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The purpose of the present paper is to apply our “beta
densities” to Hadamard’s conjecture on the constant sign of the
biharmonic Green’s function of a clamped plate. In particular,
we will examine in detail Duffin’s function w from our view point
of beta densities. We will show that w is a potential of A’w =0
with respect to the Green’s kernel of a clamped plate. As a
consequence, the Green’s function of the clamped infinite strip is
of nonconstant sign along with w. On the other hand, we show
using beta densities that the Green’s function of any clamped
bounded subregion exhausting the strip tends to that of the
clamped strip and, therefore, takes on both positive and negative
values. Since the infinite strip can be exhausted by ellipses, we
have at once, without carrying out any numerical computations,
the Garabedian result: a sufficiently eccentric ellipse is a coun-
terexample to Hadamard’s conjecture. Since the strip can also
be exhausted by rectangles, we can add a sufficiently long
rectangle to counterexamples to Hadamard’s conjecture. If
this may be called a new example, then countless ‘“new”
examples can be produced by exhausting the strip by “new”
subregions.

Hadamard made the following conjecture in his 1908 prize memoir
[3]: the deflection of a thin, flat, elastic plane plate, horizontally clamped
at its boundary, is of the same sign at all points of the plate if a
perpendicular force is applied at some point of the plate. The conjec-
ture is known to be correct if the plate is a disk. In the general case, the
problem remained open until Duffin [1] showed in 1949 that a solution of
a biharmonic Poisson equation with a nonnegative density on an infinite
strip clamped at the edges takes on both positive and negative
values. This work of Duffin contains rich physical intuition and skillful
though elementary calculation which produces surprisingly interesting
results and suggestions for further development. Obviously motivated
by this work, Loewner [5] and subsequently Szegd [9] constructed, by
means of conformal mapping techniques, finite but nonconvex analytic
Jordan regions as further counterexamples to Hadamard’s
conjecture. The simplest counterexample, a sufficiently eccentric el-
lipse, was given by Garabedian [2], who used an eigenfunction expansion
approach.

We give here a rough description of the contents of the present
paper. First we give an outline of the definition and properties of beta
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densities on simply connected plane regions. We then consider, in
particular, the case of an infinite strip S and discuss the space H,(S) of
square integrable harmonic functions on it. For this space, the ideal
boundary of S is negligible. We show that, as a consequence, Duffin’s
function is a biharmonic Green’s potential. Using this result we discuss
in the final part of our study Hadamard’s conjecture.

Last but not least, an acknowledgement is in order in this
introduction. The authors consider it quite helpful for the completion
of the present work that their younger colleagues, especially Professors
H. Imai and S. Segawa at Daido Institute of Technology, always showed
their keen interest in the authors’ seminar lectures on this subject and
made valued comments.

Beta densities.

1. Since we will make essential use of beta densities [7], we start by
discussing those fundamentals of their theory that are pertinent in our
present setting. We denote by C the finite complex plane |z | <,z =
x + iy, and by M a simply connected subregion, to be called a plate, of
C. For convenience, we say that a plate M is smooth (or piecewise
smooth ) if M is relatively compact and the relative boundary dM is a
smooth (i.e., C*) (or piecewise smooth) Jordan curve. Assume that M
is a smooth plate and set M = M UJM. It is well known that there
exists a unique function By(z,{) on M X M such that

Npu(z,0) = 0. (BBu(z 1) =8, (z €M)
0
Bu(z0)= 5Bz 0)=0  (zEoM),

where A, = — (3%/x*+ 3%/dy?) is the Laplace-Beltrami operator, 5, the
Dirac delta at { € M, and 3/dn the inner normal derivative at dM with
respect to M. The function By(-,¢), which is of class C*on M —¢{
(e.g., Hormander [4]), is referred to as the (biharmonic) Green’s function
of the clamped plate M with pole {.

