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EXISTENCE OF A STRONG LIFTING COMMUTING
WITH A COMPACT GROUP OF
TRANSFORMATIONS

RUSSELL A. JOHNSON

Let G be a locally compact group with left Haar
measure y. The well-known ‘‘Theorem LCG’’ ([10]) states
that there is a strong lifting of M™(G,7) commuting with
left translations. We will prove partial generalizations of
this theorem in case G is compact. Thus, let (G, X) be
a free (left) transformation group with G, X compact such
that (I) G is abelian, or (I) G is Lie, or (JII) X is a
product G X Y. Let v, be a Radon measure on Y = X/G,
and let 2 be the Haar lift of v, We will show that, if
0, is a strong lifting of M™(Y,v,), then there is a strong
lifting M“(X, #) which extends p, and commutes with the
action of G.

The proof is modeled on the proof of LCG in ([10]), and follows
it closely in several places. The main difference is in the present
use of the fact that, if (H, X) is a free transformation group with
H Lie, then (H, X) admits local sections.

DEFINITIONS 1.1. Let X be a compact Hausdorff space. Let
M, (X) denote the set of positive Radon measures on X of norm 1
with the vague topology. For measure theory, we rely on [2], [3],
[4]. If ne M (X), let M=(X, ) be the set of all bounded 7-measur-
able complex functions on X. If fe M~(X, %), let N.(f) denote its
essential supremum. Let L~(X, %) be the usual set of equivalence
classes modulo null functions.

Define L*(X, 0) in the usual way; let N, be its norm (1 < p < <o),
Since X is compact, we can and will assume that

LX,pcLl(X,n) A=r=p= ).

DEFINITIONS 1.2. Let W be a topological space, f: X —W a map.
Say f is n-Lusin-measurable if there is a countable collection of
pairwise disjoint compact sets K, such that X\U, K; has »-measure
zero and fl., is continuous (¢ = 1).

DEFINITIONS, NOTATION 1.3. Let G be a compact Hausdorff
topological group. The pair (G, X) is a free (left) transformation
group (t.g.) if there is a jointly continuous map G x X — X: (g, x) —
g-x such that, if g-x = x for any ge G and z ¢ X, then g = idy, the
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70 RUSSELL A. JOHNSON

identity in G. If e M (X) and fe M=(X, n), let (f-g)z) = fg-x);
also define (g-7)(f) = p(f-g) if feC(X). Throughout the paper, we
will let (i) v be normalized Haar measure on G; (i) Y = X/G (the
quotient under identification of G-orbits) with canonical projection
T, (iil) v, be a fixed element of M. (Y) whose support is all of Y;

(iv) s be the G-Haar life of v, (thus W) = SY (SG f'(g-ac)d7(g)>dvo(y)
for f eC(X)).

DeriNITION 1.4. Let e M (X). A map p of M~(X, ) to itself
is a linear lifting of M=(X,7) if (i) o(f) = [ »n-a.e; (ii) fi =1, »-
a.e. = o(f) = o(f,) everywhere; (iii) p(1) =1; (iv) f = 0= p(f) = 0;
(v) plafi + bfy) = ap(f)) + bo(f,) if a, b are constants. If, in addition,
o(f-g9) = p(f)-p(g), then p is a lifting of M>(X,n). If (i)-(iv) hold
(if (i)-(v) hold), and in addition o(f) = f all feC(X), then p is a
strong linear lifting (strong lifting). See ([11], p. 34).

Terminology 1.5. Let H be a closed subgroup of G, 7: X—
X/H = Z the canonical projection, 77 = #(%). We can and will assume
that M=(Z, 7)) is embedded in M=(X, ) via f— fow. Let p be a
linear lifting of M=(X, 7). A linear lifting p of M>(X, 1) extends p
if, for all f e M=(Z, ), o(f) = p(f). Say p is H-invariant if (f-h)=
o(f)-h for all he H, feM=(X, 7).

