Vol. 76, No. 1, 1978

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Positive operators and the ergodic theorem

Ryōtarō Satō

Vol. 76 (1978), No. 1, 215–219
Abstract

Let T be a positive linear operator on L1(X,) satisfying supn(1∕n) i=0n1Ti1 < , where (X,) is a finite measure space. It will be proved that the two following conditions are equivalent: (I) For every f in L(X,) the Cesàro averages of Tnf converge almost everywhere on X. (II) For every f in L1(X,) the Cesàro averages of Tnf converge in the norm topology of L1(X,). As an application of the result, a simple proof of a recent individual ergodic theorem of the author is given.

Mathematical Subject Classification
Primary: 28A65, 28A65
Milestones
Received: 20 July 1977
Published: 1 May 1978
Authors
Ryōtarō Satō