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ON THE RADON-NIKODYM PROPERTY IN A
CLASS OF LOCALLY CONVEX SPACES

ELias SAAB

In an earlier paper we studied the Radon-Nikodym prop-
erty (RNP) for Fréchet spaces. D. Gilliam continued the study
by examining the RNP for locally convex spaces with the strict
Mackey convergence property. The aim of this paper is to take
one more step by studying the RNP for the class of locally convex
spaces in which every bounded subset is metrizable. Although
this class strictly includes the class of spaces with the strict
Mackey convergence property, our goal is not a generalization
for the sake of generalization. Indeed, we shall prove a theorem
that reduces the study of the RNP for this class of spaces directly
to the study of the RNP for Banach spaces. This will provide a
quick and simultaneous extension of many of the basic
Radon-Nikodym theorems in Banach spaces to this class of
locally convex spaces. We hope that our technique will
eliminate some of the mystery that seems to surround the RNP
for locally convex spaces.

1. Definitions and preliminaries. Throughout this
paper (E, 7) will always be a quasi-complete locally convex Hausdorft
space in which every bounded subset is metrizable and = will denote its
topology.

Let (7,3, P) be a probability space and m: % — E be a vector
measure. For every continuous semi-norm q on E, the q-variation of m
over X in 3 is defined to be

[m | (X)= sup{i q(m(X));{X.}i-; disjoint, X, CX and X, €3
i=1

for 1=_<-i§n}.

The function | m |, is an extended real-valued measure. The vector
measure m is said to be of bounded variation if | m |,(T) < +  for every
continuous semi-norm g on E. Also m is said to be P-continuous
(denoted m < P) if m(X)=0, whenever P(X)=0 and X €3. It is
clear that m < P if and only if for every continuous semi-norm q on E we
have |m |, <P. The set

_ [m(X). }
Am (3) {—(—IP(X),XEE,P(X)>O
is called the P-average range of m.
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DerFNITION 1.1. A function f: T — E is said to be P-integrable if
and only if there exists a sequence f, of simple functions such that:
(1) lim,f,(t) = f(¢t) P-almost everywhere (P.a.e.)

(i) lim, f q(f.(t)— f(t))dP =0 for every continuous semi-norm ¢
T
on E.
This definition allows us to define f fdP =lim, f f.dP for each X in
X X

3, using the fact that E is quasi-complete.

It can be verified that this definition is independent of the choice of
the sequence (f,), and if F is another quasi-complete locally convex
Hausdorft space and U: E — F is a continuous linear operator, then

U-°F is also P-integrable and U<f fdP) =f U-efdP for all X in 2.
X X

We adopted this definition because all the P-integrable functions we
will be dealing with take their values in a bounded metrizable set. This
definition is equivalent to the one used in [15] when the space E is a
Fréchet space.

DeriNiTION 1.2. Let C be a closed bounded convex subset of
E. The set C is said to have the RNP if for every probability space
(T, 3, P) and every vector measure m: 3 — E whose P-average range is
contained in C there exists a P-integrable function f: T— C such that

m(X)= L fdP for every X in 3.

If every bounded closed convex subset of E has the RNP, then E is
said to have RNP.

Note that in this definition the boundedness of the set C insures that
any vector measure whose P-average range is contained in C is of finite
variation and is P-continuous.

For each subset B of E, let conv(B) denote the closed convex hull of
B and define s(B) to be the set

s(B) = {i Aubn; An >0, i A.=1,(b,)CB and i Aqb, converges}.
n=1 n=1 n=1

The set_s(B) is called the s-convex hull of B. It is clear that
B Cs(B)C conv(B).

DerFniTIONS 1.3. A subset B of E is said to be dentable
(s-dentable) if and only if for every zero-neighborhood V in E there
exists b € B such that b& conv(B\(b + V)) (b s(B\(b + V))).

A set B is said to be subset dentable (subset s-dentable) if every
subset of B is dentable (s-dentable).
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If A is a bounded subset of E, a slice of A is a subset of A defined
by

S(f,irA)={x €EA;f(x)=supsf—r}

where f is in E*, f#0 and r >0.

DEerINITION 1.4, A point x_in A is said to be denting if for every
zero-neighborhood V in E x & conv(A\(x + V).

DEernITION 1.5. A point x in A is said to be exposed if there exists
f € E* such that f(x)=supaf and f(z)<f(x) for all z € A,z # x.

DEerNITION 1.6. A point x in A is said to be strongly exposed if
there exists f € E * such that for every zero-neighborhood V there exists
r >0 such that x €S(f,r,A)=S and S-S CV.

