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Let S be a semigroup and let w,= w(x;, -, x,), w,=
wa(x1,- -+, x,) be two words in the variables x,,---,x. By a
solution of the word equation {w,, w.} in S, we mean a,,---, a, €
S such that w(a;, -+, a)= wy(a;, -, a). Let Fr denote the
free product of ¢ copies of positive reals under addition. In §3
and §5 we show that if Y is either the semigroup of certain paths
in R" or the semigroup of designs around the unit disc, then any
solution of {w,, w,} in Y can be derived from a solution of
{w;, w2} in Fr. This answers affirmatively a problem posed in
Word equations of paths by Putcha. Word equations in %y are
studied in §1. Using these results, it is shown that any solution
in Y of {w,, w,} can be approximated by a solution which is
derived from a solution in a free semigroup. There are two
books by Hmelevskii and Lentin on word equations in free
semigroups. We also show that if {w,, w,} has only trivial
solutions in any free semigroup, then it has only trivial solutions
in Y.

1. Preliminaries. Throughout this paper,N, Z, Z*, 2, 2%, R,
R" will denote the sets of nonnegative integers, integers, positive
integers, rationals, positive rationals, reals and positive reals,
respectively. For m,n € Z7, let R™*", 2™*" denote the setsof all m X n
matrices over the reals and rationals, respectively. If S is a semigroup,
then S§'= S U {1} with obvious multiplication if S does not have an
identity element; S'= S otherwise. If TCS’, then T'= T U{1}.

DErINITION. Let S be a semigroup and a,b € S.

(1) alb if b = xay for some x,y € S".

(2) alb if b = ax for some x € S

(3) alb if b =ya for some y €S,

If I' is a nonempty set, then let # = %(I') denote the free semigroup
onT. If w€& %, then let I(w)=length of w. If S is a semigroup and
a, -, a, €S, then we say that a€ S is a word in a,,---,a, if a =
w(ay, -, a,)forsome w(x;, -, x,) € F(x1, -, x,). Thisisthesame as

saying that a is an element of the semigroup generated by a,,- - -, a,.
Let ' be a nonempty set. Let Fg= Fx(I') denote the set of all
nonempty finite sequences (also called words) of the type w = A --- A~
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wheren € Z*, oy, -0, ER, A, -, A, €ETand A, # A,,,fori,i+1€
{1,---,n}. We define e(w)=n and I(w)=a+---+a,. Let
wy, w, € Pp. Suppose w,=A¢---Ai, w,=Bf---Bf Then we
define

Alal...Azn+BlB§2...B?nm lf An:BI'
Wi\w, =
“...A%BE ... Bfn if A,#B,.

Now, of course, expressions of the type w = A{ --- A (ay, -+, a, ERT;
A, -+, A, €T) make sense even when A, = A,,, for some i, i+1€
{1,---,n}. But note that if n = e(w), then A;# A,,;forany i, i +1€
{1,---,n}. In such a case we call Aj'--- A, the standard form of
w. Fg(T) is a semigroup and is just the free product of |T'| copies of R*
under addition (see for example [3; p. 411]). Let ¥ =N (I)=
{A“|A €T,a ER'}. Ifu,v € Fx(I'), then define u ~ v if eitheru = w,
v=w’' for some wE %y, ,jEZ" or if u=A"° v=A"? for some
a,BER", A€E€TI. Clearly, ~ is an equivalence relation on A'(['). It
will follow from Theorem 1.9 that ~ isin fact an equivalence relation on
Fe('). Let we& Fg, w=A¢---As in standard form. Let A €T.
Then A appears integrally in w if foreach i € {1,-- -, n}, A, = A implies
a; € Z*. Otherwise A appears nonintegrally in w. A appears ration-
ally in w if for each i€{l,---,n}, A,=A implies o, €2". Let
Fo(L)={w|w € Fu('), A appears rationally in w for each A€
I'l. %,(T) is a subsemigroup of Fx(l).

DEerINITION. By a word equation in variables x,,---, x, we mean
{wi, wo} where w, = wy(x,* "+, Xx,), Wo= wy(xy," ", X, ) € F(xy,- -+, x,). It
is not necessary that each x, appearsin w,w,. Let S be a semigroup and
a, *,a,€S. Then (ay, -',a,) is a solution of {w,w,} if
wi(ay, -, a.) = wyay, -+, a,).

Let (bi, - -, b,) be a solution in F(I') of a word equation {w,, w,} in
variables x,, -+, x,. Let § be a semigroup and ¢: F([I)—S, a
homomorphism. Let a; = ¢(b;), i =1,---,n. Then (a,---,a,) is a
solution of {w,, w,}. We say that (a,, - - -, a,) follows from (b,,-- -, b,).

DErFINITION. Let {w,, w,} be a word equation in variables x,, - - -, x,
and S a semigroup.

(1) Let(ay, -, a,)beasolution of {w,, w,}in S. Then (a,," -, a,)
is strongly resolvable if it follows from some solution of {w,, w,} in F(I')
for some nonempty set I'. By Lentin [2] we can then choose |I'| = n.

(2) {w,, w,} is strongly resolvable in S if every solution of {w,, w,} is
strongly resolvable.
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Let I' be a nonempty set and let §: I'—>27. Then clearly there
exists a unique automorphism ¢ of %, (I') such that ¢ (A)= A** for all
A ET. Now let a, -, a, € % (I'). Then there exists an automor-
phism ¢ of %,(I') of the above type such that b, = ¢(a)€ F(I'),
j=1,---,n. Suppose (a,---,a,) is a solution of a word
equation. Then (b, -, b,) is also a solution of the same equation and
a=¢'(b),i=1,---,n. So we have the following.

THEOREM 1.1. Every word equation is strongly resolvable in F,(I')
for any nonempty set I'.

DEeFINITION.  Let w,, w, € Fp(I'). Suppose w, = A -+ AP w,=
B#fr---Bf in standard form. If m =nand A,=B, (i=1,---,n), then
let d(w,, w,) =2 |a;— B:]. Otherwise let d(w,, w,) = .

LEMMA 1.2. Let uy, Uy, us, u, € Fp(I'). Then the following are true
in the extended real line.

(i) e(uu)=-e(u)+e(uy) or e(u,)+e(u)—1.

(i) d(ui, u)=0 if and only if u; = u,.

(i)  d(uy, us) = d(uy, uy) + d(uy, us).

(iv) d(uy, ux) = d(u,, uy).

v)  d(uius, usu) = d(uy, us)+ d(u,, ul).

Proof. (i), (ii), (iii) and (iv) are clear. So we prove (v). Let
wi, wo € Fp([), d(w, wy)) <o, Letw,=Af¢-- A w,=Af---Ablin
standard form. Let A €T. If A# A, then for any «a ER*, w,A* =

e ArAS w, A=A ARA°  in standard form. So
dw, A5, w,A*)=d(w,w,). If A=A, then wA*=A? - Ay’
w,A®=Af--- Ab* Soagain d(w,A%, w,A*)=d(w,, w,). Sobyin-
duction  d(wu, wu)=d(w,w,) for all u€& F(). Similarly
d(uw,, uwy) = d(w,, w,) for all u € F(I'). Let uy, u,, us, uy, € F(I') such
that d(uy, u;) <o and d(uy, u) <o, So d(uuy, usuy) =
d(uuy, usuy) + d(usus, usu,) = d(uy, us) + d(u,, u,). The same holds tri-
vially if d(u,, u;) = or d(u,, u,) = *.

