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Let G be a locally compact group with left Haar
measure γ. The well-known "Theorem LCG" ([10]) states
that there is a strong lifting of M°°(G, γ) commuting with
left translations. We will prove partial generalizations of
this theorem in case G is compact. Thus, let (G, X) be
a free (left) transformation group with G, X compact such
that (I) G is abelian, or (II) G is Lie, or (III) X is a
product G X Y. Let vQ be a Radon measure on Y = X/G,
and let μ be the Haar lift of v0 We will show that, if
ρ0 is a strong lifting of M°°(Y, v0), then there is a strong
lifting M°°(X,μ) which extends p0 and commutes with the
action of G.

The proof is modeled on the proof of LCG in ([10]), and follows
it closely in several places. The main difference is in the present
use of the fact that, if (H, X) is a free transformation group with
H Lie, then (H, X) admits local sections.

DEFINITIONS 1.1. Let X be a compact Hausdorίf space. Let
M+(X) denote the set of positive Radon measures on X of norm 1
with the vague topology. For measure theory, we rely on [2], [3],
[4]. If 7] 6 M+(X), let M°°(X, η) be the set of all bounded ^-measur-
able complex functions on X. If feM°°(X,7]), let N^if) denote its
essential supremum. Let L°°(X, η) be the usual set of equivalence
classes modulo null functions.

Define LP(X, rj) in the usual way; let Np be its norm (1 ^ p < oo).
Since X is compact, we can and will assume that

Lp(X,y)czL'(X,η) ( l ^ r ^ p ^ o o ) .

DEFINITIONS 1.2. Let Wbe a topological space, / : X—>W a map.

Say / is ψLusin-measurable if there is a countable collection of

pairwise disjoint compact sets Kt such that -3L\U< ^ ^ a s ^-measure

zero and f\κ. is continuous (i ^ 1).

DEFINITIONS, NOTATION 1.3. Let G be a compact Hausdorff
topological group. The pair (G, X) is a free (left) transformation
group (t.g.) if there is a jointly continuous map G x X—• X: (g, x) —>
g-x such that, if g x = x for any geG and xeX, then g — idy, the
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identity in G. If ηeM+(X) and / e I M ( I , ? ) , let (/ g)(x) = f(g x);
also define {g-y]){f) — J]{f-g) if /eC(X). Throughout the paper, we
will let (i) Ύ be normalized Haar measure on G; (ii) Y = X/G (the
quotient under identification of G-orbits) with canonical projection
τr0; (iii) v0 be a fixed element of M+(Y) whose support is all of Y;

(iv) μ be the G-Haar life of v0 (thus μ(/) = \ (1 f(g - x)d7(g))dvo(y)

) \ JY \JG I

DEFINITION 1.4. Let rjeM+(X). A map p of M°°(X, η) to itself
is a linear lifting of M°°(X, η) if (i) ρ{f) = f ^-a.e.; (ii) f = /2 97-
a.e. => jOC/J = p(f2) everywhere; (iii) ^(1) = 1; (iv) / ^ 0 => ρ{f) ^ 0;
(v) p(af + 6/2) = αpC/j.) + bp(f2) if α, δ are constants. If, in addition,
p(f.g) = p(f)-ρ(g), then p is a Zi/ίiwβr of Af°°(X, 37). If (i)-(iv) hold
(if (i)-(v) hold), and in addition ρ(f) = / all / e C{X), then p is a
strong linear lifting {strong lifting). See ([11], p. 34).

Terminology 1.5. Let H be a closed subgroup of G, TΓ: X—>
X/JΪ = Z the canonical projection, 97 = π (^). We can and will assume
that M°°(Z, rj) is embedded in M°°{X, η) via / — / o π. Let ^ be a
linear lifting of M°°(X, 07). A linear lifting p of M°°(X, ^) extends p
if, for all / 6 M™(Z, η), ρ(f) = p(f). Say p is H-invariant if (f h) =
p(f) h for all heH, /GM°°(X, 77).

