) in the \(\sigma \)-ring,

\[
 u(b) = \inf \left\{ \sum_{i=1}^{\infty} u(s_i)/b \subseteq \bigcup_{i=1}^{\infty} s_i, s_i \in S \right\}.
\]

That \(u = u^* \) follows in both cases from this and Theorem 3.4.

Define \(K \cap L = \{ k \cap l/k \in K, l \in L \} \).

Corollary 3.6. Suppose \(u \in M,(K) \) and \(u_* \) modular on \(L' \). Then \(u^* \) is a \(K \cap L \) regular extension of \(u \) to \(A(L) \). If \(u \) is countably additive, \(u_* \) \(\sigma \)-smooth on \(L' \), and \(L \) closed under countable intersections then \(u^* \) is a countably additive measure on \(\sigma(L) \).

4. Coallocation and the extension of \(K \) inner regular measures.

We will assume throughout this section that \(K \subseteq L \), and that any measure on \(K \) (or \(A(K), R(K), \sigma(K), R_{\sigma}(K) \)) is finite valued on \(K \). In most examples we consider there should be no confusion as to which lattice is used for \(L \) in the definition of \(u^* \). We specify this lattice only occasionally.

Allocation is defined as in the introduction. A lattice \(L \) coallocates \(K \) if \(L' \) allocates \(K \). Though Dubin’s paper deals with bounded measures on a lattice, we state his theorem for any extended real valued measure. His proof remains valid despite the change.

Theorem 4.1. Let \(\emptyset \in H \); and let \(J \) be any other lattice (\(J \) need not contain \(\emptyset \)). The following two statements are equivalent.

(i) For every measure \(u \) on \(H \), \(u_* \) is a measure on \(J \).

(ii) \(J \) allocates \(H \).

Proof. Assume \(J \) allocates \(H \). Choose from \(J \) any \(j_1, j_2 \) and choose from \(H \) \(h \subseteq j_1 \cup j_2 \), \(l \subseteq j_1 \cap j_2 \). Then since \(J \) allocates \(H \) there exists
\(p_1, p_2 \in H \) such that

1. \(p_1 \subseteq j_1, p_2 \subseteq j_2 \)
2. \(p_1 \cup p_2 = h \cup l, \, p_1 \cap p_2 \supseteq l \).

Therefore \(u_*(j_1 \cup j_2) + u_*(j_1 \cap j_2) \leq u_*(j_1) + u_*(j_2) \). The reverse inequality is always true. Thus (ii) implies (i).

Assuming \(J \) does not allocate \(H \), Dubins constructed a measure \(u \) on \(H \) for which \(u_\ast \) is not a measure on \(J \). Thus (i) implies (ii).

Corollary 4.2. Suppose \(L \) coallocates \(K \) and \(u \in M(K) \). Define \(u^{**} \) with respect to \(L \).

(i) \(u^{**} \) is a complete measure on \(\mathcal{E}(u, L') \supseteq A(L) \) and is the smallest \(L' \) outer regular measure on \(\mathcal{E}(u, L') \) such that \(u^{**} \equiv u \) on \(K \).

(ii) If \(u \in M_r(K) \) then \(u^{**} \in M_r(L) \) and \(u^{**} = u \) on \(A(K) \).

(iii) If \(u \in M^s_r(K) \), \(u_\ast \sigma \)-smooth on \(L' \) and \(L \) closed under countable intersections then \(u^{**} \in M^s_r(L) \) and \(u^{**} = u \) on \(A(K) \).

For any lattice \(K, R(K) \) is an ideal in \(A(K) \), i.e. \(r \cap a \) belongs to \(R(K) \) whenever \(r \in R(K), a \in A(K) \). Thus \(A(K) \) coallocates \(R(K) \). Hence for any \(K \) inner regular measure \(u \) on \(R(K) \), \(u^{**} \) defined with respect to \(A(K) \) is an extension of \(u \) to \(A(K) \). Since \(u^{**} = u_\ast \), the extension is \(K \) inner regular.