LEmMA 1.3. (i) Let u € Fx(I'), n € Z* such that e(u)>1. Let
u=A¢---Ar,u"=B{---Bin standard form. Then {a;, -, a,}C

{Bl’ ) 35}
(i) Letu,v € F(l'),n € Z". Thend(u,v)=d(u",v")=nd(u,v).

Proof. (i) 1<r=s Since ulu", u|u" we obtain «a =8,
(1=i<r)and e« = B.
(i) That d(u",v")= nd(u,v) follows from Lemma 1.2 (v). So we
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show that d(u,v)=d(u",v"). If d(u",v")=, this is trivial. So let
dlur,v")<o. Ifu"orv"€N(I), thenu,v € ¥T')and u ~v. So for
some AET, 8ER', u=A5 v=A% So duv)=|le-8§|=
|ne —nd|=d(u"v"). Next assume e(u"),e(v")>1. Let u"=
Ax--- A p"=Ab ... Al in standard form with m >1. Let u =
By+--Br, v=C?%---C¥% in standard form. Then r,s>1, B,=A,=
C,B=A,=C,. f A;#A,, then rn=m=sn. Sor=s. If A=
A,, then r—=n—1=m =ns—n—1. Thus in any case r=s. Also
B =A=C, 1=i=r. For 1si=r-1, yy=a and § =B. Also
Y, = a, and &, = B,.. Thus 2,_, |y, — & | =2/, |a, — B,|. This proves the
lemma.
If P € R™*" then let P" denote the transpose of P.

LEMMA 14. Let T' be a nonempty set and let A, ---,A, €T,
€, € € R+, il, B iv j17 T "js € {17 Y n}' Suppose that in gzk(r)’

Then there exists P € ™" for some m € Z* such that for any a,, " -+, a, €
R*, P(ay, -, a,)" =0 if and only if

(1) Af‘,“"‘Aﬁ"=A7,""'Az"-

Proof. We prove by induction on r +s. Choose p, ¢ maximal so
that 1=p=r,1=q=sandforanya, Bwithl=a=p 1=B=¢q, we
have A,=A, and A,=A, Clearly A,=A, and 2{_ ¢, =
2i.,€,. Nowclearly p =rifandonlyifgq =s. Alsoin thiscase, for any
aj, -, a, €RY, (1) holds if and only if 2{_, &, = Zi_,@,. We can then
trivially choose a 1 X n integer matrix P such that for any «;, -, @, € R,
P(a,,- -, a,)" =0 if and only if Z;_, a, = Z}_, a,.

Thus we may assume p <r adn q <s. Then we have

@) Sa=3 a

and

(3) A:i:l..'A::i'= A‘.I"'H"'AZ’S.

Ja+1
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We can trivially choose a 1 X n integer matrix P, such that (2) holds if and
only if Py(ay, " -+, @,)" =0. By our induction hypothesis, we can choose
P,€ 2™ for some m such that (3) holds if and only if Py(ay, -, @,)" =
0. LetP= <P1). Then for any ay, - -, @, ER*, P(ay, -, a,)" =0if and

2

only if both (2) and (3) hold. This proves the lemma.

LEmMMA 1.5. Let T be a nonempty set and let A, -+, A, ET,
€, € ER+7 il,' : '7in j17. . .’js e{l,' : .?n}' Suppose that in gk(r)’

Ao As=Aq-- Ao

Let 8 €R’. Then there exist a,, - -, a, € 9" such that Z;_,| . — €| < 8
and

Aﬁn]...Az-:: Aﬁ’l"’Aﬁ’S.

Proof. Choose P€2™" as in Lemma 14. Let V=
{(Bl""’ﬁn)Tl(Bh” ) Bn)TERnH’ P(Bla"'a Bn)Tzo}' (61,"',6,,)TE Vv
and so V#{0}. Let

W={(B - B) (B, B) €2, P(By,~ -+, B)" = O}

Let w=n—-rank of P. Then dimV over R=u =dimW over
9. Since V#{0}, we have u >0. W has a basis H,,---,H, over
9. Let H=the n X u matrix [H,,---,H,]. Then rank of H=pu. So
H,--- H, are also linearly independent over R. Hence H,,---, H,
form a basis of V and of course H,,---,H, € 2"'. So there exist
8,-,8,€R such that (e, --,€) =8§H+---+§H, Let
Yo, v. €2 and set (ay, -, @) =y, H,+---+ y,H, Then clearly
(a, -, a,)" €EW. Also

V2 el =318, = |18,

Thus for any § € R* we can choose |8, — v,|, p =1, - -, u, small enough
so that |, — € |<8/n, k =1,---,n. For & small enough we then also
have oy €27, k =1,---,n. This proves the lemma.

THEOREM 1.6. Let {w,,w,} be a word equation in variables
Xy, X, Let (a,- -, a,) be a solution of {w,, w.} in Fx(I'). Then for
each € ER’, there exists a solution (b, - -+, b,) of {w,, wy} in %, () such
that 2., d(a,b) <e.
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Proof. Leta, = A% -+ A¥%minstandard form,i=1,---,n. Letw,
start with x, and let w, start with x;, Then correspondingly we have

Bu ... _ Bn

Atl ..._14].1
Choose a, €2", i=1,---,n 1=k=m,. Let =A% ---A&, =
1,"', n. Then b],"',bnegzg(r). AlSO, W](b],"', b,,)=W2(b],"',bn)
if and only if
) A=A
But by Lemma 1.5 we can choose a,’s so that (4) holds and | a, — B | < €
for all relevant i and k. So clearly 2.,d(a, b)=2,|aw — Bi|= Me
where M = 2/_,e(a;). This proves the theorem.

LeEmMA 1.7. Let A, ---,A, €I, ACT. Suppose «a, -, a,
ﬁb..'>BnER+, ib.'.)in jly...7jse{17.“7n} SuCh that AZ“"'Aﬁ"=
A Avand Al - A=Al AP Lety = aifA €EA vy, =B
ifAZAN, i=1,---,n. Then Aln---Al=Al--- A

Proof. We prove by induction on r + 5. Choose p, ¢ maximal such
that for l=p=p, 1=v=q, A,=A, and A, = A,. Then

AE’,‘I"'Aﬁ,'p=Aﬁ'I"‘A;’;q;
Aﬁ;l...Aﬁ.‘,:Aﬁ,,...Aﬁq.

Since A;,, = A, for1=u =p, 1 =v =g, we obtain
AY;I"'Ag;;p:A;'Y{'l"’AL’q.

Also, if p+q<r+s, then p<r, q<s and

A‘f“pﬂ...A:’,,: A‘_’h,u...A“,g
Ip+1 r Jg+1 Is72
B B — B;

Ai,,"i?‘ [N A",_ Aj,,’j.:l “e Aﬁ,s_

By our induction hypothesis we then also have,

A;}:ﬁl...Aﬁ,:Aﬁqu... AJZI"

i Ja+1

Hence AJi---A)}-=A)n--- A proving the lemma.
We will need the following refinement of Theorem 1.6.

THEOREM 1.8. Let {w,, w,} be a word equation in variables
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Xy, Xx. Let (ai,---,a,) be a solution of {w,, w,} in Fg(I'). Then for
each € € R*, there exists a solution (c,,- -, ¢,) of {w,, wy} in F,(T) such
that 2 d(a, c;) <€ and so that for any A €T, A appears integrally in
each a; implies A appears integrally in each c.