DeriNITIONS, RESULTS 1.6. Let f: X— F where E is a Banach
space. Say feM=(X, E,n) if (i) AX)cC K is weakly compact, (ii)
x — {flx), &) € M=(X, 1) for each continuous linear functional ¢ on E.
If feM=(X, E,7n) and p is a linear lifting of M=(X, n), one can
(abusing notation) define a map o(f): X — E which satisfies

O(f =), &) = o<AT), €)(x)

for each z¢ X and ¢ ¢ E’' = topological dual of £ (on the right-hand
side, we apply o to the map Z— {f(Z), ¢'>, then valuate at z). If
E is separable, then (iii) o(f) =f %n-a.e. For arbitrary E, (iv)
fi=/f. n-a.e. implies po(f) = o(f;) everywhere; (v) [[f(w)l| =M <
cop-a.e. implies [|[o(f) @) £ M for «ll x. For a more general dis-
cussion and proofs, see ([11], Chapter 6, §§4 and 5).

DEFINITIONS, RESULTS 1.7. A D’-sequence in G ([7]) is a sequence
(W,)z., of v-measurable subsets of G such that (i) W, D W,., (n = 1);
(i) 0 < Y(W,-W,") < C-v(W,) for some C >0 and all »; (iii) every
neighborhood of idy contains some W,. Every Lie group has a D'
sequence consisting of compact neighborhoods of idy (for a stronger
statement, see [7], Theorem 2.9). If (W,) is a D’-sequence in G,
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then the Main Derivation Theorem ([7], Theorem 2.5) states that, if
feLXG, "), then

. . 1 . e . .
(version 1) ngm gaf(g)«#a-w,,(y)dV(g) = flg) for 7v-a.a. g;

. . 1 _ - 3 =
(version 2) }ggm SGf(g)W”.g(g)dY(g) = f(g) for 7-a.a.g;

here + denotes characteristic function. (Version 1 is Theorem 2.5;
version 2 follows because 7 is a right Haar measure as well as a
left Haar measure.) If feC(G), then it is easily seen that the
equalities hold for all g in both versions.

2. A reduction.

NotATiON 2.1. Let X, G, t, v, etc. be as in 1.3; p, will hence-
forth denote a fixed strong lifting of M=(Y,y,). Recall Support
(v,) = Y; hence Support () = X.

THEOREM 2.2. Suppose (G, X) is a free left transformation
group such that: (I) G is abelian, or (II) G 1s Lie, or (III) X s a
product G X Y. Then there is a strong lifting of M=(X, ¢) which
extends p, and commutes with G.

The goal in §2 is to show that 2.2 is a consequence of 2.7 below;
2.7 is then proved in §3. We begin with the following result; it is
proved in ([10], p. 85, Remark 2).

LEMMA 2.3. Let P be closed mormal subgroup of G, P + {idy}.
There exists a closed subgroup K S P which is normal in G such
that: (i) P/K = H is a Lie group; (ii) (G/K)/H = G/P (here H 1is
assumed embedded in G/K).

Discussion 2.4. Let P be as above; consider the free t.g. (G/P,
X/P). Note that H acts on X/K; it is easily seen that (X/K)/H =
X/P. That is, X/K is a free Lie group extension of X/P.

We fix more terminology.
Terminology 2.5. Let H be a closed normal Lie subgroup of G.
Let Z = X/H, n: X— Z the projection, v = n(¢). Then (G/H, Z) is

a free t.g. Let A be normalized Haar measure on H.

Discussion 2.6. For ze Z, let M, e M (X) be given by
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M) = | e

for some (hence any) xzern '(z)(fe€C(X)). The map z—, is a
disintegration of p with respect to m ([4], p. 63); observe that the
map z— A\, is clearly vaguely continuous, hence v-adequate. (See
[3], Def. 1, p. 18; Prop. 2, p. 19.) Thus, if f € L(X, #) (in particular
if f is the characteristic function 4, of a g-measurable set A), then
z— N,(f) is defined v-a.e., is y-measurable, and

| o)) = | n.(Fax)
(this follows from y-adequacy; see [3], Thm. la, p. 26).

THEOREM 2.7. Let H, Z, v, = be as in 2.5, and suppose there
is & strong lifting 6 of M>(Z,v) which commutes with G/H. Then
there is a strong lifting 0 of M=(X, tt) which commutes with G and
extends 0.