2. On a smooth plate M, we call Hy(,{)=ABu(-,{) the beta
density with pole {. Let gu(-,{) be the harmonic Green’s function on
M with the singularity —(1/27)log|z —¢| at {. By (1), AHy (-, {) =
A’By (+,¢) =8, and a fortiori Hy (-, {)— gu (-, {) belongs to the class
H(M) of harmonic functions on M. By the first boundary condition (1),

@  Bu@O= ] guls )Hu(s dpda (s =p+ia).
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If Bu(-, () is viewed as a potential with respect to the harmonic Green’s
function, then Hy( -, {) is the density of By (-, {). Since Hy(-,{)is of
class C? on M — {, we have (e.g., Miranda [6])

2 B2 0)= | gl 2)Hu(s £)dpda.

Multiply both sides by an h € H(M) N C(M) and integrate with respect
to the line element |dz | on M. By the Fubini theorem and the Poisson
type representation of harmonic functions,

| h@Epua 0ldzI= [ h6)Huts ¢)dpdg

Therefore, the second condition (1) is equivalent to

3) | m)Has 0)dpdg =0

This relation is true for every h € H(M) N C(M) if and only if it is true
for every h € Hy(M)= H(M) N L,(M), since H(M) N C(M) is dense in
H,(M) with respect to the L, norm ||-| on M. In terms of the inner
product (-,-) on LyM), we write (3) simply as
Hy(-,¢) L Hy(M). Since gu(-,¢)— Hu(-,¢) belongs to H(M), (2)
and (3) imply that

@ Bul@ )= (Hu(-,2), Hu(,0)= | s, 2)Hu(s, O)dpda

3. We claim that the beta density Hy( -, {) is characterized by the
following properties:

AHM('7£)= 6{
) Hy(-,{)€ L(M)
Hy(-,¢) L H(M).

That Hy( -, {) satisfies the first and third of these relations was explicitly
shown in No. 2. On setting z = { in (4) and observing that By ({ ¢) =
lim, . ,B(z,{) <, we conclude that the second relation (5) is satisfied.
Conversely, suppose a function H on M satisfies (5). Then, since
h =H-Hy(-,{) € Hy(M), we have (h, H)=0 and (h, Hy(- {)) 0
and a fortlorl (h H-Hy(-,)=|h|f=0. Hence h =0, and His the
beta density on M.
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4. The importance of (5) lies in the fact that it contains no reference
to the boundary dM of the plate M. Therefore, we can define the beta
density Hy(-,{), if it exists, even for a general plate M by
(5). Reversing the usual process, we subsequently define the (bihar-
monic) Green’s function By(z,{), or the Green’s kernel, of a general
clamped plate by (4),

(6) Bu(z,¢) = fM Hy (s, 2)Hu (s, {)dpdq

on M X M. At this point the biharmonic classification theory must come
in: We classify plates into two categories, according as the beta density
does or does not exist, in analogy with Riemann’s classification of plates
into hyperbolic and parabolic types. It would not be difficult to carry
out this classification; however, what we really need is not the mere
existence but detailed information on properties of (6). To this end, we
consider what we call a fundamental kernel K(z,{) on M characterized

by

( K(’§)7K({a)EH(M—{)

(7) % K(Z’§)+%1°glz—§leH(M)
K(-,{)€ L,(M)

| lim|IK(-, ) - K(-, &)l =0.

5. Suppose there exists a fundamental kernel K(z,{) on M. We
claim that there then exists a beta density Hy(-, () for every { EM
and a Green’s kernel By (z, {) of the clamped plate M with the following
properties:  A’By(-,{)=68;;Bu EC(M X M)  (joint continuity);
lim, Supgrxr | Bu. — Bu | = 0, where {M,} is any directed set of plates M, CM
exhausting M and F is any compact subset of M (consistency relation).

For a proof we recall that H,(M) is a locally bounded Hilbert space
and consider the functional k,(u) = (u, K(-,{)) on H,(M) for any fixed
{ € M. ltis easily seen that k; is bounded and thus k; € H,(M). Itis
also readily verified that lim,.,[k, —k,|=0. As a consequence,
Hy(-,¢)=K(-,{)— k; is the beta density on M with pole { E M. By
means of the properties of K(-,{) and k, it is not difficult to ascertain
that Bu(z,{)=(Hu(-,z),Hu(",{)) is continuous on M X M. From
(Hy (+,{)— Hu, (v, ¢), Hu, (+, 2)) = 0 we obtain on setting Hy, (-, {) =0on
M-M,