Proof. Let A={A|A €I, A appears integrally in each
a;}. Choose (by,---,b,) as in Theorem 1.6. Let a, =A% -+ A%
b;=A%---Afr, i=1,---, ninstandard form. Letvy, = a; if Ay €A,
v =Bx if A &A. Set c¢=AY4---Al, i=1---n Then
¢ € %), d(a,c¢)=d(a,b). Let w, start with x, w, start with
x;.  Then correspondingly we have,

a, _ a
Aill"'_Ai;l"'
B: B,
A;ll"':Alll"'

Then by Lemma 1.7 we also have
:i!o--zA;/;l...'

So wi(cy, "+, €)= wacy, -+, ¢,). This proves the theorem.

Let {w,, w,} be a word equation in variables x,---, x,. A solution
(ai, -, a,) of {w,, wo} in Fx(T') is trivial if either there exist u € Fy(T),
ki,- -+, k, € Z" such that u* =aq, i =1,--+,n, or if there exist A €T,
ay, ,a, ER such that a, = A~ i=1,---, n.

THEOREM 1.9. Let {w,, w,} be a word equation in variables
Xy, * ", X, Suppose {w,,w,} has only trivial solutions in any free
semigroup. Then {w,, w,} has only trivial solutions in any Fg(T).

Proof. Let (ai,---,a,) be a solution of {w, w,} in F('). By
Theorem 1.6, there exist solutions (b{™,---,b{"), m € Z* of {w,, w,} in
%,(T) such that d(a, b™”)—>0asm —»,i=1,---,n. By Theorem 1.1
and our hypothesis, there exist, for each m € Z*, u,, € %, (I'), k(m, i) €
Z* i=1,---,nsuchthat b™=ul™ i=1---,n. Nowe(b™)=e(a)
foralmeZ*,i=1,---,n. Ifforanyi€{l,---, n}, k(m,i)— », then
by Lemma 1.2 (i), e(u,)=1 for some m € Z*. It then follows easily
(since d(a, b™)<w, j=1,---,n)thate(a,)=1,j=1,---,n and q, ~ a,
for all ,r€{l,---,n}. So we may assume that the k(m,i)’s are
bounded for each i=1,---,n. So {(k(m,1),---,k(m,n))|m € Z"} is
finite. Hence we can assume without loss of generality (going to a
subsequence if necessary) that k(m,i)=k(t,i) for all m,t€Z*, i=
1,---,n. Thus there exist k;,- -, k, € Z" such that for all m € Z7,
pm=uyk i=1,---,n 1If e(u,)=1 for any m, then we are done as
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above. So assume e(u,)>1 for all m € Z*. Now for all m,t € Z",
d(bi, b)) <. So d(u,uf)<w. By Lemma 1.3 (i), d(u. u)<
w, Form€Z", let u, =Af"™"--- A in standard form. For any
€ >0, NE€ Z", there exist m,t € Z*, m, t = N such that d(b{", b{’) <
e. SobyLemma 1.3 (ii), d(un, u,)<e. Sofori=1,- - r(a(m,i))isa
Cauchy sequence in  R". Let (a(m,i))—=a. So & €ER
(i=1,---,r). Let a,=B?---B} in standard form. Then by Lemma
1.3 (i) and the fact that d(a,us)—0 as m — o, we obtain that
{ay, .} C{8,,- -, 8} Hence a, o ER". Let u=
Af---Ar. So u€ Fp(l') and clearly d(u,,u)—0 as m —». Let
i€e{l,---,n}. Then by Lemma 1.3(i), d(us,u"“)=kd(u.,u). So
d(uk,u)—0. Now d(a,ul)—0. Also by Lemma 1.2, d(a,u")=
d(a,ul)+d(uy,u*) for all meZ*. So d(a,u*)=0 and thus by
Lemma 1.2, a, = u*, i =1,---,n. This proves the theorem.

ProBLEM 1.10. Generalize Lentin’s theory of principal solutions in
the free semigroup [2] to Fx.

2. The semigroup of designs around the unit disc. For
o, BER", a<B, let Ly,={x|xER,a<|x|<pB} Let D=
{(A,a)|a ER*, a >1, A is a closed subset of I,,; for all x € A there
exists a sequence (x,) in A such that x, —x and |x,|#|x] for all
n}. For(A,a)ED, let P(A,a)=A. D becomes a semigroup under
the following multiplication

(A,a)(B,B)=(A U»aB, af).

We call © the semigroup of designs around the unit disc. The multipli-
cation above is illustrated in Figure 1. If (A, a)€ D, then let [(A, a) =
loga. Soforallu,v €D, l(uv)=Il(u)+I(v)and [(u)>0. In D', set
1(1)=0.

REMARK 2.1. Let (A,a)ED. Then A=ANI,.
_ Dermmion. Let 1= B <y =a. Thenfor (A, @)€D, (A, @)p, =
(B,v/B) where B =(1/B)(A N I,). Note that (A, @), € D and since
A=A, (A, a)g,) C(1/B)A. Also we define (A, a)yg = 1.

Note that [((A, a)p,)=logy —logB. Also by Remark 2.1,
(A, a)ypa = (A, @)

LEMMA 22. (i) Let 1=B8<y<6=qa (A a)ED. Then
(A’ a')[BVB] = (Aa a)[qu](A’ a)[vﬁ]-
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FIGURE 1. Multiplication in D.

(i) Let 1=sB=y<dé=p=a, (A,a)ED. Then I((A,a),s)=
(A, a)pu). Also 1((A, a)y0) = I((A, @)g,) if and only if B =y and
é=p.

Proof. (i) Letx € A,||x|=7y. Then there exists a sequence (x,) of
A such that |x,|#y for all n and x,—»x. So ANI,;C
(ANL,)U(ANL. Soif Aj=A NIy A,=ANT, Ay=ANL,
then A,=A,UA, Also (A, a)ps = ((1/B)A,8/B), (A, a)e,=
((1/B)A., v/B) and (A, a)ys = ((1/y)A;, 8/y). This yields the result.
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(i) This follows by noting that by (i), (A, a)p.=
(A’ a )[Bw](A, a )[‘rﬁ](A’ a)[&ul‘

Lemma 2.3. Let (A,a), (B,B)ED. Set (C,y)=(A,a)(B,B).
Then (C’ 7)[1,01] = (A7 a) and (C7 7)[!1,7] = (B7 B)

Proof. C=AUaB. So CNI,, CA. Itfollowsthat CNI,, =
A NI, ByRemark2.1, &(C v)a)=CNIL.,=ANIL.,=A. Thus
(Cy)a=(A,a). Now CNI,,CaB. So CNIL,=aBNI,, Thus
P(C, Y er))=/a)(CNL,)=1/a)(@BNL,)=(BNI,=B. It fol
lows that (C, ¥ )., = (B, B).

LEmMMmA 2.4. Let (A,a)ED, 1=B<y=a and set (B,y/B)=
(A, @)gy- Let x: [1, v/B]— B, v] be the order preserving homeomorphism
x(x)=Bx. Then for 1=8<p =vy/B, (B, V/B)su = (A, &)rxter-

Proof. B=(1/B)(ANIL,)C(1/B)A.SoBNI,, =1, N(1/B)A =
(1/B) (LysrxewNA). It follows that D((B, /B )su) = LA, a)perxw)-
Also, x(u)/x(6)= /8 and the result follows.