DEFINITIONS, RESULTS 1.6. Let f: X-+E where ί is a Banach
space. Say / 6 ikP°(X, E, η) if (i) /(X) czE is weakly compact, (ii)
x —> (f(x), e) e M°°(X, rj) for each continuous linear functional e' on £7.
If / 6 M°°(X, £?, 77) and p is a linear lifting of M°°(X, η), one can
(abusing notation) define a map p(f): X—>E which satisfies

for each x e X and e' e Ef = topological dual of E (on the right-hand
side, we apply p to the map x—+(f(x),e'}, then valuate at x). If
E is separable, then (iii) p{f) = f 57-a.e. For arbitrary E, (iv)
/1 = /2 37-a.e. implies ^(/J = |θ(/2) everywhere; (v) ||/(a?)|| ^ ikί <
co^-a.e. implies ||^(/)(x)|| ^ M for αZZ a?. For a more general dis-
cussion and proofs, see ([11], Chapter 6, §§4 and 5).

DEFINITIONS, RESULTS 1.7. A D'-sequence in G ([7]) is a sequence
(Wn)n=i of T-measurable subsets of G such that (i) Wn ID TFn+1 (w ^ 1);
(ii) 0 < 7(WΛ Wΐ1) < C τ( WJ for some C> 0 and all %; (iii) every
neighborhood of idy contains some Wn. Every Lie group has a Dr

sequence consisting of compact neighborhoods of idy (for a stronger
statement, see [7], Theorem 2.9). If (Wn) is a D'-sequence in G,
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then the Main Derivation Theorem ([7], Theorem 2.5) states that, if
/ e L\G, 7), then

(version 1) lim — 1 — \ ftg)ψ;.wJίg)d7(g) = AQ) for 7-a.a. g

(version 2) lim — ± — \ f(g)ψwnr9(g)dΎ(g) = f(g) for 7-a.a. g

here ψ denotes characteristic function. (Version 1 is Theorem 2.5;
version 2 follows because 7 is a right Haar measure as well as a
left Haar measure.) If feC(G), then it is easily seen that the
equalities hold for all g in both versions.

2* A reduction*

NOTATION 2.1. Let X, G, μ, v0, etc. be as in 1.3; p0 will hence-
forth denote a fixed strong lifting of M°°(Y, v0). Recall Support
(v0) = Y; hence Support (μ) = X

THEOREM 2.2. Suppose (<?, X) is α /reβ Ze/έ transformation
group such that: (I) G is abelianr or (II) <? is Lie, or (III) X is a
product G x Y. Then there is a strong lifting of M^X, μ) which
extends p0 and commutes with G.

The goal in §2 is to show that 2.2 is a consequence of 2.7 below;
2.7 is then proved in §3. We begin with the following result; it is
proved in ([10], p. 85, Remark 2).

LEMMA 2.3. Let P be closed normal subgroup of G, P Φ {idy}.
There exists a closed subgroup K £ p which is normal in G such
that: (i) P/K = H is a Lie group; (ii) (G/K)/H ~ GJP (here H is
assumed embedded in G/K).

Discussion 2.4. Let P be as above; consider the free t.g. (G/P,
X/P). Note that H acts on X/K; it is easily seen that (X/K)/H s
XIP. That is, X/K is a free Lie group extension of X/P.

We fix more terminology.

Terminology 2.5. Let H be a closed normal Lie subgroup of G.
Let Z = X/H, π:X->Z the projection, v = ττ(μ). Then (G/H, Z) is
a free t.g. Let λ be normalized Haar measure on H.

Discussion 2.6. For ze Z, let λ̂  6 M+(X) be given by
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χz(f) = [ f(h x)d\(h)

for some (hence any) x e π~ι(z)(f e C(X)). The map z —> Xz is a
disintegration of μ with respect to π ([4], p. 63); observe that the
map z—>XZ is clearly vaguely continuous, hence v-adequate. (See
[3], Def. 1, p. 18; Prop. 2, p. 19.) Thus, itfeL\X, μ) (in particular
if / is the characteristic function ψA of a /^-measurable set A), then
z-+\(f) is defined v-a.e., is v-measurable, and

(this follows from y-adequacy; see [3], Thm. la, p. 26).