{llHM(-,Z)—HMl(_-,J)H2=IIHM(-,£)||2—IIHM‘(',§)||2
’BM(Z’{)__BM(Z’ {),éuHM(VZ)_HM‘(’z)””HM(7§)_HM(’{)”
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Using these relations we deduce lim, || Hy(*, )= Hu(+, {)||=0 and, in
view of the continuity of || Hy (-, )~ Hu.(*, O)IF = Bu(& ¢) = Bu(L, £) on
M, obtain the consistency relation. Taking the directed set {Q} of
smooth plates ) in M as {M.} and observing A’Bq(-, {) = §, on () we see
that

(BM( s {)’ AZ‘P) = g%(ﬁﬂ( " {)7 AZ(P)

= lim (A%Ba(", £), @)

=¢({)
for every ¢ € C3(M), and therefore A’By(-,{)= 86, on M.

6. An important special case is a plate M for which the iteration
g®(z,¢) of the harmonic Green kernel g(z,{) on M can be defined:

® 8°.0)= [ 865 2)8(s ¢)dpda

This is the case if and only if g(-, )€ L,(M) for some and hence for
every { € M. The function g® is continuous on M X M, A’g®(-, ¢)=
Ag(-,¢{)=8, on M, and if a part y of dM is an open smooth arc, then
g, 0))EC( (M Uy —{¢{)and g?(-,¢{)=0o0n vy. In this case g(z,¢) is
a fundamental kernel on M and the result in No. 5 applies. Since
g(.’{)-HM('7§)eH2(M)7

o Bu(z0)= | 865 2)Hu(s O)dpdg

Bu($ O)=Hu (-, OIF =g (-, OIF = 82 {)-
In view of | Bu(z, {)| = (8®(z, 2))(Bu (&, £)), Bu( -, {) is continuous on
MUy and Bu(-,{)=0o0nvy. We remark that in the case in which g®
exists, the following sharpened form of the consistency relation is

valid. Suppose {M.} is a directed set exhausting M such that M,
contains an open smooth arc y on dM. Then by

1Buz8)= Bu (5 D1 =1 [ 805, 2)Hlas, )~ Huc (s, )|
= (8(2)(2’ z))m”HM( 8- HM( s g)ll,

Bum.(z, {) converges to By(z, {) uniformly on F, X F,, with F, any compact
subset of M Uy, and F, any compact subset of M.
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Infinite strip.
7. Having completed the preparatory part we proceed to our main
discussion. We consider, as our basic plate, the infinite strip

S={z=x+iy; —o<x <o, —1<y<1}.

The relative boundary 4S consists of the lines y = £1. We denote by
g(z,¢) the harmonic Green’s kernel on S. Let S, ={z € S;|x|<m}
and denote by g.(z,{) the harmonic Green’s kernel on S,(m =
1,2,---). Fix an arbitrary {E€ S, an n=1,2,---, and then an m =
1,2, - -such that { €S, and|Rez™|€ H(S — S,). Let ¢, (cy, resp.) be
the supremum (infimum, resp.) of g(-,¢)(JRez ™|, resp.) on S N 3S,,
and set ¢ =co/c;, Comparing boundary values of g...(:,{) and
c|Rez™™| on 3(Smik—S.), we have g..(-,{)=c/Rez™| on
Snex — S On letting k — o we see that g(+,¢)=c|Rez™"|on §-3§,,
and conclude that

(10) limg(z,{)/|Rez™|=0  (n=12,-"),

where x = Rez and z € S. In particular, g(-, {) € L,(S), and the result
in No. 6 applies to S. We denote simply by H( -, {) the beta density on
S and by B(z,{) the Green’s kernel of the clamped plate S.

8. We study the class H,(S) and consider two subspaces
Hy(S).(k = 1,2) as follows. First let Hy(S), be the subspace of H,(S)
consisting of the functions u € H,(S) with u € C*(S), § = § U 4S, and
u(-, £1)€ Ly(—»,»). We maintain that H,(S), is dense in H,(S) in
the L, norm, i.e.,

(11) H,(S), = HyS).