LEmMaA 2.5. Let wuy,---u, (A, @)ED such that (A,a)=
U, - u, Then there exist oy, ", a, ER* such that 1=a,<a; <<
a,=aand (A, a)u_y=U, i =1,-+ -, n.

Proof. Clearly we can assume n >1. By Lemma 2.3, there exists
B € (1,a) such that (A, a)ue = Ui, (A, a)ga)= Uz u,. We are now
done by induction and Lemma 2.4.

LEMMA 2.6. D is a cancellative semigroup. Let u,, u,, v, v,€ D
such that u,u, = v,v,. Then exactly one of the following occurs.

i) () <Il(vy), I(v2) <I(us), us}iv, and v,|su,.

1) (o) <l(w), l(us) <Il(v,), v|iu, and u,|v,.

(iii) u,= v, and u, = v,.

Proof. Let u;,u;,v,0,€ED such that u,u,=v,0,= (A, a). By
Lemma 2.3, there exist B, y € (1, a) such that (A, &)y = u,, (A, Ay =
Ui, (A, @)= U, and (A, @)= 0. Suppose [(u;)=I(v;,). Then by
Lemma 2.2(ii), B=y. So by Lemma 2.2(i), u|,vs, v,ju. If I(u;)=
I(v), then B =y and so u,=v,, u,=v,. We are now done by sym-
metry.
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LEmMMA 2.7. Let (A,a)ED, xEA, ||x||=B. Then,

i) IfBE@,a), thenfor i=y<B<d=a, x €E yP((A, a)ys)
(i) IfB =1, then x € P((A, a)us) for all 6 € (1, a].

(iii) If B = a, then x € yO((A, a),.0) for all y €[1, a).

Proof. (1) x €A NI,; CyDP((A, a)ys)

(i) There exists a sequence (x,) in A, ||x, | # 1 for all n such that
Xx.=>x. SOxE€ANI,;=P(A,a)s)-

(i) There exists a sequence (x,) in A,
Xx,—>x. Sox€ANIL,=yP(A, a)ya).

X, | # « for all n such that

DEerFINITION.  Let U ={x [x €R?, |x|=1}.

(1) Let K=KCU. Then for « ER", a>1, let K¥=(A,a)
where A ={yx|x €K, yE€[l,a]}. Let FL={K@K=KC
U,a ER,a>1}. Then £CD. Note that K= U NOK™). So if
K@ L®e¥ and K®=L®, then K=L and @ = 8. Examples of
elements of £ are given in Figure 2.

(2) Let K€% Then for B ER", (K@) = K. This is well
defined and agrees with the semigroup definition of power if B € Z*.

(3) Let u,v €D. Define u~v if either there exist a €D,
i,j€EZ" such that u =a’, v=a’, or if u,v € £ and v = u* for some
a ER".

REMARK 2.8. (i) K@ K®€ ¥ Then K@WK® = K,

(i) Let u€% B,y €ER". Then (u?) =u®, u?"”=uu” and
[(u?)=Bl(u).

(i) Let u € Z. Then there exists unique v € ¥ such that u ~ v
and I(v)=1. If [(u)=1, then v" = u.

(iv) Letu€eD ved Ifulv then u €¥ and u ~ v.

(v) ~ isclearly an equivalence relationon &. Ilfu € D, v € Y,
u ~ v, thenu € £ It will follow from Theorem 3.16 that ~ isin fact an
equivalence relation on .

THEOREM 2.9. Let T be a nonempty finite set. Fori €T, jEZ",
choose u;; €D such that u,.,|u, forall i€ T, j € Z*; and l(u;)—0 as
j— for any fixed i€ T. Let (A,a)ED. Assume that for each
BE(,a), jEZ", there exist k €EZ", v,8 €[, al, i,p,q € T such that
y <B <38, k>jand so that either (A, a )5 = Ui, or else (A, a )5 = Upx
and (A, a)ps = Ugk- Then some u,, € £.

Proof. Let U={x|x €R* |[x|=1}. Let |T|=n_ We prove by
induction on n.  So assume that the theorem is true for nonempty sets of
order less than.n (possibly none). We assume that the conclusion of the
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FIGURE 2. Examples of elements of &.

theorem is false and obtain a contradiction. For x € U, let P, =
{yx|y€R}andJ, =P, NI, ThenlJ, =P, NI, First weclaim that
it suffices to show that foreachx € U, J,C A orJ ., NA =(J. Insucha
case, first let J, C A. Then since A is closed, J, C A. Next let
J.NA=. We claim that ;, NA =&. For, let yEJ,NA. Then
[yl|=1 or @. So there exists a sequence (y,) in A NI, such that
y.—>y. Let y,=r, x,r,€(1,a), x, EU. Then x,—x. Since y, €
J. N A, we obtain J,, CA. So ((a +1)/2)x, € A for all n. Since A is
closed and x, — x, we get ((@ +1)/2)x € A, contradicting the fact that
J NA =¢. We have thus shown that for all x € U, JNA =0 or
J.CA. So letting K=A NU we see that K is closed and that
(A,a)=K“€ ¥. Then of course some u;, € &, a contradiction. This
establishes our claim.

So let x € U such that J,Z A. Then J,\A is nonempty and open
in J. So there exist B,y €(1,a) such that B<y and I, NJ, C
J\A. Let € (B,v)and let j€ Z*. Then there exist k € Z*, u,v €
[1,a],i,p,q € T such that u <8 < », k >j and so that either (A, @);,,; =
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u, orelse (A, a)s = Ux and (A, @), = U 1f j is large enough (and
hence [(u.), I(u,x), I(us) small enough), we obtain that u,v € (B, v).
Hence by Lemma 2.4, (A, a);,, satisfies the hypothesis of the theorem
for the same T. We now claim that for each i € T, there exists j € Z7,
such that u,, [(A, @), Suppose not. Then for any j € Z*, u,; doesn’t
come into consideration in the above argument. So n >1 and (A, &)z
satisfies the theorem with T\{i} in place of T. So by our induction
hypothesis some u,, €%, a contradiction. So our claim is
established. Since u;;.,|u;; for all relevant i, j, we see that there exists
r€Z" such that for all i€ T, jE Z*, j>r, u, [(A, @)y

We now assume J, N A # J and obtain a contradiction. So let
a€J.NA,|all=8 Sod€(l,a). Thereexist k €EZ*, u,vE[l,a],
i,p,q € T such that u < & < v, k >r and so that either (A, a),.;= Uix Or
else (A, @)ps= U and (A, @)= Uge. But ws, Ups, Ugi | (A, @) (g, SO
in any case (A, a).s| (A, @)py and (A, @)i.] (A, @)g,- By Lemma 2.5,
there exist ¢,&ERT such that §P((A, a).s) U EP((A, a)i.,) C
D((A, @)p,). By Lemma 2.7(1), a € u P((A, a),..;)). Since (A, @), =
(A, @)s - (A, )., there exists £ € R* such that a € &P((A, a),s) or
a € &EP((A,a)s,). So for some  (ERY,  fa € DA a)g,)=
1/B)Y(ANI,)CA/B)(ANI,).SoBéa € ANI, Buta€lJ, andso
Béa € P. But |Béa|€[B,y]C(1l,a). So Béa€ ANJ NI, con-
tradicting the fact that I,, NJ, CJ.\A. This contradiction completes
the proof of the theorem.