Proof of 2.2, using 2.7. For each closed normal subgroup P of
G, let 7, X — X/P be the projection. Let J be the set of all pairs
(P, B), where @B is strong lifting of M*=(X/P, (1)) which commutes
with G/P and extends p,. Note J#* ¢, since (G, p,)€J. Order J as
follows: (P, B) < (P, B,) if and only if P,c P, and B, extends 8.
Then

™ J is inductive for <

The proof of (*) is a straightforward modification of the (lengthy
and sophisticated) proof of Theorem 4(i) in ([10]); therefore we omit
it.

Let (P., B.) be a maximal element of J, and suppose P., = {idy}.
By 2.3 and 2.4, we can find a free Lie group extension X/K of X/P.,
with K & P.. By 2.7, there is a strong lifting 8; of M>(X/K, m,(t))
which commutes with G/K. Hence (K, Bx) is a strict majorant of
(P., B.), contradicting maximality. Thus P, = {idy}, and 2.2 is true
if 2.7 is.

REMARK 2.8. In case II (G is Lie group), we can and will
assume that G = H in 2.5, 2.6, and 2.7. Hencey, =y, A =7, 4d = 0,
and Z = Y. In what follows, when case II is discussed, we will use
the notation H, v, )\, and Z, with the above identities taken for
granted.

3. Proof of 2.7. Notation in §3 will be as in 1.8 and 2.5. In
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addition, ¢ will always be a strong lifting of M=(Z, v) which commutes
with G/H and extends p,.

The idea of the proof is simple. Suppose X is the product H X Z,
and f e M(X, p) (observe zt = )\ X v). “Define” F: Z — L>(H, \): F(z) =
[fle-1sy] (I ] denotes equivalence class). Let F(z) = 6(F)(z) (see 1.6).
Then, if B is a strong lifting of M<=(H, \) commuting with left
translations, let o(f)(h, 2) = B(F(z))(h). The difficulties are obvious:
is F y-Lusin-measurable? If it is, is o(f) measurable? These dif-
ficulties can be overcome. The local product structure of (H, X)
will enable us to define an analogue of §(¥) (8.5); we will then
(basically) apply 8 to this analogue.

The following is an immediate consequence of ([12], Theorem 1,
Sec. 5.4).

THEOREM 3.1. For each x € X, there vs a compact neighborhood
V of « and & compact FFCV and that (1) H-F = V; (ii) z=() N F
18 o single point whenever zc (V).

DEFINITION 3.2. A proper triple (V, &7, 7) at z,€ Z is defined as
follows. Pick xen'(z,), and let V, F beasin3.1. Then H-V =17V.
Let & C Z be an open set such that cls 2 = (V). Let z: V— H x
(V) be “defined by F”; i.e., if n(x) = z and 77 %(2) N F = {x,}, then
©(x) = (h, 2) where h-x, = x.

B Clearly 7 is a homeomorphism, ¢(h-x) = h-t(x) (define h-(h, z) =
(kh, 2)), and 7(tly) = X & (V]an)-

In 3.3-3.7, fix z,€ Z.

3.8. Let feM=(X, ). Recall (1.1) that N, refers to essential
supremum. Let (V, &, 7) be a proper triple at z,. Let

fz = f[ir"l(z)(z GZ) .

For each z € 7(V)=K such that f, e M~(X, \,) and N (f,)=<N.(f), define
b,(z) to be the equivalence class in L?(H, \) of the function

h——fiot(h, )L = p < o).

Let b,(2) = 0 if f, does not satisfy the above conditions or if z¢ K.
By 2.6, b,(z) equals the equivalence class of f, oz for v-a.a.z. We
will regard L>(H, »)C L*(H, N)Cc L"(H,\) (p = r = 1); one then has
b,(z) = b.(z) for all p, r, 2.

LEMMA 3.4. (a) For 1 < p< o, be M=(Z, L*(H, \)) (1.6).
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(b) Let By(2) =00b,)2) A=p<oo) If1Zp=1r<c, then
B,(z) = B,(z2) for all z.
(¢) Let B(z) = By(z) for one (hence all) pell, ). Then

N.(B(2)) = N.(f)
Jor all z.