THEOREM 2.7. Let H, Z, v, π be as in 2.5, and suppose there
is a strong lifting δ of M^Z, v) which commutes with G/H. Then
there is a strong lifting p of M°°(X, μ) which commutes with G and
extends d.

Proof of 2.2, using 2.7. For each closed normal subgroup P of
G, let πp: X-+ X/P be the projection. Let J be the set of all pairs
(P, β), where β is strong lifting of M°°(X/P, πp(μ)) which commutes
with G/P and extends p0. Note JΦ 0 , since (G, po)eJ. Order/as
follows: (Plf A) ^ (P2, β2) if and only if P2 c P, and β2 extends β,.
Then

(*) J is inductive for <;

The proof of (*) is a straightforward modification of the (lengthy
and sophisticated) proof of Theorem 4(i) in ([10]); therefore we omit
it.

Let (Poo, fro) be a maximal element of J, and suppose P«> Φ {idy}
By 2.3 and 2.4, we can find a free Lie group extension X/K of X/Po,
with K £ Poo. By 2.7, there is a strong lifting βκ of M°°(X/K, πκ(μ))
which commutes with G/K. Hence (K, βκ) is a strict majorant of
(Poo, βoo), contradicting maximality. Thus P^ = {idy}, and 2.2 is true
if 2.7 is.

REMARK 2.8. In case II (G is Lie group), we can and will
assume that G = H in 2.5, 2.6, and 2.7. Hence v0 ~ v, λ = 7, δ = /90,
and ^ = Γ. In what follows, when case II is discussed, we will use
the notation H, v, λ, and Z> with the above identities taken for
granted.

3. Proof of 2.7. Notation in §3 will be as in 1.3 and 2.5. In
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addition, δ will always be a strong lifting of M°°(Z, v) which commutes
with G/H and extends ρ0.

The idea of the proof is simple. Suppose X is the product H x Z,
and / 6 M(X, μ) (observe μ = λ x v). "Define" F: Z-+L°°(H, λ): F(z) =
[/l«-i(β)] ([ ] denotes equivalence class). Let F(z) = δ(F)(z) (see 1.6).
Then, if β is a strong lifting of M°°(H, λ) commuting with left
translations, let p(f)(h, z) = β(F(z))(h). The difficulties are obvious:
is F v-Lusin-measurable? If it is, is p(f) measurable? These dif-
ficulties can be overcome. The local product structure of (H, X)
will enable us to define an analogue of 8{F) (3.5); we will then
(basically) apply β to this analogue.

The following is an immediate consequence of ([12], Theorem 1,
Sec. 5.4).

THEOREM 3.1. For each x e X, there is a compact neighborhood
V of x and a compact FaV and that (i) H F = V; (ii) π~\z) Π F
is a single point whenever zeπ(V).

DEFINITION 3.2. A proper triple (V, &, τ) at zoeZ is defined as
follows. Pick x 6 π~\zQ), and let V, F be as in 3.1. Then H V = V.
Let & c Z be an open set such that els & = π(V). Let r: V—* H x
π(F) be "defined by F"; i.e., if π(x) = « and ίr^s) n F = {̂ 0}, then
r(a?) = (h, z) where h-x0 — x.

Clearly τ is a homeomorphism, τ(h x) — h-τ(x) (define h (h, z) —
(hh, z)), and τ{μ\v) = X0(v\π(v)).

In 3.3-3.7, fix z0 e Z.

3.3. Let / 6 M°°(X, μ). Recall (1.1) that N^ refers to essential
supremum. Let (V, <&*, τ) be a proper triple at z0. Let

For each ^ 6 π(V) = K such that /z e M°°(X, λz) and N^fJ^N^f), define
δp(s) to be the equivalence class in LP(H, λ) of the function

h >fz o r " 1 ^ , 2)(1 ^ p < oo) .