In many instances the lattice \(K' \) separates the lattice \(L \). A lattice \(H \) separates \(L \) if whenever \(l_1 \cap l_2 = \emptyset \), there exists disjoint sets \(h_1, h_2 \) such that \(h_1 \supseteq l_1, h_2 \supseteq l_2 \). \(H \) coseparates \(L \) if \(H' \) separates \(L \).

Theorem 4.3. Suppose \(K \) coseparates \(L \) and \(K \subseteq L \). Then \(L \) coallocates \(K \).

Proof. Suppose \(l'_1 \cup l'_2 \supseteq k \). Then \(l_1 \cap k, l_2 \cap k \) are disjoint members of \(L \). Since \(K \) coseparates \(L \) there exist disjoint sets \(k'_1, k'_2 \) containing \(l_1 \cap k \) and \(l_2 \cap k \) respectively. Since \(k_1 \subseteq k'_1 \cap l'_1, k_1 \cap k \subseteq l'_1 \). Similarly \(k_2 \cap k \subseteq l'_2 \). Now \((k_2 \cap k) \cup (k_1 \cap k) = k \).

Let \(X \) be a topological space. We give the following notation for some natural lattices occurring in \(X \). \(\mathcal{F} \) is the lattice of closed sets, \(\mathcal{I} \) is the lattice of zero sets, \(\mathcal{K} \) is the lattice of compact sets, and \(\mathcal{K}_\delta \) is the lattice of compact \(G_\delta \) sets. If \(X \) is a normal space then \(\mathcal{I} \) coseparates \(\mathcal{F} \) by Urysohn's lemma. Hence every \(u \in M_r(\mathcal{I}) \) extends to \(u^{**} \in M_r(\mathcal{F}) \).

\(\mathcal{F} \) coseparates itself in a normal space and \(\mathcal{I} \) coseparates itself in an arbitrary topological space. Consequently for any \(u \in M(\mathcal{I}) \), in any space \(X, u^{**} \) is the smallest outer regular measure on \(A(\mathcal{I}) \) such that \(u^{**} \equiv u \). Here \(u^{**} \) is defined with respect to \(\mathcal{I} \).
It will follow from the next theorem that \mathcal{F} coallocates \mathcal{H}_8 in any completely regular Hausdorff space.

Definition 4.4. A lattice K is an L-ideal if $K \cap L \subseteq K$. $K \cap L = \{k \cap l/k \in K, l \in L\}$.

Theorem 4.5. Let K be an H-ideal where $K \subseteq H \subseteq L$. If H coseparates $K \cap L$ then L coallocates K.

Proof. Let $l_1' \cup l_2' \supseteq k$. Then $(k \cap l_1) \cap (k \cap l_2) = \emptyset$. There exists h_1' and h_2' which are disjoint and contain $k \cap l_1$, and $k \cap l_2$ respectively. Then $h_1 \cap k \subseteq l_1'$, $h_2 \cap k \subseteq l_2'$ and $(h_1 \cup h_2) \cap k = k$. Since K is an H ideal, L coallocates K.

In a completely regular Hausdorff space \mathcal{H}_8 is a \mathcal{F}-ideal. \mathcal{F} coseparates the compact sets and therefore \mathcal{F} certainly coseparates $\mathcal{H}_8 \cap \mathcal{F}$. Hence \mathcal{F} coallocates \mathcal{H}_8. Therefore we have the following.

Theorem 4.6. Let X be a completely regular Hausdorff space. Suppose $u \in M^*(\mathcal{H}_8)$. Then $u^{**} \in M^*(\mathcal{F})$ and is a $\mathcal{H}_8 \cap \mathcal{F}$-regular extension of u to $\sigma(\mathcal{F})$.

Proof. That u^{**} is σ-smooth follows from the fact that $\mathcal{H}_8 \cap \mathcal{F}$ is a compact lattice (any collection $\{f_a\}$ from the lattice has a nonempty intersection whenever every finite subcollection has a nonempty intersection). The rest of the theorem follows from Corollary 4.2.

The following definition is useful in determining when u^{**} is countably additive.