To see this, let h be an arbitrary element in H,(S) and consider
h.(z)=h(z/A) on S with A € (1,©). By the Fubini theorem, since

[ vy =Iml<e, wo)= [ nexyyas

we see that ¢(y)<o for almost évery y €(—1,1) and a fortiori
h,(-, £1) € L,(— », ) for almost every A € (1,%). Thus we can choose
a decreasing sequence {A,} converging to 1 such that h,(-, £1)=
h (-, £1)E Ly(—,») for n =1,2,---. Since lim,_.|h,—h| =0, as
can be easily seen, we conclude that h € H(S),.

9. We next prove that the ideal boundary x = * = is negligible for
the class H,(S) in the sense that
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12) {h € Hy(S);; h |38 = 0} = {0}.

In the notation of the classification theory (e.g., [8]) this fact may be
expressed as S € SOy,. To prove (12) we choose an arbitrary h in
H,(S), with h |3S =0 and consider

f&)= [ heyyay

on (—» ). Keeping Ah =0 in mind, we have

o7 2oL _ 9
S yY =2(rh(x.3)) = 2h(6 y) a5 ).

Since h(x, =1) =0, integration by parts gives

1 (92 1 a 2
[ henZaneyay = [ (Fhen)a.
Therefore,
dZ 1
Le)=2[ 1VhGsy)ray=o,

so that f(x) is a nonnegative convex function on (— %, ®). On the other
hand, the relation

| swax =npp <o

implies the existence of an increasing (decreasing, resp.) sequence {r;}
({r}, resp.) converging to +o (—o, resp.) such that lim,_.f{r;} =
0. By the convexity of f,

0= sup f(x)=max(f(r}), f(r7))

rnSx=rn

for every n and hence f(x)=0 on (—o,»). Therefore, |h|=0 and
h=0onS.

10. We now prove a simple lemma which will play a decisive role in
our discussion. To state the lemma, it will be convenient to use the
notation
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[h]=limsup [A](x)

[416)= supl (5, )|+ sup | Z h )|

lyl<i lyl<1 | 0X
for each h € Hy(S). We designate by H,(S), the subclass of H,(S),
consisting of those h € Hy(S), for which [h] <. In view of (12), it
would seem reasonable to expect that [h] < for all h € H,(S) or at least
for the majority of h in H,(S). This expectation is justified in the
following form:

FUuNDAMENTAL LEMMA. The subspace Hy(S), is dense in H,(S), and
a fortiori in H,(S), i.e.,

(13) Hy(S).= HxS),= HyS).
The proof will be given in Nos. 11-12.

11. For any given h € H,(S) we have to find a sequence {h,} in
H)(S), converging to h in the L, norm. By (11) we may assume that
h € Hy(S),. We choose two sequences {¢;} and {¢;} (j=1,2,--) in
C*(—»,») such that ¢;(x)=h(x,1) and ¢;(x)=h(x,—1) on |x|=j;
¢(x)=¢;(x)=0o0n |x|=j+1; and

a9 tim([ @@k Drdr+ [ @0~ - Dpdr) =
j=*® -~ —o0
We denote by ¢ = Fp; and i; = F; the Fourier transforms of ¢; and ¢,
60)=Fo)p)= [ e o

with p € (—,®). Since ¢; and ¢, are in the subspace CO(— o, ®) of the
space (- o, ») of rapidly decreasing functions on (— »,®), ¢, and ¢, are
again in &(— o, ®).

Consider the function

u(py)_%(p)e —diple™ ., Giple’ = gi(ple” .,

2p __ e—2p 2p — e—2p

ePeP)’ —_ e"Pe -py " ePe_Py — e‘PePY -
= eZp_e—Zp '¢i(p)+ eZP_e—ZP Y )

It is easy to see that u, € C*(S), u;(-,y) € F(—»,®), and
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lu (@, )= c(|&, @) +16: @) (@ y)ES)
limu,(p,y) = ,(p), im 4,2, y) = 4 (p) (p € (~=,)),

where ¢ is a universal constant. Take the inverse Fourier transform

(15)

hs )= (Fu @) = [ e o, y)dp

of u;(-,y). By the definition of u; and (15), we have h; € H,(S), with
boundary values

{ hi(x,1) = (@}ﬁj)(x) = (a}g%)(x) = ¢;(x)
hi(x, — 1) = (F)(x) = (FFY )(x) = ¢, (x)

on (—,®). From the Plancherel theorem, the definition of u;, and (15),
we obtain

[ 1hG ) = b IFax = [ 11 y) = 14, )Pl = 0 (9)
and
a=([ 10@) - @ rdp)+ o[ 110) - @)Pdp) =
Therefore, [|B; — by | = S @ (y)dy =28, and by (14),
]1133u hj = hi. || = 0.

