TAUTNESS FOR ALEXANDER-SPANIER COHOMOLOGY

Edwin Spanier
TAUTNESS FOR ALEXANDER–SPANIER COHOMOLOGY

E. H. SPANIER

The purpose of this note is to give a straightforward unified proof of the tautness of Alexander–Spanier cohomology in the cases where it is known to be valid and to give a necessary condition that every closed (arbitrary) subspace be taut with respect to zero dimensional cohomology.

Let F denote a contravariant functor from the category of topological spaces to the category of abelian groups. A subspace A of a topological space X is said to be taut with respect to F if the canonical map $\lim \{ F(U) \} \rightarrow F(A)$ is an isomorphism (the direct limit is taken over the family of all neighborhoods of A in X, the family being directed downward by inclusion). The subspace A is taut in X if it is taut with respect to the Alexander–Spanier cohomology theory \tilde{H} for every dimension and every coefficient group (for notation and terminology dealing with \tilde{H} see [6]).

This concept of tautness has proved to be important. In [6] and [7] it is shown that a closed subspace of a paracompact Hausdorff space is taut, and this is used to deduce a strong excision property for \tilde{H}. This tautness property is also used in [6] to derive the continuity property for \tilde{H}. In [4] it is shown that an arbitrary subspace of a metric space is taut with respect to Čech cohomology, and this is used to obtain a general duality in spheres. Since the Čech cohomology is isomorphic to \tilde{H} [3], every subspace of a metric space is taut. In [2] it is shown that every neighborhood retract of X is taut in X, and this is used to prove a generalized homotopy property for compact spaces. In [1] tautness is considered for sheaf cohomology and used in proving the Vietoris–Begle mapping theorem.

We shall prove a simple lemma which gives a sufficient condition for tautness. This sufficient condition is enough to establish tautness in all the various cases where it is known.

Let \mathcal{U} be a collection of subsets of X and A a subset of X. The star of A with respect to \mathcal{U}, denoted by $\text{st}(A, \mathcal{U})$, is defined to be the union of those elements of \mathcal{U} whose intersection with A is nonempty. An open covering of A in X is a collection \mathcal{U} of open sets of X such that $A \subseteq \text{st}(A, \mathcal{U})$.

The following seems to be the main fact underlying tautness (see [2] and [6]).
LEMMA. Let A be a subspace of X and suppose that for every open covering \mathcal{U} of A in X there are an open covering \mathcal{V} of A in X and a function (not necessarily continuous) $f: \text{st}(A, \mathcal{V}) \rightarrow A$ such that:

1. $f(a) = a$ for all $a \in A$.
2. For each $V \in \mathcal{V}$ with $V \cap A \neq \emptyset$ there is $U \in \mathcal{U}$ such that $V \cup f(V) \subset U$.

Then A is taut in X.

Proof. (Recall the notation is as in [6].) An arbitrary q-dimensional cohomology class of A is represented by a q-cochain $\varphi \in C^q(A)$ such that $\delta \varphi = 0$ on $\mathcal{U}^{q+2} \cap A^{q+2}$ where \mathcal{U} is an open covering of A in X. Choose \mathcal{V} and f with respect to this \mathcal{U} to satisfy (1) and (2). Then $f^* \varphi \in C^q(\text{st}(A, \mathcal{V}))$ is a q-cochain such that $\delta f^* \varphi = f^* \delta \varphi$, and, by (2), the latter vanishes on $\{V \in \mathcal{V} \mid V \cap A \neq \emptyset\}^{q+2}$. Thus, $f^* \varphi$ represents an element of $\tilde{H}^q(\text{st}(A, \mathcal{V}))$, and, by (1), its restriction to A is the element of $\tilde{H}^q(A)$ represented by φ. Therefore, the canonical map $\lim \{\tilde{H}^q(U)\} \rightarrow \tilde{H}^q(A)$ is an epimorphism.

Let U be a neighborhood of A. An element of $\tilde{H}^q(U)$ whose restriction to A is 0 is represented by a q-cochain $\varphi \in C^q(U)$ such that $\delta \varphi = 0$ on $\mathcal{U}^{q+2} \cap A^{q+2}$ where \mathcal{U} is an open covering of U and such that there is a $(q-1)$-cochain $\varphi' \in C^{q-1}(A)$ with $\varphi | A = \delta \varphi'$ on $\mathcal{U}^{q+1} \cap A^{q+1}$ where \mathcal{U} is an open covering of A in X. Let $\mathcal{U} = \{U_1 \cap U_2 \mid U_1, U_2 \in \mathcal{U}_1\}$ and $U_2 \in \mathcal{U}_2$. Then \mathcal{U} is an open covering of A in X such that $\delta \varphi = 0$ on \mathcal{U}^{q+2} and $\varphi | A = \delta \varphi'$ on $\mathcal{U}^{q+1} \cap A^{q+1}$. Let \mathcal{V} and f satisfy (1) and (2) with respect to this \mathcal{U}. It follows from (1) and (2) using the Fundamental Lemma 9.1 of [5] that $\varphi | \text{st}(A, \mathcal{V})$ and $f^*(\varphi | A)$ represent the same element of $\tilde{H}^q(\text{st}(A, \mathcal{V}))$. Since $f^*(\varphi | A) = f^* \delta \varphi' = \delta f^* \varphi'$ on $\{V \in \mathcal{V} \mid V \cap A \neq \emptyset\}^{q+1}$, we see that $f^*(\varphi | A)$ represents 0 in $\tilde{H}^q(\text{st}(A, \mathcal{V}))$. Therefore, $\varphi | \text{st}(A, \mathcal{V})$ represents 0 in $\tilde{H}^q(\text{st}(A, \mathcal{V}))$, and the canonical map $\lim \{\tilde{H}^q(U)\} \rightarrow \tilde{H}^q(A)$ is a monomorphism.