Definition 4.7. L countably allocates K if whenever $k \subseteq \bigcup_i^* l_i$ then there exist $k_i \in K$ such that each k_i is contained in a finite union of the l_i and $\bigcup_i^* k_i = k$. If L' countably allocates K then L countably coallocates K.

Theorem 4.8. Suppose L countably coallocates K. Consider a countably additive measure u on $\sigma(K)$ (or $R_\sigma(K)$). Then u^* is σ-smooth on L'.

Proof. Suppose $l' = \bigcup_i^* l_i'$ and $\bigcup_i^* l_i' \subseteq L'$. Choose $k \subseteq l'$. There exist $k_i \in K$ such that $k_i \subseteq \bigcup_i^* l_i'$ for some n and $\bigcup_i^* k_i = k$. Since u is countably additive, $\lim_i u(k_i) = u(k)$. Thus $u^*(l') \leq \lim_i u^*(\bigcup_i^* l_i')$. The reverse inequality is always true.

In a locally compact Hausdorff space if $k \subseteq \bigcup_i^* o_i$ where the o_i are
open, then \(k = \bigcup_{i} k_{i}, k_{i} \in \mathcal{H}_{o} \) and \(k_{i} \subseteq o_{i} \) for some \(j \). Thus \(\mathcal{F} \) countably coallocates \(\mathcal{H}_{o} \). Also for every \(k \in \mathcal{H}_{o} \) \(k \subseteq z_{1} \subseteq k_{1} \) where \(z_{1} \) is a zero set and \(k \in \mathcal{H}_{o} \). Applying Theorems 4.8, 3.3 and 3.5 we obtain the following.

Theorem 4.9. Let \(X \) be a locally compact Hausdorff space. Every countably additive measure \(u \) on \(R_{o}(\mathcal{H}_{o}) \), is \(\mathcal{H}_{o} \)-inner regular. \(u^{**} \) is a countably additive extension of \(u \) to \(\sigma(\mathcal{F}) \).

Proof. All that has to be shown is that \(u \) is \(\mathcal{H}_{o} \)-inner regular. This follows from the fact that for each \(b \in R(\mathcal{H}_{o}), b = \bigcup_{i} k_{i}, k_{i} \in \mathcal{H}_{o} \).

Levin and Stiles [8] showed that the conclusions of Theorem 4.9 no longer are true if \(R_{o}(\mathcal{H}_{o}) \) is replaced by \(\sigma(\mathcal{H}_{o}) \) even if \(X \) is locally compact and Hausdorff. Suppose \(X \) is locally compact, paracompact and Hausdorff. Levin and Stiles prove that for any countably additive measure \(u \) on \(\sigma(\mathcal{H}_{o}) \) \(u(b) = \inf\{u(o)/b \subseteq o, o \text{ open and } o \in \sigma(\mathcal{H}_{o})\} \). Thus if \(u \) is also \(\mathcal{H}_{o} \)-inner regular then \(u^{**} \) must be a countably additive extension of \(u \) to \(\sigma(\mathcal{F}) \) according to Theorem 3.3. This result is found in the paper of Levin and Stiles.

In a countably paracompact, normal space the lattice \(\mathcal{F} \) countably coallocates \(\mathcal{I} \). In any topological space, for every zero set \(z, z \subseteq z_{1} \subseteq z_{2} \) where \(z_{1}, z_{2} \) are zero sets. Thus we obtain Marik's [9] result.

Theorem 4.10. Every countably additive measure \(u \) on \(\sigma(\mathcal{F}) \) is \(\mathcal{I} \)-inner regular. If \(X \) is countably paracompact and normal then \(u^{**} \) is a countably additive extension of \(u \) to \(\sigma(\mathcal{F}) \).