Proof. (a) Note that f is a pointwise limit ¢-a.e. of a sequence
of bounded continuous functions f,. Using 2.6 and the dominated
convergence theorem, one shows that b, is a pointwise limit v-a.e.
of maps b*: Z — L?(H, ) which are (i) continuous on K = n(V); (ii)
zero outside K. The maps b" are therefore y-Lusin-measurable (1.2);
hence (2], Thm. 2, p. 175) b, is v-Lusin-measurable. Now the norm
N,(b,(2)) (see 1.1) is =N,(f) for all z. This implies that the range
of b, is bounded, hence weakly compact. We have shown that (i)
and (ii) of 1.6 are satisfied, so b, € M=(Z, L*(H, \)).

(b) and (¢) We obtain (b) from 1.6 and the fact that, if »p <7,
then the dual space L?(H, )\) may be identified with a subspace of
L(H,»)Y. To prove (c), observe that N,(B(z)) = N,(B,(2)) £ N.(f)
(use v) of (1.6). But N.(B(z)) = lim,_.. N,(B(z)).

Recall 2z, € Z was fixed through 3.7. Let pr: H X Z— H: (h, z)—h.

DEFINITION 3.5. Let w be an element of the equivalence class

B(z)e L=(H, ). Let v(a) = {u“%*“ SIS en () Let R'(z) be the

equivalence class in L>(X, ), ) of v.

One uses 1.6, 1.4, and the definition just made to prove the
following; we omit details.

LeEmMMA 3.6. (a) R“"(z) = aR’(z,) + bR’(%,) (a,beC).
(b) Ri(z) =0 if f=0.
(e¢) Ri(z)=1.

In what follows, we will occasionally be sloppy, and think of
B(z,), R’(z,) as functions, not equivalence classes. We can write

R (2))(hw) = B(zo)(h) if z(x) = (idy, 20).

PRrOPOSITION 3.7. R/(z,) s independent of the proper triple used
in its definition.

Proof. We first make two observations.
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(01) Let orrc Kem*C Z. Then & Co(Z)N=6(+,) Co(K)C
K ([11], Thm 1, p. 105). Thus if ¢, p,€ M=(Z, v) and ¢, = @, for
v-a.a. z € K, then d(p,) = d(p,) on 2.

(02) Let u;; (L =14, 5 < n) be coordinate functions on H defined
by some irreducible unitary representation of H ([8], Sec. 27.5).
Then wu;(h,<hy) = D7, Uy (B) u,i(h,)(h, € H). From the Peter-Weyl
theorem ([8], 27.40), the span of the set of all coordinate functions
(defined by all irreducible unitary representations of H) is dense in
L*(H, M1 £ p < oo).

Let (V, &, ©), (V, &, %) be proper triples at z,. Define b,, b,, B, B
as in 8.3, 3.4. Let K=n(V), K==n(V). On #VNV), one has
T o ¥7Yh, 2) = (hh;', z), where z— h,: KN K — H is continuous. For
fixed 2, the map h — hh;' induces a bounded linear operator A, on
L*(H, \). !

To prove 3.7, it suffices to show that B(z) = A,(B(z)) for all
ze” N (observe that, for v-a.a. zeK K', one has b(z) =
A, (b,(2))). Thus we must show that, for some p,

(B(2), o) = (A(B()), 0)

for all ¢ in the dual L*(H, \)’. By (02), we may assume ¢ is integra-

tion against some u,; (thus {w, ) = S w(h)u,-j(h)dk(h)>. Extend each
H ~

function 7,,: 2z — u,,(h,) continuously from KN K to Z, calling the

extensions 7,,, also. _

For ze Z, let ¢,(z) = {b,(2), 6>. Define a linear-functional-valued
map 0: Z — L*(H, \) by 6(z) = 33, w;,+9,i(z) (view u,, as a linear func-
tional). Let @,(2) = <b,(2), o(2)» = (use 02) (A,(b,(2)), 0) = p,(2) for
v-a.a. z€ KN K. Now, d(p,)(z) = (B(z), o) (3.4), while é(p,)(z) = (since
0 is a strong lifting)

57,48 (0w )@ = | (B w7, 1dNR)
= (if ze KN K’)SH[B(z)(h)]uij(hhz)dh(h) = (A,(B(2)), o) .
By (01) and (02), B(z) = A,(B(z)) for ze & N &.
From now on, we assume R’(z) defined as in 3.5 for all ze Z.