In view of the completeness of H,(S), there exists an h.. € H,(S) such that
{h;} converges to h..in L, norm. By the local boundedness of H,(S) and
the fact that h; (x, = 1) — h;., (x, £1) = 0 on | x | = j, the convergence of {h;}
to h.. is also pointwise and uniform on each compact subset of S. In
particular, h.(x, 1) = h(x, = 1) on (— ®,®) and h..€ HS) N C*(S). The
function v = h — h. € H,(S) has vanishing boundary values on 4S and
v € H(S),. By (12), we have v =0 on S and

II_EE” hy—h|=0 (h € HyS)).

12. It remains to show that {h;} CHy(S),, i.e., [h;] < for every
j=1,2,---. By(15) and the fact that ¢; and ¢, belong to ¥ (— o, »),
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)= [ lu@ylde =c [ (6@ + 14 @) = <

Similarly,

%h,-(x,y)’ = ” e‘“’ipu,-(p,y)dp’

gf |pu;(p, y)| dp
<[ (1p @)+ pi @) dp =<,

since pé,(p) and pii;(p) belong to F(— =, ») along with & and . We
conclude that [h;] = ¢; + ¢j<®. The proof of the Fundamental Lemma
is complete.

Duffin’s function.
13. Consider the function

sy sinh s sinh sy — (sinh s + s cosh s)cosh sy
s*(s + cosh s sinh s)

(1)  D(sy)=gi+

with (s,y)ECXx[—1,1]. Observe that s =0 is a removable singularity
and D(p, y) is a real-valued C~ function of (p,y) € S. Take an arbitrary
nonnegative function p(x) belonging to the class C5(— %, ) and denote
by p(p) the Fourier transform of p(x). Since p has compact support, p
can be continued analytically to C. In view of p € ¥(— », ), the
function

() wxy)=w &)= [ =D, y)PE)p,

to be referred to as Duffin’s function with density p(x), is well defined on
S. We extend p to S by p(z)=p(x), and readily obtain the following
properties of w:

rw € C*(S)
Aw(z) = p(2) (z€ES)

(18) 4 P
w(z)=%w(z)=0 (z € 9S)

L [w]=0.

Less obvious is the following result: If p#0, then
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(19) irégw(z)<0.

Definitions (16) and (17) as well as properties (18) and (19) are due to
Duffin [1].

For the convenience of the reader we sketch Duffin’s proof of
(19). In the (p,q)-plane, consider the strip T:|p|<,0<qg<c=
37 /4. The function e™D(s,y)p(s), as a function of the complex
variable s = p + ig, is holomorphic on T except for two simple poles

a=a+ib (a,b>0)and —a = —a +ib on T which are nonzero roots
of s+coshssinhs =0 on T. We denote by T, the finite strip |p|<
n0<q<c forn=1,2,---. By the residue theorem,

f e™D(s,y)p(s)ds = R,
dTn

where n > a and R is the 27i-fold sum of the residues of e D (s, y)j(s)
ata and —a. Since p € F(—x,o)and D(s,y)isboundedon T - T,,

lim e™D(s,y)p(s)ds = 0.

n=>% ) TNaT,

Therefore,

w(z)=R +f e™D (s, y)p(s)ds.

ms=c

Here the last term is dominated by e ™ [~.| D (p + ic, y )3 (p + ic)| dp, with
the integral bounded for |y |<1. Computing R explicitly we obtain

w(z)=A(y)e ™ cos(ax + B(y))+ O(e ™),

where A(y) and B(y) are functions of y only, and A (y)# 0 for some
[y|<1. Inview of 0<b <c, we conclude on letting x —  that (19) is
valid.