Let \(X \) be a countable product, \(\prod_{i} X_{i} \), of discrete topological spaces. Define for \(x = (x_{1}, \cdots, y = (y_{1}, \cdots, y = x(m n) \) if \(x_{i} = y_{i}, i = 1, \cdots, n \). For any subset \(A \) of \(X \) define \(t_{A}(x) \) to be the least positive integer \(n \), if any, such that \(y \in A \) whenever \(y = x(m n) \). If there exists no such \(n \) then let \(t_{A}(x) = +\infty \). Suppose \(C \subseteq \bigcup_{i} O_{k} \) where \(C \) is a clopen set (both closed and open in \(X \)) and each \(O_{k} \) is open. Define inductively

\[
C_{1} = \{c \in C/t_{O_{k}}(c) \leq t_{O_{k}}(c), k \neq 1\},
\]
\[
C_{n} = \{c \in C/(\bigcup_{i} C_{i})/t_{O_{k}}(c) \leq t_{O_{k}}(c), k \neq n\}.
\]

Then \(C = \bigcup_{i} C_{k}, C_{k} \subseteq O_{k} \) for all \(k \) and each \(C_{k} \) is clopen. Thus \(\mathcal{F} \) countably coallocates \(\mathcal{C} \), the lattice of clopen sets. Dubins is interested.
in measures defined on $A(\mathcal{E})$. These measures are called strategic measures. Strategic measures are always \mathcal{E}-inner regular.

Theorem 4.11. Let X be a countable product of discrete topological spaces. For every countably additive strategic measure u, u^{**} is a countably additive extension of u to $\sigma(\mathcal{F})$.

Let R be a ring of subsets in X. Define $\mathcal{L}(R)$ to be those subsets b such that $b \cap r \in R$ for every $r \in R$. $\mathcal{L}(R)$ is an algebra containing R. $\mathcal{L}(R)$ certainly coallocates R and if R is a σ-ring then $\mathcal{L}(R)$ is an σ-algebra that countably coallocates R. For a measure (not necessarily finite valued on R) define $u_*(b) = \sup\{u(r)/r \subseteq b, r \in R\}$, and u^{**} with respect to $\mathcal{L}(R)$. It is easy to see that $u^{**} = u_*$ on $\mathcal{L}(R)$. By Theorem 3.3 u_* is an extension of u to $\mathcal{L}(R)$. By Theorems 4.8 and 3.3 if R is a σ-ring and u is countably additive then u_* is countably additive on $\mathcal{L}(R)$. $\mathcal{L}(R)$ is called the class of sets locally measurable with respect to R. The result for countably additive measures on a σ-ring is found in a paper by Berberian [2].

If $K \subseteq L$ is an L-ideal, then $A(L) \subseteq \mathcal{L}(R(K))$. Clearly $l \cap r$ belongs to $R(K)$ for all $l \in L$ and $r \in R(K)$. Suppose $b \cap r$ and $c \cap r$ belong to $R(K)$ for all $r \in R(K)$. Then $(b \cup c) \cap r$ belongs to $R(K)$ for all $r \in R(K)$. If $b \cap r \in R(K)$ then $b' \cup r'$ is in $A(K)$. Therefore $r \cap b' = r \cap (b' \cup r')$ belongs to $R(K)$. Thus $A(L)$ is contained in $\mathcal{L}(R(K))$. Also $\sigma(L)$ is contained in $\mathcal{L}(R_\sigma(K))$. Thus in a Hausdorff space $\sigma(\mathcal{F})$ is contained in the locally measurable sets of $R_\sigma(\mathcal{H})$ where \mathcal{H} is the lattice of compact sets [Berberian and Jakobsen 3]. In a completely regular Hausdorff space $\sigma(\mathcal{F})$ is contained in the locally measurable sets of $R_\sigma(\mathcal{H})$. We also have, for any lattice K, $A(K) \subseteq \mathcal{L}(R(K))$ and $\sigma(K) \subseteq \mathcal{L}(R_\sigma(K))$. In the following theorems the measures need not be finite on any particular set.

Theorem 4.12. Any measure on $R(K)$ extends to a $R(K)$ inner regular measure on $A(K)$. Any countably additive measure on $R_\sigma(K)$ extends to a $R_\sigma(K)$ inner regular, countably additive measure on $\sigma(K)$.