LemMA 3.8. (a) For v-a.a. z, R/ (z) ts (the equivalence class
of) o = [l m L(X, N).

(b) If f is continuous, the above holds for all z € Z.

(¢) If feM=(X/H,v), then R(z) is (the equivalence class of)
the constant 6(f)(z) in L=(X, N\,).
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Proof. (a) and (b). Fix a proper triple (V, &, t) (the point z,
doesn’t matter), and fix p. As remarked in 3.3, b,(z) = f, o z™* for
v-a.a. 2€ K = n(V). Since L*(H, \) is separable, 1.6 (iv) implies that
B(z) = f,o 77! for v-a.a. z€ K D ¢”. Hence (3.6) R’(z) = f, for v-a.a.
z€ . Since finitely many ~”’s cover Z, (a) is proved. If f is
continuous, then b, is continuous on K. Use the method of ([1]) to
extend b,/ K to a continuous map b,: Z — L?(H, \). Observe now that

* if weM=(Z,v) and be M=(Z, L*(H, \)), then o(w-b)z)=
[6(w)(2)][6(b)(2)] (see [11], p. 76, equation (5)).

Using (*) and (01) in 3.7, we obtain, for z € &%, B(z)= 0(4rx-b,)(z) =
d(apg-b,)(2) = (since & is strong) b,(z) = f, o %, and (b) follows.

(e¢) Pick z, and let (V, &, 7) be a proper triple at z,. For v-a.a.
2e K =mn(V), one has b,(z) = the constant f(z) in L?(H,\). Let
b(z) = Le L*(H, \) for all ze Z; then b,(z) = f(z)-b(z) v-a.e. on K.
Using (*) just above and (01) in 3.7, one obtains

B(z) = [6(f)(@)]-b(z)z e ),

which implies that R/(z,) = 6(f)(2,) € L*(X, \,).

The next result will allow us to show that our still-to-be con-
structed lifting p is G-invariant. To motivate it, observe that
(f'g)]n"l(z)(hxo) = f]:r"l(gz)(ghxo) = f]:r"l(az)(ghg_l'gxo) if fGM“’(X, ﬁ),
here and below we write g-z for (gH)-2(ge @, z€ Z).

PRrOPOSITION 3.9. Fix z2,€ Z, g€ @G, and x,€ 7w 2,). Then
R 9(z,)(he,) = R (gz,)(ghg~*-gx) Jfor N-a.a. he H.

Proof. Let (V, &, 7) be a proper triple at z,. Then (¢-V, g-&, 7)
is a triple at g¢-z,, where Z(gx) = (ghg™, gz) if (and only if) z(x) =
(h, z)(xe V). The map h— ghg™ preserves ) ([8], 28.72e), hence
induces a linear map A,: L*(H, A) — L*(H, ). Define b]°, B’ using
the first triple, b, B’ using the second. We claim that 3.9 is implied
by

(*) B(z) = A(B'(g-2))(z € ) .

This is clear: if (*) holds, then (assuming 7(x,) = (idy, z,)) one has
R79(z)(hx,) = B9(z,)(h) = B(gz)(ghg™") = (definitions of R/ and %)
R (gz)(g-hx,) = R (gz)(ghg~*-gx,) for \-a.a. h.

We prove (*). Using the definitions of b, and b)¢ together with
the fact that the map z— g-z preserves v, one sees that b/?(z) =
A, (bl(z)) for v-a.a. z. Let o € L*(H,\)'. Then (B’ ?(z,),0)=20{bS?,0)(z,)=
(8¢ A, (bl(gz)), 0>)(z,) = (6<{bl(gz), A¥o))(z,) = (since & commutes with
G/H) {B(gz,), Ajo) = (A,(B’(gz,)), 0); 3.9 is proved.
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3.10. New let (W,) be a D’ sequence in H consisting of compact
neighborhoods of idy (1.7). For fe M~(X, 1), we define functions
T/ (n=1) on X as follows.