Before proving the main theorem, we are going to give some
examples of locally convex spaces in which every bounded subset is
metrizable.

Obviously every Fréchet space and every locally convex space with
the strict Mackey convergence property [10] belong to this class. The
space I' with its w *-topology belongs to this class but does not have the
strict Mackey convergence property.

It can be shown that this class is sequentially closed under strict
inductive limits: in particular every LF-space belongs to this class.

The results of this paper were announced in [16].

2. The space (E,, N): properties and consequences.
Let C be a closed bounded convex subset of (E,7), let M=
conv(CU — C) and let E,, = U;.,nM. Then we have the following
theorem.

THEOREM 2.1. There exists a norm N on E, such that the topology
induced by (Em, N) on M coincides with the topology induced by (E, 1)
on M.

Proof. There exists a sequence V, of closed absolutely convex
zero-neighborhoods in (E, 7) such that

1) Vit V. CV, for every n= 1.

2) {V,.N(M—M)},-, forms a fundamental system of zero-
neighborhoods in (M — M, 7).

Let 1, be the topology on E that has {V,},, as a fundamental system
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of zero-neighborhoods. The topology 7, is not in general Hausdorff but
the restriction of 7, on E,, is Hausdorff and 7; induces on M the same
topology as 7. To see this, let x €M and let V be a 7-zero-
neighborhood in E; it is enough to show that (x + V)N N contains
(x + V,)N M for some n.

To this end, note that there exists n such that

V,N(M-M)CVNM-M).

Let y € (x + V,)N M, then one has y —x € V, N (M — M), accord-
ingly y—x€VN(M-M); hence y E(x + V)N M.

Thus (x + V,)N M C(x + V)N M. This proves that the restriction
of 7 to M is coarser than the restriction of 7, to M. On the other hand, it
is clear that 7 restricted to M is finer than 7, restricted to M. Thus 7 and
7, agree on M.

We now turn to the construction of the norm N. Since M is
bounded, for every n there exists a, = 1 such that M Ca,V,. Let p, be
the gauge functional of V,. For every x € E,, define

©

NG)= 3 5 (3),

n=1

It is clear that N(x) < + « for every x € E,,. If N(x) =0 then p,(x)=0
for every n, this implies that x = 0 because 7, is Hausdorff on E,. It
follows that N is a norm on E,, let 7, be the topology defined by N
on E,.

To complete the proof it is enough to show that 7, restricted to M is
the same as 7, restricted to M. Evidently 7, restricted to M is coarser
than 7, restricted to M. Conversely let x € M, let

By(x,e)={y EM;N(x —y)=¢€}
and let
Bi(x,e)={y EM;p.(x —y)=€}.

It is enough to prove that:

B(ed)cni(x ).

To this end, let y € B,(x,1/2*). Note that p,(x —y)=p,(x —y)=
-+=p(x —y)=1/2* From this we obtain
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N(x-y)= n};ﬁpn(x —y)+ E:‘, 2npn(x ~Y)

a,

n=1 n=k+1 Qn
11 151
_2k "=12n+2k §2n
1 3
27[14-2]“?;.

One can also easily check that the uniform structure induced by N
on M coincides with the uniform structure induced by 7 on M and
consequently M is complete in (Ey, N) because it is complete in
(E, 7). Let (Ey, N) be the completion of (E,, N).

As a corollary of Theorem 2.1 we have:

CoroLLARY 2.2. Let C and M be as in Theorem 2.1. Then:

(i) The set C is dentable (s-dentable) in (E,7) if and only if C is
dentable (s-dentable) in (Ey, N).

(i) A point x € C is denting in (E, 1) if and only if x is denting in
(Ews N).

Before establishing the relations between dentability, s-dentability
and the Radon-Nikodym property we need the following theorem.

THEOREM 2.3. Let (T,3, P) be a probability space and let C and M
be as above. Then: .

A function f: T— C is P-integrable in (Ey, N) if and only if f is
P-integrable in (E, ).