Theorem 4.13. In a Hausdorff space any countably additive measure on $R_\sigma(\mathcal{H})$ has a countably additive, $R_\sigma(\mathcal{H})$ inner regular extension to $\sigma(\mathcal{F})$. In a completely regular Hausdorff space any countably additive measure on $R_\sigma(\mathcal{H}_5)$ can be extended to a countably additive, $R_\sigma(\mathcal{H}_5)$ inner regular measure on $\sigma(\mathcal{F})$.

Theorem 4.14. Let $K \subseteq L$ be a L-ideal. Then for every $R(K)$ inner regular measure on $A(K)$ has a $R(K)$ inner regular extension to
Every countably additive, $R_\sigma(K)$ inner regular measure on $\sigma(K)$ has a countably additive, $R_\sigma(K)$ inner regular extension to $\sigma(L)$.

In view of Theorem 4.14 the next example shows that coallocation is not necessary for every K inner regular measure u on $A(K)$ to have u_* modular on L'. Also countable coallocation is not implied if u_* is σ-smooth on L' for every countably additive K inner regular measure on $R_\sigma(K)$.

Topologize the set of real numbers as follows. For $x \neq 0$ or 2 a neighborhood basis for x is the collection of open intervals containing x. A neighborhood basis for 0 is the collection of open intervals containing 0 and 1. Likewise a neighborhood basis for 2 is the collection of open intervals containing 1 and 2. The interval $[0, 2]$ is a compact closed set and the intervals $I_1 = (-1, 3/2)$ and $I_2 = (1/2, 3)$ are open sets. There does not exist a sequence $\{C_n\}$ of closed, compact sets such that $\bigcup_{n=1}^\infty C_n = [0, 2]$ and each C_n is contained in either I_1 or I_2. Therefore the closed sets \mathcal{F} do not coallocate or countably coallocate the lattice of compact closed sets though this lattice is an \mathcal{F}-ideal.

5. The extension of τ-smooth measures. A measure on a lattice L is τ-smooth if for any net $\{l_\alpha\}$ decreasing to \emptyset, $\lim_\alpha u(l_\alpha) = 0$. We will study the measures on $A(L)$ which are L inner regular, finite valued on L and τ-smooth on L. Denote these measures by $\mathcal{M}_\tau(L)$. $\mathcal{M}_\tau(L)$ are those measures in $\mathcal{M}_\tau(L)$ which are bounded.

For a lattice L, $\tau(L)$ is the smallest lattice containing L that is closed under arbitrary intersections. We now show that every $u \in \mathcal{M}_\tau(L)$ extends to u^{**}, defined with respect to $\tau(L)$ on $A(L)$, and τ-smooth on $\tau(L)$.

Lemma 5.1. Let u be a measure on $A(L)$, τ-smooth on L. For any t in $\tau(L)$,

$$u_*(t') = \lim_\alpha u(l'_\alpha)$$

where $t' = \bigcup_\alpha l'_\alpha$ and $\{l'_\alpha\}$ is an increasing net of sets from L'.

Proof. Choose $l \subseteq t'$. Since $t \in \tau(L)$ there exists a net $\{l'_\alpha\}$ from L' which is increasing and $\bigcup_\alpha l'_\alpha = t'$. Since u is τ-smooth, $\lim_\alpha u(l'_\alpha) = u(l) + \lim_\alpha u(l'_\alpha \cap l')$. Therefore $u_*(t') = \lim_\alpha u(l'_\alpha)$.

Theorem 5.2. Suppose u is a measure on $A(L)$, τ-smooth on L. Then u_* is modular on $\tau(L)'$.

Proof. Let \(s, t \in \tau(L) \). Then \(s' = \bigcup a h_a, t' = \bigcup \beta l_\beta \) where \(\{h_a\}, \{l_\beta\} \) are increasing nets from \(L' \).