Case I. If G is abelian, z,€ X, z, = n(x), let

1
MW.)

Ti(a) = | B @@ @) = | Rz (AN

MW.)

Case II. Suppose G = H is Lie (see 2.8); let x,€ X, z, = n(w,).
Pick proper triples (V,, &, 7,)\-, such that U!., &, = Z. Pick any 1
such that z,€ ;. sLetting 7,(x,) = (h,, 2,), let

XoV, =1, z) heh,W,}.
Define

1

| Br@)@, @dr. @)

Letting 7,(x,) = (idy, 2,), we also have

1

s —
£ n(0,) YUA

|, BT by (WVNGR) -

Finally, let (@,)\-, be a partition of unity subordinate to (<)\_,, and
Ti(x,) = i, 2@ ().

Case III. If X =G x Y and 2, €X, 2, = ﬂ(xo), write z, = (gm yo)’
let V, = {(9, ¥)g€g,r W,}, and define

1

Ti(w,) = NUA)

|, BN @, @) .

PROPOSITION 3.11. In all three cases, T4 (x,) = Ti(g-x,) (geG,
2, € X).

Proof of Case 1. Let z, = n(x,). One has
|, B @i, (R)AME) = (by 3.9)
SH R/ (gz,)(ghg ™ g%)vrw,(h)dN(h) = (since G is abelian)
|, B2 g ANR) -
Hence T%*(x,) = T4(g- o).

REMARK. The proof just completed would work when G is non-
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abelian if one could replace (W,)7., by a D’-sequence (V,);_, satisfy-
inggV,g=V,n=1 geG). If onedefines V, = ,cc 9 W.,g, then
V, is a compact neighborhood of the identity. However, it is not
clear that the inequalities MV, V. < C\(V,) can be arranged.

Case II. Suppose 7(x,) = z,€ ¢, for some 4,1 < ¢ =1[. Observe
that, since G = H, g-z, = 2. As in 3.10, let z,(x,) = (idy, z,), and
let z,(x,) = (hy, 2,). Then S R (zo)(ha ) yw,(R)AN(R) = (by 3.9, noting
that ghg~'-g = gh) "

|, BA(0-2)(Gha g (ANR) = | RA@) et (97 RANR)
= |, BA@) 0o W) -
Comparing the first and last terms, we obtain Qf;(x,) = Qf.(gx,).
Hence
(3.10) Ty () = Ti(g-2,) -
Case III. A rehash of methods used in Cases I and II.

3.12. We now define functions S (n = 1) as follows.

Case I. If G is abelian, let

1

f —_
S = S

| F@r,, @) (2 = 7o)

for all x such that
**) f.eL>(X,»,) and N.(f) = N.(f).
Let Si(x) = 0 for all other z. By (3.8a), Si(z) = T/(») for p-a.a. .

Case II. If G is a Lie group, let

Por(®) = 555 | S@, @0 @)

(z = n(x); V,is asin 3.10) for all v € &, satisfying (**). Then define
Si(x) = Dt a(2)P; (x) for all such x. Let Si(x) = 0 if 2 does not
satisfy (**). By (3.8a), Si(x) = Ti(x) p-a.e.

Case III. If X =G X Y and z satisfies (**), let

1
MW,)

(V, is as in 8.10). Otherwise let Si(x) = 0.

Si(x) =

|, f@ @)
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ProposiTION 3.13. For each n, S;, and hence T}, is p-measurae-
ble.

Proof. We prove this in Case I; the other cases are handled
similarly. Let f; be a bounded sequence of continuous functions such
that f; — f p-a.e. Let

1
MW.)

1

Si(x) = W)

|, F1@0, @@ = |, £ anm.
Then S; is continuous (use uniform continuity of f; and equicontinuity
(7] of the transformation group (H, X)). Now, for z in a set
Cc Z of yv-measure 1, fjl.—1, —f, M-a.e. (2.6). Consider the set
C, = {# € C|(**) holds for f,}. By dominated convergence, S;(z) «— Si(x)
for all x ez™(C)). But p(z~*(C,) = 1; hence 3.13 is proved.