In this case f fdP in (Ey, N) is the same as ] fdP in (E, ) for every
X X
Xin 2.
Proof. Suppose that f is P-integrable in (Ew, N), then there exists a

sequence f,: T — C of simple functions such that
(i) lim,N(f.(t)—f(t))=0 P.a.e. and

(i) lim, f N, ()~ f(£))dP = 0.
T
By Theorem 2.1 f,(t)— f(¢t) P.a.e. in (E, 7). Thus to complete the proof
we must show that lim,,f q(f.(t)—f(t))dP =0 for every continuous
T

seminorm q on (E,7). For note that although the injection
(Ey, N)— (E, 7) is not necessarily continuous, its restriction to M is
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continuous by Theorem 2.1. Consider the sequence h,(t)=
q(f.(¢)— f(t)). This sequence is a real valued sequence of uniformly
bounded integrable functions which tends to zero P.a.e. By an appeal to

the bounded convergence theorem, we have lim,,f q(f.(t)—f(t))dP = 0.
T

Conversely, suppose that f: T—C is P-integrable in
(E, 7). Consider the sequence p, which defines the topology 7, on Ey
(see Theorem 2.1) with the help of ([9], p. 241), choose forevery n =1 a
sequence (@} )i=1 of simple functions from 7 to C such that

limp,(¢i(t)— f(1))=0 Pa.e.

By the bounded convergence theorem, we have

tim | p.($1(0)= f(1))dP =0

for every n = 1.
By ([9], p- 254), one can find a sequence f,: T— C of simple

functions such that lim, f p.(f ()= f(¢))dP =0 for every n=1. Now
T

use the diagonal process to choose a sequence g,: T— C of simple
functions that converges to f P.a.e. for the topology 7,. This proves that
g. converges to f P.a.e. in (Ey, N), and thus proves that f is P-measurable
in (Ey, N). Since f is bounded in (E,, N) this proves that f is P-
integrable in (Ey, N).

COROLLARY 2.4. Let C and M be as above. Then C has the RNP
in (E, ) if and only if C has the RNP in (E,N).

Now Corollary 2.2 and Corollary 2.4 together with results of Rieffel
[14], Maynard [12], Davis—Phelps [4] and Huff [11] (see [5] and [6]) for
Banach spaces prove the following result:

THEOREM 2.5. Let C be a closed bounded convex subset of E, then
the following assertions are equivalent:

(i) The set C has the RNP.

(ii) The set C is subset dentable.

(iii) The set C is subset s-dentable.

We now pass to the discussion of the existence of denting points in a
closed bounded convex subset of E.
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Phelps [13] showed that if F is a Banach space such that every subset
of F is dentable then every closed bounded convex subset of F is the
closed convex hull of its strongly exposed points. Phelps’s argument is
global in nature and does not seem to give local information about subset
dentable closed bounded convex sets in arbitrary Banach spaces. J.
Johnson and J. Bourgain have independently shown that the following
theorem is a consequence of a recent paper of Bourgain [1].

THEOREM 2.6. Let F be a Banach space and C be a closed convex
bounded subset of E having the RNP then C is the closed convex hull of its
strongly exposed points.

Now using this theorem together with Corollary 2.2 and Corollary
2.4 we can prove the following theorem.

THEOREM 2.7. Let C be a closed bounded convex subset of
(E,7). Then the following assertions are equivalent:

(i) The set C has the RNP.

(i) Every closed convex subset of C is the closed convex hull of its
denting points.

Proof. (i) = (ii) Let M =conv(CU - C) and consider
M C(Ey, N). Let C, be a closed convex subset of C. Then C, has the
RNP in (E, 7) and therefore C, has the RNP in (E,, N). By Theorem
2.6, C, is the closed convex hull of its strongly exposed points in (E,, N)
and in particular of its denting points in (Ey, N). An appeal to Theorem
2.1 and Corollary 2.2 finishes the proof.

The other implication is immediate from the definitions and
Theorem 2.5.

It is natural to ask whether one can replace denting points by
strongly exposed points in Theorem 2.7.

The answer is no. Consider

C=[-11~

The set C is a convex compact set in the Fréchet space F, but from the
fact that F* consists of the finitely nonzero sequences, it is easily seen
that C does not even have any exposed points.

3. The Radon-Nikodym theorem, Dunford-Pettis—
Phillips theorem, Liaponouv-UhPl’s theorem and Edgar’s
theorem. Now we will use the well known results in Banach spaces
and what we did before to deduce the following Radon-Nikodym
theorem. Before doing this let us recall one definition.
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DeriniTION 3.1.  Let (T, 3, P) be a probability space and m: 2 — E
be a vector measure. The measure m is said to have a locally relatively
compact (relatively weakly compact, ...) P-average range if and only if
for every € >0 there exists T. CT such that P(T\T.)= e and the set

{%gg; Xes, X CT,,P(X)>0}

is relatively compact (relatively weakly compact,...).

THEOREM 3.2. Let (T,%,P) be a probability space and
m: 2 — (E, ) be a vector measure with bounded P-average range then the
following assertions are equivalent :

(i) The measure m has a locally relatively compact P-average range.