Form the net \(\{k'_\gamma\} \) of unions \(k'_\gamma = h'_a \cup l'_\beta \). For the same \(\gamma, \alpha, \) and \(\beta \) define \(p'_\gamma = h'_a \cap l'_\beta \). \(\{k'_\gamma\} \) is a net increasing to \(t' \cup s' \) and \(\{p'_\gamma\} \) is a net increasing to \(t' \cap s' \). Thus

\[
U_*(t' \cup s') + U_*(t' \cap s') = \lim_\gamma (u(k'_\gamma) + u(p'_\gamma)) = \lim_\gamma (u(h'_a) + u(l'_\beta)) \leq u_*(t') + u_*(s').
\]

Theorem 5.3. Let \(u \in M^r_\mu(L) \). If \(u** \) is finite on \(L \) then it extends \(u \) to \(A(\tau(L)) \) and belongs to \(M^r(\tau(L)) \).

Proof. \(u** \) extends \(u \) according to Theorems 5.2 and 3.4. \(u** \) is \(\tau \)-smooth and finite on \(\tau(L) \) since each \(t \in \tau(L) \) is the intersection of sets from \(L \). Consider \(t, s \) from \(\tau(L) \). Choose \(v \) from \(\tau(L) \) such that \(s \subseteq v' \) and \(u**(v') - u**(s) < \epsilon \). Then \(u**(t \cap s') - u**(t \cap v) < \epsilon \). Every set in \(A(\tau(L)) \) is of the form \(\bigcup \alpha t_k \cap s'_k \) where \(s_k \) belongs to \(\tau(L) \) and either \(t_k \in \tau(L) \) or \(t_k = X \). Therefore \(u** \) is \(\tau(L) \) inner regular.

Corollary 5.4. Let \(u \) be a \(L \) inner regular, countably additive measure on \(R_\sigma(L), \tau \)-smooth and finite on \(L \). If \(u** \) is finite on \(L \) then \(u** \) is a countably additive extension of \(u \) to \(\sigma(\tau(L)) \) and \(u** \) is \(\tau \)-smooth and finite on \(\tau(L) \).

Corollary 5.5. Suppose \(X \) is a completely regular space. Suppose \(u \) is a \(L \) inner regular, countably additive measure on \(\sigma(X) \) that is \(\tau \)-smooth and finite on \(X \). Then \(u** \) is a countably additive extension of \(u \) to \(\sigma(X) \) and \(u** \) is \(\tau \)-smooth and finite on \(X \).

A collection of sets has the finite (countable) intersection property if every finite (countable) subcollection has a nonempty intersection. A lattice \(L \) is compact if every collection with the finite intersection property has a nonempty intersection. \(L \) is Lindelof if every collection with the countable intersection property has a nonempty intersection. A measure on a compact lattice is always \(\tau \)-smooth and any \(\sigma \)-smooth measure on a Lindelof lattice is \(\tau \)-smooth. \(M_r(L) \) are the \(L \) inner regular measures on \(A(L) \) that are finite on \(L \) and \(M^r_\mu(L) \) are those that are also \(\sigma \)-smooth on \(L \).
COROLLARY 5.6. If L is compact then every $u \in \mathcal{M}(L)$ for which u^\ast is finite on L extends to $u^\ast \in \mathcal{M}(\tau(L))$. If L is Lindelof then for every $u \in \mathcal{M}(L)$ such that u^\ast is finite on L, $u^\ast \in \mathcal{M}(\tau(L))$ and extends u.

The result concerning compact lattices has been proved by using Zorn's lemma to show that u^\ast on $A(\tau(L))$ is, in an appropriate sense, a maximal extension of u [P. A. Meyer 10].

Suppose u is a L' outer regular measure on $A(L)$. Then for any decreasing net $\{l_\alpha\}$ from L such that $\bigcap_\alpha l_\alpha \in A(L)$, $\lim_\alpha u(l_\alpha) = u(\bigcap_\alpha l_\alpha)$. If L is a regular lattice then this property is a sufficient condition for a measure u to be L' outer regular.

DEFINITION 5.7. L is K regular if for any $l \in L$ there exists $\{h_\alpha\}$ from L such that $l = \bigcap_\alpha h_\alpha$ and for each α there exists k_α from K such that $l_\alpha \subseteq k_\alpha \subseteq h_\alpha$. If $L = K$ then L is a regular lattice.