Let bp(z) = 0 if fz does not satisfy the above conditions or if z $ K.
By 2.6, bp(z) equals the equivalence class of fz © r"1 for v-a.a.̂ ;. We
will regard L°°(H, λ) c LP(JΪ, λ) c Lr(H, %) (p ^ r ^ 1); one then has
δp(s) = δr(«) for all p, r, ^.

LEMMA 3.4. ( a ) For 1 <; p < oo, bp e M°°(Z, LP(H, λ)) (1.6).
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(b) Let Bp(z) = δ(bp)(z) (1 ̂  p < oo), 1/ 1 ̂  p ^ r < «>,
£,(«) = J3r(z) /or αZZ z.

( c ) Let B(z) — Bp(z) for one {hence all) pe[lf oo). Then

for all z.

Proof. ( a ) Note that / is a pointwise limit μ-a.e. of a sequence
of bounded continuous functions fn. Using 2.6 and the dominated
convergence theorem, one shows that bp is a pointwise limit v-a.e.
of maps bn: Z-+LV{H,X) which are (i) continuous on K = π(V); (ii)
zero outside K. The maps 6" are therefore v-Lusin-measurable (1.2);
hence ([2], Thm. 2, p. 175) bp is v-Lusin-measurable. Now the norm
Np(bp(z)) (see 1.1) is 5£ #«,(/) for all z. This implies that the range
of bp is bounded, hence weakly compact. We have shown that (i)
and (ii) of 1.6 are satisfied, so bp e M°°(Z, LP(H, λ)).

(b) and (c ) We obtain (b) from 1.6 and the fact that, if p < r,
then the dual space LP(H, λ)' may be identified with a subspace of
U(H, λ)'. To prove (c), observe that Np{B{z)) - Np(Bp(z)) ^ JSΓ«(/)
(use v) of (1.6). But N^Biz)) = l i m ^ Np(B(z)).

Recall zoe Z was fixed through 3.7. Let pr: Hx Z—>H: (h, z)-+h.

DEFINITION 3.5. Let u be an element of the equivalence class

B(z) e L%Er, X). Let v(x) = f ° £ r ° «3££%£z)) Let 5'(*0) be the
equivalence class in L°°(X, λZo) of v.

One uses 1.6, 1.4, and the definition just made to prove the
following; we omit details.

LEMMA 3.6. ( a ) Raf+hg(z0) = aRf(zQ) + bRg(z0) (α, b e C).

( b ) R'(zo)^O iff^O.
(c) BXzo) = l.

In what follows, we will occasionally be sloppy, and think of
B(z0), Rf(z0) as functions, not equivalence classes. We can write
Rf(z0)(hx) - B(zo)(h) if τ{x) = (idy, z0).

PROPOSITION 3.7. Rf(z0) is independent of the proper triple used
in its definition.

Proof. We first make two observations.



EXISTENCE OF A STRONG LIFTING COMMUTING 75

(01) Let ^open c ^compact c Z # T h e n ^> CZ δ(^)( = δ(f^)) <Z δ(K) Cl

K ([11], Thm 1, p. 105). Thus if φl9 φ2 e M°°(Z, v) and φγ = φ2 for
y-a.a. z e K, then δ(φ1) — δ(φ2) on ^ .

(02) Let ui3' (1 ^ i9 j ^ n) be coordinate functions on if defined
by some irreducible unitary representation of H ([8], Sec. 27.5).
Then UijiJi! h2) = Σ?=i îr(Λi) urj(h2)(hi e H). From the Peter-Weyl
theorem ([8], 27.40), the span of the set of all coordinate functions
(defined by all irreducible unitary representations of H) is dense in

p < oo).