3. Word equations in . Let I' be a nonempty
set. Define Fr(I'|D)= Fr(') and Fr('|T)=FT). If ACT, A#J,
A #T, then let #x(I'|A) denote the subsemigroup of Fx(I') generated by
Fr(l\A) and F(A). Letw € Fx(I'). Thenforany ACT, w € F(T'|A)
if and only if each A € A appears integrally in w.

Let ¢: =9, ACT, such that ¢(I'\A)C ¥ Then ¢ extends
naturally to a homomorphism ¢: Fr(C|A)—D. In fact let w€E
Fe(|A), w=Af---A; in standard form. So A, € A implies € €
Z*. Define ¢(w)=¢(A)" - ¢(A,)" This makes sense, since for
u€ Y ec€R’, ucisdefined. Using Remark 2.8(ii), it is easily seen that
¢ is a homomorphism. We call ¢ the natural extension of ¢ to
Fr(T|A).

Let (uy,---,u,) be a solution in F(I') of a word equation
{w,wy}. Let A={A|A€ETl, A appears integrally in each
Uy, -, u}. Then uy, - -, u, € F(l'|A). Let ¢:T—D such that
¢(T\A)C &L Let ¢ be the natural extension of ¢. Let a = ¢(u),
i=1,---,n. Then (a;, ", a,) is a solution of {w,, w,} in ©. We say
that (a,,---, a,) follows from (u,,---, u,).
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REMARK 3.1. In the above notation suppose there exists A; C T,
: T'— D such that u,l/(F\Al) C % Let § be the natural extension of ¢ to
F(|A)). Suppose uy,---,u, €F([T|A) and a=4¢@), i=
1,--+-,n. Then (ai,- -, a,) follows from (uy,---,u,). This is because
the above implies that A;C A and so A C F\A C¥ Alsoitis clear
that the natural extension of ¢ to Fx(I'|A) is the restriction of ¢ to
Fo(l'|A).

Even though we are only interested in word equations, it will be
convenient to introduce the concept of a constrained word equation.

DEFINITION. Let wi=wi(xy, 1, X,), Wy = wy(Xy, ", X, ) E
F(xi,+ -+, x,). Let Ty,---, T, denote s disjoint nonempty subsets of
{x1,-+ -, x.}. Choose a, ER* corresponding to each k€T, j=
1,--+s Let M,={(x, )k €T} Wecal «={w,w,;M, -, M}
a constrained word equation in variables x,,---,x, We allow the
possibility that m = 0, in which case & is the word equation {w,, w,}. If
1=i=n and i€ T, for every j, ] =j =s, then we say that x; is a free
variable of of. Otherwise x, is a constrained variable. If m =0, then x;
is free (1=i=n). Leta,---,a,€D. Then (a,---,a,)is a solution
of o if the following conditions are satisfied.

1) wiay, - a.)=wyay, -, a,).

(2) (xx, )€ M, implies that a, € £ and l(a,)=a, j=1,---,s.

(3) Let (x,a.)EM,, (x,a)E M, Then a,~ a if and only if
p=4q
Similarly if a,,- - -, a, € Fx(I'), then we say that (a,, - -, a,) is a solution
of o if (1), (2) and (3) above are satisfied with £ replaced by N (I').

DEerINITION. Let of ={w,, w,; M, -+, M} be a constrained word
equation in variables x,, - - -, x,.

(1) Letu =(ay---,a,),v=_(by,--",b,)besolutions of o in D, Fy
respectively. (Note that then for each constrained variable x;, [(a,)=
I(b)). Then we say that u follows from v (as solutions of &) if w
follows from v as solutions of the word equation {w,, w,}.

(2) A solution u of & in D is resolvable if it follows from a
solution of o in F(T") with || = r + s = n where r is the number of free
variables of .

(3) o isresolvablein D if every solution of & in D is resolvable.

LEmMMA 3.2. Let w,,w,€ F(x,,--*,x,). Let a---,a,€N{T)
such that a;~a, for all i, j Suppose Il(w(ai-"*, a,))=
l(wyay, -+, a,)). Then wia,---,a,)=wya,- -, a,).

Proof. For some A€Tl, a =A% a=Ia), i=1,---,n Let
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I(wi(ay, "+, a,))=l(wyay, -+, a,))=B. Then clearly wi(ay, ", a,)=
AP =wyay, -, an).

Lemma 3.3. Let a;,--,a, €%, by,--+,b, EN([). Suppose that
a, ~ a; implies b, ~ b; for i,j €{1,---,n}. Assume further that l(a;)=
I(b;),i=1,---,n. Letw, w,E F(xy,"",x,) such that wi(a;,"*+,a,) =
wi(ay, -+, a,). Then wy(by, -+, b,)= wyby, -+, b,).

Proof. We prove by induction on length of wyw, in
F(x1,-+,x,). We can assume without loss of generality that each x;
appears in w,w,. Let w,=x,---x, w,=x;,---x;. So

ail".ais=aj|..'aj,=a~

Choose p, ¢ maximal so that 1=p=s,1=q=t;forl=k =p, a,~ a,
andfor 1=k =gq, a,~ a,. Now a,:a; or a;|;a,. So by Remark 2.8(iv),
a,~a, Letu=a,---a,andv=a;,---a, Thenu,v€ ¥ Alsoa=
ub = vc forsome b,c € D'. Firstassumep =s. Thenb=1. Ifq#¢,
then a,.|u and so a,., ~u~a;, a contradiction. So q =1t Then
a, ~ a; for all i,j. Hence b, ~ b; for all i, j. Since I(b;)) = l(a;) for all i,
we obtain that I(wy(b, -+, b)) =Il(wi(as, -+, a,))=1l(wAay," ", a,))=
[(wy(by,* -+, b,)). We are then done by Lemma 3.2. Similarly we are
done if g=1t So assume p <s and g <t We claim that u =
v. Otherwise, by symmetry, let v = uv,, v, € £. Then b = v,c. Since
a,.|ib, we see that a,.,v, or wva,.. So a,, ~vi~a, a
contradiction. So u =v and b =c. Thus

ip+1

ail'..ai :ail..‘a]q;alp+l...als=ajq+l..'ajl'

By our induction hypothesis,

b,---b,=b,---b, and b, ---b, =b

q ip+1 Ja+1 Tt bil'

i
So b,--+b, =b;,--+b, and we are done.

LemMA 3.4. Let o ={w,,wy,; M,,---, M,} in variables x,,- -, x,.
Suppose for some wi, Wy, ws, We € F(X1,* . X,), W= W3Ws, W, = WsW,
such that ws and ws involve only constrained variables. Let (ay,- -, a,)
be a solution of o in D. Suppose wi(a,," -, a,)= ws(a;, -, a,). Let
B ={ws, we; My, - - -, M,} in variables x,,- -, x,. Then (ay,-*-,a,) is a
solution of B. If (ai,- -, a,) is resolvable as a solution of B, then it is
resolvable as a solution of .
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Proof. Note that the free and constrained variables of &/ and % are
the same. Clearly wy(a,, - -, a,) = we(a;,* -+, a,) and so (a,," - -, a,) is a
solution of . Let (b;, -+, b,) be a solution of B in Fx(l') from which
(a,"--,a,) follows. It suffices to show that wy(b,---,b,)=
wa(by, - -+, b,). Let x; be a variable appearing in w;ws. Then x, is
constrained and so a; € %, b, € N'(I') and [(a;) = I(b;). For the same
reason if x;, x, appear in w;ws, then a; ~ a; if and only if b, ~ b,. So by
Lemma 3.3, wy(by, -, b,) = ws(by, -+, b,). Since (b;,---,b,) is a solu-
tion of B, wiby, -, b,)=webi, -, b.). So  wyby,--,b)=
wa(by, * * +, by).