THEOREM 5.8. Assume L is K regular and that $K \subseteq A(L)$. If for any net $\{l_\alpha\}$ decreasing to $\bigcap_\alpha l_\alpha \in A(L)$, $\lim_\alpha u(l_\alpha) = u(\bigcap_\alpha l_\alpha)$ then u is K' outer regular on L. If $K = L$ then u is L' outer regular on $A(L)$. In addition, if u is finite on L and L is regular, then u is L inner regular on $A(L)$.

Proof. The collection $\{l_\alpha\} \subseteq L$ such that $l_\alpha \supseteq k_\alpha \supseteq l$, is a net decreasing to l. Therefore

$$u(l) \leq \inf \{u(k_\alpha)/l \subseteq k_\alpha \subseteq l_\alpha\}$$

$$\leq \inf \{u(l_\alpha)/l \subseteq k_\alpha \subseteq l_\alpha\}$$

$$= u(l).$$

To give a similar result for measures on $\sigma(L)$ we need the following theorem. $\delta(L)$ is the smallest lattice containing L closed under countable intersections.

THEOREM 5.9. Let u be a countably additive, σ-finite measure on a ring R containing L. If u is L inner regular then the countably additive extension of u to $R_\sigma(R)$ is $\delta(L)$ inner regular.

Proof. Let S be the collection of sets s in $R_\sigma(R)$ such that $u(s) = \sup\{u(k)/l \subseteq s, \ l \in \delta(L)\}$. Then $R \subseteq S$. Let $\{s_\alpha\}$ be any sequence from S such that $u(s_\alpha)$ is finite for all k. Then since u is countably additive, $\bigcup_\alpha s_\alpha$ and $\bigcap_\alpha s_\alpha$ belong to S.
Take any set \(b \) in \(R_\sigma(R) \) such that \(u(b) \) is finite. There exists a sequence \(\{r_k\} \) from \(R \) such that \(r = \bigcup_{i=1}^\infty r_k \) contains \(b \) and \(u(r) - u(b) < \epsilon \). There exists \(\{t_k\} \) from \(R \) such that \(t = \bigcup_{i=1}^\infty t_k \) contains \(r \setminus b \) and \(u(t) < \epsilon \). Then \(r \setminus t \subseteq b \) and \(u(b) - u(r \setminus t) < \epsilon \). For each \(k \), \(r \setminus t_k = \bigcup_{j=1}^\infty r_j \setminus t_k \) belongs to \(S \). Since \(r \setminus t = \bigcap_{i=1}^\infty r_i \setminus t_k \), \(r \setminus t \) belongs to \(S \). This implies that \(b \) belongs to \(S \).

Every \(b \in R_\sigma(R) \) is the countable union of sets \(b_k \) such that \(u(b_k) \) is finite. Therefore \(R_\sigma(R) = S \). A similar proof shows the extension of \(u \) is \(\delta(L)' \) outer regular when \(u \) is \(L' \) outer regular.

Theorem 5.10. Suppose \(L \) is a regular lattice. Let \(u \) be a countably additive, \(\sigma \)-finite measure on \(\sigma(L) \), finite on \(L \). If for any net \(\{l_\alpha\} \) decreasing to \(\bigcap_\alpha l_\alpha \in A(L) \), \(\lim_\alpha u(l_\alpha) = u(\bigcap_\alpha l_\alpha) \), then \(u \) is \(\delta(L) \) regular on \(\sigma(L) \).