14. In addition to (18) and (19), Duffin’s function has the following
properties, important from our point of view:

20) [ Aw € Ly(S)

For the proof, observe that p € ¥(— o, ») implies the existence of a

T € $(—»,) such that [(p’D(p,y)—3>D(p,y)/dy)p(p)|=7(p) on
(— =, o). By the Plancherel theorem,
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© ® 3? «
| 1aw(y)Fds = | 16?DG.y) = 23D @y dp
éfw T(p)dp =k <.

1
Therefore, ||[Aw [P = [1[>.|Aw(x, y)[*dxdy = kf dy <o, i.e., the first
-1

relation (20) is valid.

To prove the second relation (20), we have to show that (h,Aw)=0
for every h € H)S). By (13), it suffices to establish this for every
h € H(S), LetS,={z=x+iy;|x|<n]y|<1}(n=1,2,-+). Since
h and w are in the class C*(S), the Green’s formula can be applied to h
and w on S,:

f (h(z)Aw(z)— w(z)Ah(z))dxdy

N “f (h(@)ew(z) = w(z) g5 h(2)] dz |

By (18), we have in the notation in No. 10,
awil=| [ (h@w@)-w@)h@)]
=2max([h](n) - [w](n),[R](—n)-[w](—n)).

Since h and Aw belong to L(S), [(h,Aw)|=lim,_.|(h,Aw)s,| and
therefore,

|(h,Aw)|=4[h]-[w].
From this and (18), we conclude that (h,Aw) = 0.

15. We recall the notation H(z, {) and B(z, {) for the beta density
and the biharmonic Green’s kernel of the clamped plate S in No. 7. Let
p be as in No. 13 and denote by S, the support of p in S. By (9),
|B(z,¢)| is dominated by B(z,z)"g®(¢, ¢)"* = kB(z,z)" on S X S,, with
k = sups,g@(¢, {)* <. Therefore, the biharmonic Green’s potential

ey B(z30)= | B Op()dedn, ¢=E+in

is well defined on S and |B(z ;p)|=k - B(z,2)" - sups,p - meas(S,). We
claim:
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AB(z;p)=p(z) (zES)
(22) AB(-;p)E Ly(S)
AB(-;p)L HyS).

For the proof, consider the auxiliary function

23) 0(2)=0,2) = | H(z {)p(@)dedn.

By (9) and the Fubini theorem,
fs < fs [H(z,{)lp (& )dfdn>2dxdy =(plP L ,, ( fs H(z, ()2dxdy>dgd,,

=lolF|_ B ¢)dedn
= Kl [Fmeas(s,) <=

Similarly, (A¢,v)=((A¢, H(-,{)),p); = (¢,p) for any ¢ € C3(S), ie.,
Av = p in the sense of distributions, and by p € C7(S) and v € L,(S), in
the genuine sense on S':

{v € Ly(S)N C*(S)

24) Av(z)=p(z) (z€ES).
By (21), the relation B(z,{) = (g(+, z), H( ", {)), and the Fubini theorem,
we have

eD) B(z3p)= [ g(s2)0(s)dpdg

on S. Hence AB(z;p)=v(z) on S, and (24) implies the first two
relations (22). To prove the third, take an arbitrary h in Hy(S) and
observe that

(h,AB(-;p)) = (h,v)=((h,H(",{)), p), =0.

16. A comparison of properties (18) and (20) of Duffin’s function
=w, with properties (22) of B(-;p) suggests that w=pg(-,p)

on S. We will prove that this is indeed the case. Observe that
A(Aw —AB(-;p)) =0, that is, Aw —AB(-;p) belongs to H(S) and, in
fact, to H,(S) since both Aw and AB(-;p) belong to L,(S). On the
other hand, both Aw and AB( - ; p) are orthogonal to H,(S) and a fortiori
Aw —AB(-;p) is orthogonal to H,(S) and at the same time belongs to
H,(S). Therefore,
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(26) Aw(z)=AB(z;p) (zES).