LEmMMA 3.5. Let o ={w,, wy; M, -+, M} in variables x,, - -, X,.
Then A is resolvable in 9.

Proof. Let (ay,---,a,) be a solution of & in D. Letc = a if x; is
a free variable, and otherwise let ¢; € & such that ¢; ~ a;, I(c,) = 1. Then
for constrained x; we have a; =¢!®. LetI'={A, ---, A,} where A, =
A, if and only if i =j or x, x; are constrained and a; ~a;. Then
IT| = r+ s where r is the number of free variables of /. Let b, = A, if x,
is free and otherwise let b, = A|“). Then (b,,* -, b,) is a solution of
A. Let A={A;|x; is free}. Then b € Fx(l'|A), i=1,---,n Let
¢:I'— D be given by ¢ (A))=c, i =1,---,n. Then ¢ is well defined
and ¢(IMNA)C &% Let ¢ be the natural extension of ¢ to
F(|A). Then ¢(b)=a, i=1,---,n. So (a,--,a,) follows from
(b, -+, ba).

LEMMA 3.6. Any constrained word equation without free variables is
resolvable in D.

Proof. Let &f ={w,, wy; M,,- -+, M.} in variables x,, - -, x, with all
variables being constrained. Let (a;,***,a,) be a solution of & in
D. So each a, €% Choose c; €EZ so that ¢, ~a, I(c)=1. So
a4 =c,. LetI'={A,---,A,} with A, = A, if and only if a, ~ a. So
IT|=s. Let b=A!), i=1,---,n. By Lemma 3.3, (b,---,b,) is a
solution of &f. Define p: I'=>D by ¢(Ai)=c,i=1,---,n. Then ¢ is
well defined and ¢(I')C £. Let ¢ be the natural extension of ¢ to
Fx(). Then ¢(b)=a, i=1,---,n. So (aj,---,a,) follows from
(b], Y bn)

LEMMA 3.7. Let o ={w,, w,; M,, -+, M,} in variables x,,- - -, x,.
Let w; € F(x1,+,x,) and let B = {wsw,, wyw,; My, - -+, M.} in the same
variables. Let (ai,- -, a,) be a solution of B. Then (ay, -, a,) is a
solution of . If (ai, """, a,) is resolvable as a solution of 4, then it is
resolvable as a solution of %.
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Proof. This follows by noting that in ®© as well as in any Zg(I'), the
solutions of & and % are the same.

LEmMMmA 3.8. Let o ={w,,wy; M,, -+, M} in variables x,,- -, x,.
Suppose x, is a free variable not occuring in w,w, Let B =
{wi, wy; My, -+ -, M} in variables x,, - -, x,. If B is resolvable in D, then
S0 is A.

Proof. Let (ai," -, a,) be a solution of & in ©. Then (a -, a,)
is a solution of B in ®. So (ay---,a,) follows from some solution
(by, -+, b,) of B in Fx(') with |[T'|=r+ s where r is the number of free
variables of . Correspondingly there exist ACT, ¢: I'— D such that
by, -+, b, € Fr(T'|A), ¢(T\A)C & and the natural extension ¢ of ¢ to
Fe(T|A) satisfies ¢(b)=a, i =2,---,n. Let b, & Fx(l') and set ', =
ru{s}, A,=AU{b}. Then (b, ---,b,) is a solution of & in
Fe(l)). Extend ¢ to ¢, by setting ¢b)=a,. Then
by, by, -+, b, € Fr(l'1| A1), ©,(T'\A)) C £ and the natural extension ¢, of
¢, to F(T|A,) satisfies ¢(b)=a,i=1,---,n. So(ay,---,a,) follows
from (b, -+, b.), |T;| = r+ 1+ s and the number of free variables of o« is
r+1.

LEMMA 3.9. Let oA ={w,wyy, My, -+ M} in variables
X1yt X, Suppose (ai,-- -, a,)isasolutionof fin D. Assume that for
some i# j, x; and x; are free variables and a, = a;. Let wi(x,,---,x,)=
W (X1, Xo, X Xe1, 00, X)), t=1,2. Then x; does not appear in
wiw;. Let B ={wi,wy;; M, -, M} in variables x,,---,x,. If B is
resolvable in D, then the solution (a,,---,a,) of A is resolvable in D.

Proof. Clearly (ay,- -, a,) is also a solution of 8. Let (b;,---, b,)
be a solution of B in Fx(I') from which (a,,---, a,) follows. Then
w= (b, b_1,b,b., -, b,) is also a solution of & and (a,,---, a,)
follows from w.

LemMMA 3.10. Let o ={w,, w,; My, -+, M.} in variables x,,- -, x,.
Let (ay, -+, a,) be a solution of £ in D. Suppose that for some i, x, is free
and a, €% If a,~a, for some (x,a)EM, then let M,=
M, U{(x;, l(a.))}, M;= M, for q# p and set B ={w,, w,; Mi,---, M} in
variables x,,- -+, x,. If a,# a; for any constrained variable x; then set
B ={w,, wy; My, - - -, M, {(x;, I(a:))}} in variables x,,---,x,. Then B has
lesser number of free variables than . If B is resolvable in D then so is
the solution (ai,- -+, a,) of A.

Proof. Let r be the number of free variables of /. Then % has
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r —1 free variables. Clearly (a;, -, a,) is also a solution of 9. Let
(ai, "+, a,) follow from a solution (b, -+, b,) of B in Fr(I') with
IT|=(r—1)+(s+1)=r+s Then clearly (b, -, b,) is also a solution
of &/ and hence the result follows.

LEmma 3.11. Let o ={w;,w;; My,---,M,}. Let p=(ay,--,a,)
be a solution of o in D. Suppose (x,a)E M,. Assume a, = a'a’ for
some a',a"€D. Introduce new variables x', x" and set

' ' "
wr(xla Y xi-l, xi7 X i,xi+1’ Y xn)

ry.n

= wl(xh Y xi—l,xix 1y xi+1’ o .?xn)

E’g;(xly“'7x1—17x:7xlr(7xi+1,”'7xn)7 t=172

Let M= M, for j# k, M;={(x},1(a?)), (x,1(a?)} UM \(x;, a:)}). Let
B={wi,wy; M}, -, M} in variables x,,- - -, x;_1, X1, X", Xis1, * *, Xn. Then
B has the same number of free wvariables as A. Also v =
(a,* -, ai,al,a’, a, 00, a,) is a solution of B.  If v is resolvable in D

then so is u.

Proof. Let r be the number of free variables of & (and hence
). First note that since a/, a’{|a, a;~ a’~ a.. It is then obvious that
v is a solution of @B. Let v follow from a solution
(b, bty bl b bivyy - -+, b,) of B in F(T) with [T|=r+s. Let b =
bib' and let ¢ = (by,- -, bi_1, by by, - -+, b,). It is then clear that £ is a
solution of & and that u follows from &.