THEOREM 1. In each of the following cases A is taut in X.

1. A is compact and X is Hausdorff.
2. A is closed and X is paracompact Hausdorff.
3. A is arbitrary and every open subset of X is paracompact Hausdorff.
4. A is a neighborhood retract of X.

Proof. In each of the first three cases it is easy to verify that if \mathcal{U} is any open covering of A in X there is an open covering \mathcal{V} of A in X such that the collection $\{\text{st}(V, \mathcal{V}) \mid V \in \mathcal{V} \text{ and } V \cap A \neq \emptyset\}$ is a refinement of \mathcal{U}. If $f: \text{st}(A, \mathcal{V}) \rightarrow A$ is defined so that $f(a) = a$ for $a \in A$ and so that for every $x \in \text{st}(A, \mathcal{V})$ there is $V' \in \mathcal{V}$ with x and $f(x)$ both in V', then \mathcal{V}
and f satisfy (1) and (2) of the Lemma with respect to \mathcal{U} (see Lemma 1 on p. 316 of [6]). Therefore, A is taut in X.

In the fourth case let $r: N \to A$ be a retraction of an open neighborhood N of A to A. If \mathcal{U} is an open covering of A in X let $\mathcal{V} = \{ U \cap r^{-1}(U \cap A) | U \in \mathcal{U} \}$. Then \mathcal{V} is an open covering of A in X. Define $f: st(A, \mathcal{V}) \to A$ by $f = r | st(A, \mathcal{V})$. Then \mathcal{V} and f satisfy (1) and (2) of the Lemma with respect to \mathcal{U} and so A is taut in X.

The following result is a necessary condition for tautness of every closed (arbitrary) subspace with respect to \overline{H}^0. It can be used to provide examples where tautness fails to hold.

Theorem 2. If X is a space such that every closed (arbitrary) subspace is taut with respect to \overline{H}^0, then X is normal (completely normal).

Proof. We present the proof in the completely normal case, the normal case being analogous. To show X is completely normal it suffices to show that if E and F are subsets of X such that $\overline{E} \cap \overline{F} = \emptyset = E \cap F$ then E and F can be separated by open sets in X. Given such E and F let $A = E \cup F$. Then A is a subspace of X and E and F are both open and closed in A. Let φ be the 0-cocycle on A which is 0 on E and 1 on F. Assuming A is taut in X, there is an open neighborhood W of A in X and a 0-cocycle ψ on W such that $\psi | A = \varphi$. Since a 0-cocycle is a locally constant function, $U = \{ x \in W | \psi(x) = 0 \}$ and $V = \{ x \in W | \psi(x) = 1 \}$ are disjoint open sets in W, hence in X, which separate E and F.

References

Received May 6, 1977.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720
Susan Jane Zimmerman Andima and W. J. Thron, *Order-induced topological properties* .. 297
Gregory Wade Bell, *Cohomology of degree 1 and 2 of the Suzuki groups* .. 319
Richard Body and Roy Rene Douglas, *Rational homotopy and unique factorization* .. 331
Frank Lewis Capobianco, *Fixed sets of involutions* .. 339
L. Carlitz, *Some theorems on generalized Dedekind-Rademacher sums* .. 347
Mary Rodriguez Embry and Alan Leslie Lambert, *The structure of a special class of weighted translation semigroups* .. 359
Steve Ferry, *Strongly regular mappings with compact ANR fibers are Hurewicz fiberings* .. 373
Ivan Filippenko and Marvin David Marcus, *On the unitary invariance of the numerical radius* .. 383
H. Groemer, *On the extension of additive functionals on classes of convex sets* .. 397
Rita Hall, *On the cohomology of Kuga’s fiber variety* .. 411
H. B. Hamilton, *Congruences on N-semigroups* .. 423
Manfred Herrmann and Rolf Schmidt, *Regular sequences and lifting property* .. 449
James Edgar Keesling, *Decompositions of the Stone-Čech compactification which are shape equivalences* .. 455
Michael Jay Klass and Lawrence Edward Myers, *On stopping rules and the expected supremum of S_n/T_n* .. 467
Ronald Charles Linton, *λ-large subgroups of C_λ-groups* .. 477
William Owen Murray, IV and L. Bruce Treybig, *Triangulations with the free cell property* .. 487
Louis Jackson Ratliff, Jr., *Polynomial rings and H_i-local rings* .. 497
Michael Rich, *On alternate rings and their attached Jordan rings* .. 511
Gary Sampson and H. Tuy, *Fourier transforms and their Lipschitz classes* .. 519
Helga Schirmer, *Effluent and noneffluent fixed points on dendrites* .. 539
Daniel Byron Shapiro, *Intersections of the space of skew-symmetric maps with its translates* .. 553
Edwin Spanier, *Tautness for Alexander-Spanier cohomology* .. 561
Alan Stein and Ivan Ernest Stux, *A mean value theorem for binary digits* .. 565
Franklin D. Tall, *Normal subspaces of the density topology* .. 579
William Yslas Vélez, *Prime ideal decomposition in F(µ^{1/p})* .. 589
James Chin-Sze Wong, *Convolution and separate continuity* .. 601