Corollary 5.11. Let \(X \) be a topological space and \(u \) a countably additive, finite measure defined on \(\sigma(\mathcal{F}) \) such that for any decreasing net of closed sets \(\{f_\alpha\} \)

\[
\lim_\alpha u(f_\alpha) = u\left(\bigcap_\alpha f_\alpha\right).
\]

(i) If \(X \) is a regular space then \(u \) is \(\mathcal{F} \) regular.
(ii) If \(X \) is completely regular then \(u \) is \(\mathcal{F} \cap \mathcal{F}' \)-regular and for every closed set \(f \)

\[
u(f) = \inf\{u(z')/f \subseteq z', z \in \mathcal{F}\}.
\]

(iii) If \(X \) is 0-dimensional then \(u \) is \(\mathcal{F} \cap \mathcal{C}l \) regular where \(\mathcal{C}l \) is the lattice of clopen sets and for every closed set \(f \)

\[
u(f) = \inf\{u(c)/f \subseteq c, c \text{ clopen}\}.
\]

(iv) If \(X \) is a locally compact Hausdorff space then \(u \) is \(\mathcal{K}_8 \cap \mathcal{F} \) regular and for every closed set \(f \)

\[
u(f) = \inf\{u(k')/f \subseteq k', k \in \mathcal{K}_8\}.
\]

Corollary 5.12. Suppose \(X \) is a locally compact Hausdorff space and \(u \) a countably additive, finite measure on \(\sigma(\mathcal{F}) \) such that for any decreasing net \(\{z_\alpha\} \) of zero sets, where \(\bigcap_\alpha z_\alpha \in A(\mathcal{F}) \),
\[\lim_{a} u(z_a) = u \left(\bigcap_{a} z_a \right). \]

Then \(u \) is \(\mathcal{H}_b \) regular.

Part (i) of 5.11 was proven by Gardner [6].

REFERENCES

 Mat. Sb. (N.S.) 8, 50 (1941), 563–621.

Received February 11, 1977.

POLYTECHNIC INSTITUTE OF NEW YORK
BROOKLYN, NY 11201

Current address: Mathematics Dept.
University of Wisconsin at Milwaukee
Milwaukee, WI 53211.
Mieczyslaw Altman, *General solvability theorems* ... 1
Denise Amar and Eric Amar, *Sur les suites d’interpolation en plusieurs variables* ... 15
Herbert Stanley Bear, Jr. and Gerald Norman Hile, *Algebras which satisfy a second order linear partial differential equation* ... 21
Marilyn Breen, *Sets in R^d having $(d - 2)$-dimensional kernels* 37
Gavin Brown and William Moran, *Analytic discs in the maximal ideal space of $M(G)$* ... 45
Ronald P. Brown, *Quadratic forms with prescribed Stiefel-Whitney invariants* ... 59
Gulbank D. Chakerian and H. Groemer, *On coverings of Euclidean space by convex sets* ... 77
S. Feigelstock and Z. Schlussel, *Principal ideal and Noetherian groups* 87
Ralph S. Freese and James Bryant Nation, *Projective lattices* 93
Harry Gingold, *Uniqueness of linear boundary value problems for differential systems* ... 107
John R. Hedstrom and Evan Green Houston, Jr., *Pseudo-valuation domains* 137
William Josephson, *Coallocation between lattices with applications to measure extensions* ... 149
M. Koskela, *A characterization of non-negative matrix operators on l^p to l^q with $\infty > p \geq q > 1$* ... 165
Kurt Kreith and Charles Andrew Swanson, *Conjugate points for nonlinear differential equations* ... 171
Shoji Kyuno, *On prime gamma rings* ... 185
Alois Andreas Lechicki, *On bounded and subcontinuous multifunctions* 191
Roberto Longo, *A simple proof of the existence of modular automorphisms in approximately finite-dimensional von Neumann algebras* 199
Kenneth Millett, *Obstructions to pseudoisotopy implying isotopy for embeddings* ... 207
William F. Moss and John Piepenbrink, *Positive solutions of elliptic equations* ... 219
Mitsuru Nakai and Leo Sario, *Duffin’s function and Hadamard’s conjecture* 227
Mohan S. Putcha, *Word equations in some geometric semigroups* 243
Walter Rudin, *Peak-interpolation sets of class C^1* ... 267
Elias Saab, *On the Radon-Nikodým property in a class of locally convex spaces* ... 281
Stuart Sui Sheng Wang, *Splitting ring of a monic separable polynomial* 293