LeEmMMA 3.12. Let A ={w,, wo; My, -+, M,} in variables x,,- - -, X,.
Let u = (ay, "+, a,) be a solution of o in D. Suppose i# |, x; is a free
variable and a; = aa) for some a;€D. Introduce a new variable
xj. Let

!
w:(xlv Y x/*l? xja xj+1’ Tt xn)
— ! .
- wl(xb R x/—h xix]a xj+la ot ;xn)

€ F(X1, **y Xjm1, X )y Xpu15 " " "5 Xn)s t=1,2.

Let B ={wi,wy; My, -, M} in variables x,,* -, X,_1, X}, X1, * * *, X,. Then
v=(ay, " a-1,a}, @1, """, a,) is a solution of B. If v is resolvable then
50 is u.

Proof. Let r be the number of free variables of &/ (and hence 3). It
is clear that v is a solution of . Let v follow from a solution
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(b, -, b1, b}, by, -, b)) of B in Fe(') with [[|=r+s Let b =
bb!. Then &= (b, -, b1, b, b1, -+, b,) is a solution of & and u
follows from 6.

Let r € N and consider the following:

Every constrained word equation in less than r free

(*)

variables (possibly none) is resolvable in D.

LEmMA 3.13. Assume (*). Let o ={w,, wy;---} in variables
X1, ", X, Assume A has exactly r free variables and that w, and w, start
with different variables, at least one of which is free. Then o is resolvable
in ®.

Proof. Let (a,,---,a,) be a solution of & in D. Assume
(ai, -+, a,) is not resolvable. We will obtain a contradiction. Let
T = {i|x, is a constrained variable}. So by (*) and Lemma 3.8, each free
variable occurs in w;w, Let x, appear m{" times in w,w, i=
1,---,n. Then mPEN for iET and m®P€ Z* for i€ T. Let u=

wiws(a;, -+, a,). So u is a word in a,,---,a, with a, appearing m"
times,i=1,---,n. Nowlet V=of, w=w, wP=w,, xP=x,a"=
a, i=1,---,n. We will construct a sequence of constrained word

equations A ={w{, wl®;---} in variables x{,---, x® with solutions
(af,--+,a®) in D such that the following properties are true for all
kez.

(I)  The constrained variables of o/ are exactly x*), i € T. Also
fori€T, a¥=ai.

(1) wisawordin al®,---, a¥ with a!*’ appearing m® times. If
k>1,then mPz=zm&* ™" i=1,--- nand 2L, m© >3, m¢&™D,

(I1) If k >1, then a* ™ is a word in a{,---,a®, i=1,- -, n

(Iv) If k >1, then a®|;a* ™", i=1,---, n

(V) wi and w{ start with different variables, at least one of
which is free.

(VD) (a®,---,a®) is not resolvable.

Clearly &/ satisfies (I) to (VI). We proceed by induction. So
having constructed 49, 1=j =k, satisfying (I) to (VI), we proceed to
construct £“™. Let w¥=x®... w®=x%...  Sop#q and either
x, or x, is free. We have correspondingly

(5) a;,k)"'=af,k)"'.

First consider the case that a% = a%. 1If both x’ and x{" are free, then
by applying first Lemma 3.9, and then Lemma 3.8 and (*), we see that
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(a®,---,a¥) is resolvable, a contradiction. Next assume x® s
constrained. Then x{ is free and a’€ ¥. Then by Lemma 3.10 and
(*), (@, - - -, al) is resolvable, a contradiction. So I(a®)# l(a®). By
symmetry, assume [(a{’) <l(a{’). Then al’|;a®. First suppose x & is
constrained. Then x{ is free and a’€ #. We then get a contradic-
tion as above. So x{ is free. Now a®=a¥a®" for some
afPeED. Set al*=a® for i#q. Clearly a*"a®, i=
1,---,n. AlsosinceqZ T, a®”=al*"Vfori €T. Trivially, each a® is
awordin a{**", .-+ a%". Sou isawordin a*",--- a**". Let a**?
appear m{*" times in this word. Then m**"=m® for i#p and
mf=mP+mPzmP+mP>m». SoZ, m¢ >3, m®. Now
the left hand side of (5) must include more than just al (as l(a%) <

[(a{)). So let the left side of (5) be a®a®---. If t#gq, then (5)
becomes
6) a®n...= gk 1#q.

If t = g, then (5) becomes
(7) a;kﬂ)agkﬂ)...: a;kﬂ)._., p#q

Now introduce a new variable x¢*" and set x**"=x® for i# q. If (6)
holds, then correspondingly let w{*V = x**V... WD = x & If (7)
holds, then correspondingly let w{ V= x§*Dxf+D ..y = xE+bo .
Now applying Lemma 3.12 and then Lemma 3.7 we can construct a
constrained word equation AV ={w{*V wl*D; ...} in variables
x & x %Y such that (af*”, -+, a%*Y) is an unresolvable solution of
A%V, Also a close examination of the construction shows that the
constrained variables of o/ **V are exactly x**", i € T. This completes
the induction step of our construction.

Now by (I), 2., m*)— o as k - ®. So at least one m{’— . So
l(a®)—0. Let K={i|l(a®)—0}. By (), TNK =. There exists
€ €ER" such that for i 2 K, l(a®)>¢€ for all k € Z*. Choose k large
enough so that I(a¥)<e. Let a=a®. Then by (IIl), for all « € Z*,
a>k, ais a word in a!, i€ K. Let P,={a®|i€K}. Let a=
(A, ¢). Then by Lemma 2.5, for each a € Z", a >k, there exist
£, -, &, such that 1=¢§,<¢<---<§,=¢ and for j=1,---,m,
(A, €)s) € P.. So we see that the hypothesis of Theorem 2.9 is
satisfied. Soa®” € L forsomei €EK,a € Z*. Thensince TNK =,
x“is a free variable of /(. So by Lemma 3.10 and (%), (a{, -+, a'")is
resolvable, contradicting (VI). This completes the proof of
Lemma 3.13.

THEOREM 3.14. Every constrained word equation is resolvable in ©.



WORD EQUATIONS IN SOME GEOMETRIC SEMIGROUPS 263

Proof. Let r€N and assume (*). We must show that every
constrained word equation with r free variables is resolvable. Let

& = {w,, w,; -+ - } in variables x,, - - -, x, with r free variables. We prove
by induction on length of w,w, in #(x,, - - -, x,) that & is resolvable. Let
T = {i|x; is constrained}. Let (a,,---, a,) be a solution of & in ®. If

w, and w, start with the same variable, then by our induction hypotheses,
Lemma 3.7 and Lemma 3.5, we are done. So let w,;, w, start with
different variables. If some free variable does not appear in w,w, then
since (*) holds, we are done by Lemma 3.8. So assume that each free
variable occurs in w,w,. If either w, or w, starts with a free variable,
then we are done by Lemma 3.13. So assume that both w, and w, start
with  constrained variables. Let W =X, X, and w,=
X, ++x,. Choose p, ¢ maximal so that I=p=m, 1=q =1t and for
1=Sa=p, 1=B=q we have i,, j € T. Clearly,

(8) a” .. a'm p—t a]l . .. aj’-
By symmetry assume that I(a,---a,)=l(a,- " a;,). Choose @ minimal
suchthat 1=a =q andl(a,---a,)=(a, -+ a,). Thena, =a)a’, for

some a} € %, aj,€ L' such that

a,-a._a, if a>1
(9) au e ai =
a;, if a=1

First consider the case af,=1. Then aj =4, and a, --a,=
a,---a,. Now by (8), p=m if and only if @ = ¢ and in such a case we
are done by Lemma 3.6. Solet p <m, @ <t. Butnow we are done by
Lemma 3.4 and our induction hypothesis on [(w,w,) in F(x,, -, x,).