Denote by g,(z, {) the harmonic Green’s kernelon S, = {z;|x |<n,|y| <
1}(n=1,2,--+). Leth, € H(S,)N C(S,) such that h,|S, N 3S =0 and
h,|S N3S, =w. Note that |h,|=max((w](n),[w](—n)) on 3S, and,
therefore, on S,. By (18),

27) limsup|h,(z)|=0.

n—>©zES,

Since w(z)—(g.(+,z),Aw)s, is harmonic on S, with boundary values
w = h, on 9S,, we have w(z)—(g.(-,z),Aw)s, = h, on S,. In view of
(27), we conclude on letting n — o that

W)= [ 86 2)Aw()dedn
on S. Using (23), (25), (26), and the Fubini theorem, we obtain

W(Z)'—'(g(',Z),Aﬂ(';p))=(g(',Z),(H({,'),p));
=((g(-,z),H(',s)),p)s=(B(Z,-),p)=B(z;p).
We have established the following

MAIN THEOREM. Duffin’s function w with the density p is a bihar-
monic Green’s potential of the density p:

(28) w2)= [ B p(@)dedn

Hadamard’s conjecture.

17. Consider a plate M with a continuous and consistent Green’s
kernel Bu(z,{)= (Hu(-,2),Hy(,{)) (cf. No. 5), which satisfies the
clamping conditions By (-, {) = 3Bu(-, {)/dn = 0 on M if M is a smooth
plate (cf. No. 2). Let u and v be any (signed) Radon measures on M
and set

(B )(5) = [ H(s,2)ds (2).
The beta mutual energy Bu[u, v] is given by

@) Bulmrl= | Bul@ 0)du(2)dv() = (Hu, Hov).
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Therefore, the biharmonic Green’s kernel B, satisfies the energy principle
(strict definiteness):

(30) Bulu,n]=0

and the equality holds if and only if u =0. The mere positiveness is
clear from (29). Suppose Bu[u, ] =0. Then Hyu =0 on M, and the
distribution identity AH,u = w implies that w =0. As a special case of
(30), we obtain the relation

@31) Bu(z,2) = Bul[8., 8.1 = [ Hud. [P = [ Hu(-, z)IF >0,
which, in fact, we have repeatedly used.

18. The biharmonic Green’s kernel By(z,{) certainly takes on
positive values on M: By(z,z)>0. That By(z, {) cannot take on any
negative values is known as Hadamard’s conjecture [3]. By (19) and
(28), the relation p = 0 implies that Bs(z, ) takes on negative values on
S x S. Thus we have the following counterexample to Hadamard’s
conjecture:

ExampLE (Duffin). The biharmonic Green’s function Bs(-,{) of
the clamped infinite strip S: [x | <, |y|<1 takes on both positive and
negative values for a suitable choice of the pole { in S.

19. Let {Q.} be a directed set of subregions of S such that
U Q. =S. By the consistency relation (cf. No. 5), {Ba.} converges to B
uniformly on each compact subset of § X S. Therefore, inf Bo, <0 along
with Bs if Q, is sufficiently close to S. We have here a good example of
the importance and effectiveness of discussing potential theory on
noncompact carriers even for the study of compact carriers. As an
example, consider in S the ellipse

x2
En={z=x+iy;-’?+y2<l}

whose eccentricity tends to © with n. Since {E,} is increasing and
exhausts S, {Bs,} converges to Bs uniformly on each compact subset and
hence inf Bg, <0 for all sufficiently large n. Thus we have a new
noncomputational proof for the following

ExampLE. (Garabedian). The biharmonic Green’s function
Be(+,¢) of a clamped sufficiently eccentric ellipse E takes on both
positive and negative values on E for a suitable choice of the pole { in S.
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20. Actually, we can produce as many regions as we wish as
counterexamples to Hadamard’s conjecture by the above method of
exhausting Duffin’s infinite strip S. We add only one more example, the
incentive of which was Duffin’s [1] suggestion made without proof, that a
quadrilateral close to a rectangle be a counterexample. Let S, =
{z;]x|<n,]y|<1}. Then {Bs,} converges to Bs as n —  uniformly on
each compact subset of S (cf. No. 6). We thus obtain the following
“new’’ counterexample:

ExampLE. The biharmonic Green’s function Bz (-, {) of a clamped
sufficiently elongated rectangle R takes on both positive and negative
values on R for a suitable choice of the pole { in R.
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