(ii)) The measure m has a locally relatively weakly compact P-

average range.
(iii) The measure m has a locally dentable P-average range.
(iv) The measure m has a locally s-dentable P-average range.

(v) There exists f: T— E P-integrable such that m(X) = ] fdP for
X
every X € 3.

Proof. We reduce the proof to the case of Banach spaces by
considering

M = conv(Am(Z)U — Am(3))

and everything can be studied inside M considered as a subset of the
Banach space (Ey, N). With this in mind apply Theorem 2.1, Corollary
2.2, Theorem 2.3 and the results in Banach spaces [6] to complete the

proof.

Before proving a theorem of Dunford-Pettis—Phillips type we need
the following proposition which can be proved using Smulian’s theorem,
([7] p. 433) and Theorem 2.1.

ProrosiTION 3.3.  Let C and M be as in the Theorem 2.1. Then C
is weakly compact in (E, 7) if and only if C is weakly compact in (E,, N).

The following result shows that the Dunford-Pettis—Phillips theorem
is valid in the class of spaces E under consideration in this paper.

ProrosiTION 3.4. For  every  weakly  compact  operator
W: L'[0,1]— (E, 7) there exists g:[0,11— (E,t) A-integrable (A the
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1
Lebesgue measure of [0, 1]) such that W(f) = f fgdA for every fin L'[0, 1],
(]

and in particular W sends weakly relatively compact sets into relatively
T-compact sets.

Proof. Let M be the r-closure of the image of the unit ball of

L'[0,1] by W, now M is weakly compact in (E,r) and therefore it is

weakly compact in (E,,N) by Propositon 3.4. By the

Dunford-Pettis-Phillips theorem there exists g: [0,1]— M A-Bochner
1

integrable in (Ey, N) such that W(f) = I fgdA forevery fin L'[0,1]. It
0
is easy to see that the function t— f(t)g(¢) is A-integrable from
1
[0,1]— (E, ) and W(f) = f fed\ in (E, 7).
0

The following theorem was proven by Uhl [18] in the case of Banach
space. It is a Liapounov type theorem.

THEOREM 3.5. Let E have the RNP and let m:3— E be a non
atomic vector measure with bounded P-average range, then the closure of
the range of m is convex and compact.

Proof. Let M = conv(Am(E)U Am(2)). As usual we consider
M as a subset of (Ey, N). Note that m: S— M is a vector measure
when M is considered as a subset of (Es, N). Since M has the RNP in
(E, 7), then it has the RNP in (E,, N) by the Corollary 2.4. Therefore

there exists f: T — M P-integrable such that m(X) = f fdP for every X

in 3. As in Uhl [18] we obtain that the closure of m () is convex and
compact in (Ex; N). But this closure is a subset of M. Thus it is also
compact in (E, 7) by Theorem 2.1.

In [8] Edgar established a representation theorem of Choquet type
[3] for a bounded convex separable subset C of a Banach space when C
has the RNP. We are going to show that Edgar’s theorem is also valid in
the locally convex spaces under consideration.

We refer the reader to [8], for the notations and terminology used in
the sequel.

THEOREM 3.6. Let C be a bounded closed convex separable subset of
(E, 7) having the RNP. Then for every a € C there exists a probability
measure p on the universally measurable subsets of C such that

w(Ext(C))=1 and f xdu =a in (E,7) (Ext(C) is the set of extreme
C
points of C).
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Proof. Let M = conv(C U — C) and consider C in (E,, N). Since
C has the RNP in (E, 7), the set C has the RNP in (E,, N). Now by
Edgar’s theorem there exists a probability measure u defined on the
universally measurable subsets of C such that u(Ext(C))=1 and

j xdp = a in (Ey, N). Therefore by Theorem 2.3f xdu = a in (E, 7).
c C

The unigueness theorem (see [17] and [2]) can also be deduced using
the space (E,, N) to obtain:

THEOREM 3.7. Under the same hypothesis as the above theorem : the
following assertions are equivalent:

(i) The set C is a simplex.

(ii)) For every a € C there exists a unique probability measure w. on the

universally measurable subsets of C, such that f xdu =a and
c

w(Ext(C))=1.
We finish by asking the following:

Problem. Let F be a locally convex Hausdorff space and let C be a
bounded closed convex metrizable subset of F, is M = conv(C U — C)
metrizable?

If the answer is yes, then Theorem 2.1 and consequently Theorem
2.5, Theorem 2.7 , Theorem 3.6 and Theorem 3.7 will be true if we
suppose only that C is a metrizable subset of an arbitrary quasi-complete
locally convex Hausdorff space.

The author is happy to acknowledge helpful discussions with
Professor J. J. Uhl
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