So we are left with the case aj,#1. Then p<m and x,,, is
free. Also by (8), (9) we have

(10) axp+1"':a,;a"'

Now as in Lemma 3.11 introduce new variables x, x’,. Corresponding
to (10),let wi=x,,,---and w,=x7_---. Now an application of Lemma
3.11 followed by Lemma 3.4 (because of (9)) yields a constrained word
equation B = {wi, wj,---} with same free variables as & (though the
total number of variables is n + 1) such that (10) represents a solution of
A and the resolvability of B implies the resolvability of (a,, - * -, a,). Also
in this construction, x, ., is free and x 7, is constrained. So by Lemma 3.13,
R is resolvable. So (ay, - -, a,) is resolvable and our proof of Theorem
3.14 is complete.
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CoROLLARY 3.15. Every word equation is resolvable in D.

Let {w,, w,} be a word equation in variables x,,---,x,. A solution
(a,***,a,) in D of {wy,,wy} is trivial if either there exist u € D,
ki, -, k. €EZ" such that g, =u*, i=1,---, n or if there exist a € &,
oy, -, a, €ER* such that a~ =gq, i=1,---,n. Then Theorem 1.9 and

Corollary 3.15 imply the following.

THEOREM 3.16. Let {w,, w,} be a word equation in variables
X1, *, X, having only trivial solutions is any free semigroup. Then
{wi, w,} has only trivial solutions in D.

4. An approximation theorem for ©. For the definition
of a pseudo-metric, see for example [5; p. 129]. Consider the following
properties for a function ¢: D x D — R* U{0}.

(a) ¢ is a pseudo-metric on D.

(b) Forany u, u, €D, e €R’, there exists § € R* such that for all
1, ,ED, e(u,v,)< 8, i =1,2, implies ¢ (Uu,, vV,0,) <E€.

(c) Foranyu€e ¥ ¢(u,u’)—0as é6—1.

If the above hold, then it is easy to see that for all u,, -+, u, €D,
€ € R*, there exists § € R* such that for any vy, -+, v, €D, ¢ (u,v,) <,
i=1,---,m implies @ (U;*** Up, V1" V,) <E.

Using Corollary 3.15, Theorems 1.1 and 1.8, we obtain the following

THEOREM 4.1. Let ¢ satisfy (a), (b) and (c) above. Let
(a,* -+, a,) be a solution in D of a word equation {w,, w,}. Then for
every € € R’ there exists a strongly resolvable solution (b,,---,b,) of
{wy, wy} in D such that ¢(a, b)<e i=1,---, n

DEFINITION. Let p be the pseudo-metric on compact subsets of R®
given by p(A,B)=m(A\B UB\A) where m denotes the Lebesgue
measure. Let A be pseudo-metric on © given by A((A, @), (B,B))=
p(A,B)+[a _B’

THEOREM 4.2. Let (ay,--+,a,) be a solution in ® of a word
equation {w,, w,}. Then for every e € R, there exists a strongly resolvable
solution (by, - -+, b,) of {wy, wo} in © such that A (a,, b;)<e i=1,---, n

Proof. By Theorem 4.1 we must show that A satisfies (a), (b) and
(c). First note that p satisfies the following.

1. p(AUB,CUD)=p(A,C)+p(B,D).

2. p(aA,A)—>0as a—1 and A is fixed.
Now let (A}, a)), (As, a3), (B1, B), (B2, B2) €ED. Then (A}, a))(A,, a;) =
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(AI Ua A, alaZ) and (Bly B1)(Bz, ,32) = (Bl U B.B,, 3132) So
P(A1 Ua,Az B U Ble) = P(Al, B]) + P(alAz, BIAZ) + P(BlAz, Ble)-

/ -~

Let (A, a;), (A, a,) be fixed and suppose A((A;, a;), (B, B1)—0,
A((A, ), (B3, B2))—0. Then p(A;,B)—0, Bi—a, Br—ay
p(A; By)—0. So p(A;Ua;A, B UBB;)—0 and B8~ a1a,. Thus
A((A}, ay)(As, az), (Bi, B1)(B2, B2))— 0. This establishes (b). Next let
K=KcU={x|x€R,|x|=1}, aBER", 1<a<p. Then
O(KOND(K@)C L4 So for a fixed, A(K®,K®)—0 as 8 — a. This
establishes (c). (a) is of course trivial and the theorem is proved.

5. Word equations of paths. In this section let n € Z” be
fixed and let &, denote the groupoid of paths in R" mentioned in the
problem at the end of [4]. Also let *, =, fi, 5 have the same meaning as
in [4]. Let &, denote the set of lines in 9,. Let ¥ ={f*|f € ¥} and
let @¥={f*|f€ D). So D% is a semigroup. We start off with an
analogue of Theorem 2.9.

THEOREM 5.1. Let T be a nonempty finite set. Fori €T, j€ Z",
choose f,, € D, such that f..|if,, for all i€ T, j€Z" and I(f;)—0 as
j— o forany fixedi € T. Letf€ %,. Assume that for each p € [0,1],
JEZ*, there exist a,y €[0,1], i € T such that « <vy, B € [a,y] and
fiesy=fi; Then some f,, € £,.

Proof. The second part of the proof of [4; Theorem 2.1] shows that
there exist u,v €[0,1], u <v such that f,, €. Choose BE
(u,v). For any j € Z*, there exist a,y €[0,1], i € T such that a <1,
B €le, y] and f.,;=f; We can choose j big enough (and hence I(f;;)
small enough) so that we must have a« > pu, y <wv. Then f, =f,, € Z.

For a € %, a ER", let a® denote the line in £* in the same
direction as a but with length al(a). Let u,v € @%. Then define
u ~ v if either there exist a € 9%, i,j € Z* such that u = a', v = a’ or if
u,v € £% and v = u* for some a« € R*. Because of Theorem 5.1, we
can repeat §3 (including all the definitions) with © replaced by 91 and &£
replaced by £7. We then obtain the following theorem which answers
affirmatively a problem posed at the end of [4].

THEOREM 5.2. Every word equation is resolvable in 97.
Using Theorem 1.9, we now obtain,

THEOREM 5.3. Let {w,, w,} be a word equation which has only
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trivial solutions in any free semigroup. Then {w,, w,} has only trivial
solutions in 97%.

For continuous f: [0,1]—>R", let ||f]| = sup.cpy [l f ()]

DEeFINITION.  For u, v € 9%, let n(u,v) = inf{|f - g||f,g§ € D\, f=
u,g =v}.

Then 1 can be shown to have the following properties:

(a) 7m is a pseudo-metric on 9P7¥.

(b) For any u;,,u, € 9%, e ER’, there exists § € R* such that for
all v, 0, € D%, n(u,v,)< 8, i =1,2 implies n(uu,, v,v;) <e.

(c) For any u € &%, n(u,u’)—0as § - 1.

As in §4, Theorems 1.1, 1.8 and 5.2 easily imply the following.

THEOREM 5.4. Let (a,,---,a,) be a solution in 9% of a word
equation {w,, w,}. Then for every e € R", there exists a strongly resolvable
solution (by, -+, b,) of {w,, w,} in D% such thatq(a, b)<ei=1,---, m.

Note added in the proof. Problem 1.10 has-recently been solved by
the author.
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