ProrosiTioN 3.14. In Case 1, II, and IIIL:

(a) lim,.. Ti(x) = flz) pra.e. (f e M™(X, 10));

(b) if f is continuous, then lim, . Ti(x) = f(x) everywhere;
(e¢) +f feM=(X/H,v), then lim,.. Ti(x) = 6(f)(w(x)) for all x.

Proof. (a) Case I. It is sufficient to show that Si(x)— fz)
p-a.e. By version 2 of the Main Derivation Theorem (1.7), one has,

for ge L'(H,\), 1/\ Wﬂ)g 9w, 4(R)AN(R) — g(h) \-a.e. Consider
the set C = {z ¢ Z|(**) of 3.12 is satisfied). Note »(C) = 1. FixzeC
and x,€7n'(z). Then if 2 = hx,, one has
1
MW.)
_ 1
MW.,)

for n-a.a. h; i.e., for An,-a.a. x.

|, A

|, 7, s BANE) —> flhe) = fio)

Now if A = {z € X|lim,_,., Si(x) exists and equals f(x)}, then 4 is
p-measurable. We have just shown that, for v-a.a. z, A intersects
n7Y(2) in a set of \,-measure 1. Hence (2.6) A has p-measure 1. So
Si(x), and therefore T%(z), converges to f(x) p-a.e.

Case II. We use the notation of 8.12. Observe that, if
x en ), n(x) satisfies (**), 7, (x) = (h, 2), and 7,(x,) = (idy, z), then

Pun®) = S ) a0 (OINE)

By version 1 of 1.7, the right-hand side tends to f(hxz,) = flx) for
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A-a.a. h; ie., for n-a.a.2. Let A, ={xen {&)|P;.(x)— flx)}. Argu-
ing as in Case I, we find that p(4,) = w#n (). Let A = {x|Si(z) —
flx)}). Let z satisfy (**). Then A N 77 '(z) has \,-measure 1. For,
let 4, .-+, % (1L <k <1) be those indices ¢ such that ze€ ;. Then
' (2) N A;; 1 = j =k) has \,-measure 1, since P,,(x)— f(z) M\-a.e.
The definition of S{ now implies that M,(A N 77%z)) = 1. Again argue
as in Case I to obtain p(A) = 1.

Case III. The proof contains nothing new, hence we omit it.

(b) Case I, II, III. By 3.8b, R(z) = f, for all z. The Main
Derivation Theorem for continuous functions gives convergence every-
where (as noted in 1.7, this is a simple observation). Combining
these two facts with the definition(s) of 7% yields the result.

(e¢) Case I, II, III. Use 3.8c and the definition(s) of T%.

We are ready prove 2.7.

3.15. Proof of 2.7. Let U be an ultrafilter on N ={1, 2,3, ---}
finer than the Fréchet filter (see [5], and [10], p. 83). Since |T%(x)| <
N.(f) for all  (3.4c and 38.5), we may define TY(x) = lim, TY. Let
o(f)x) = T (z)x e X, fe M>(X, pt)). By choice of U and 3.14a,
o(f) = f p-a.e. Hence (i) of 1.4 is satisfied. By 3.6, (iii), (iv), and
(v) are also satisfied. If f =0 p-a.e., then |[Ti(x)| = 0 for all n, =,
and this together with linearity shows that 1.4 (ii) holds. Combining
these facts with 3.14b, ¢ shows that o is a strong linear lifting
which extends d.

By 3.12, p commutes with G. Now, the group G of self-mappings
of X satisfies the condition of Theorem 1 of ([9]). Hence we may
apply the method of Remark 2 following ([9], Theorem 1) to obtain
a lifting 0 commuting with G. By the proof of (j)= (jj) in ([11],
Theorem 2, p. 105), ¢ is strong. By the proof of ([11], Theorem 2,
p. 39), ¢ extends 6. So p has all the necessary properties.

REMARK 3.16. It should be emphasized that the only point in
the proof which requires special assumptions on G occurs in the
proof of 3.11. If one could assume ¢—*W,g = W, (9 € G), Theorem 2.2
would hold for any compact G.
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