Let (V, £?, r), (F, ^ f) be proper triples at z0. Define δp, 6̂ , B, B
as in 3.3, 3.4. Let K = π(V), ft = π(Ϋ). On f ( F ί l F ) , one has
τ o τ~\h, z) = (Λft̂ 1,2;), where z —+ hz: K Γϊ K ~» H is continuous. For
fixed z, the map fc —> feftr1 induces a bounded linear operator Az on
L'(JEΓ, λ).

To prove 3.7, it suffices to show that B(z) = Az(B(z)) for all
« e ^ Π ̂  (observe that, for v-a.a. 2; 6 K Π JK"', one has bp(z) =
Az(bp(z))). Thus we must show that, for some p,

(B(z), σ) = (Az(B(z)\ σ)

for all σ in the dual LP(H, λ)'. By (02), we may assume σ is integra-

tion against some ni5 (thus (w, σ) — I w(h)uti(h)dT^h)\. Extend each

function ηrs: z —> urs(hz) continuously from KΓ\K to Z, calling the
extensions ηr8, also.

For ze Z, let φ^z) = (bp(z), σ). Define a linear-functional-valued
map σ: Z —-> Lp(iϊ, λ)' by σ(z) — Σ r uir ηrj(z) (view wir as a linear func-
tional). Let φ2(z) = (bp(z), σ(z)) = (use 02) (^.(δ,,^)), σ) = ^(^) for
v-a.a. z e iΓ Π J?. Now, δlφ^z) = <£(«), <τ> (3.4), while δ(^2)(z) = (since
δ is a strong lifting)

ΈVr&XKK uίr))(z) = \ [Bp(z)(h)][Σ*uίr(h)yrj(z)]dMh)

= (if zeKΠ K')[ [B(z)(h)]uti(hh,)dMh) = <ii,(B(»)), ^> .

By (01) and (02), B(z) = Az(B(z)) ΐor z e & Π ^ .

From now on, we assume iϋ ̂ z) defined as in 3.5 for all ze Z.

LEMMA 3.8. (a) For v-a.a. z, Rf{z) is (the equivalence class
of) fz = /1,-κ,, in L°°(X, λ j .

(b) If f is continuous, the above holds for all ze Z.
(c ) If f e M°°(XIH, v)t then Rf(z) is (the equivalence class of)

the constant δ(f)(z) in L°°(X, Xz).
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Proof. (a ) and (b). Fix a proper triple (V, &, τ) (the point z0

doesn't matter), and fix p. As remarked in 3.3, bp(z) = fz o τ~ι for
v-a.a. z e K = π(V). Since Z/(iϊ, λ) is separable, 1.6 (iv) implies that
B(z) = /, o τ"1 for i -a.a. is e if 3 ^ . Hence (3.5) .R'fc) = fz for v-a.a.
z6 g?. Since finitely many έ?'s cover Z, (a) is proved. If / is
continuous, then bp is continuous on K. Use the method of ([1]) to
extend bp\K to a continuous map bp: Z —• LP(H, λ). Observe now that

(*) if weM°°(Z, v) and beM°°(Z, LP(H,X)), then S(w 6)(z) =
[δ(w)(z)][δ(b)(z)] (see [11], p. 76, equation (5)).

Using (*) and (01) in 3.7, we obtain, for z e &, B(z) - δ(ψκ-bp)(z) =
δ{ψK'bP)(z) = (since <5 is strong) 6P(^) = /z © τ""1, and (b) follows.

(c ) Pick z0 and let (F, &, τ) be a proper triple at z0. For v-a.a.
zeK=π(V), one has &„(«) = the constant f{z) in LP(H,X). Let
6(z) = 1 e LP(H, λ) for all ^ e ^ ; then bp(z) = f(z)-b(z) v-a.e. on Z".
Using (*) just above and (01) in 3.7, one obtains

which implies that Rf(z0) = δ(f)(z0) e L°°(X, λβ).
The next result will allow us to show that our still-to-be con-

structed lifting p is G-invariant. To motivate it, observe that
(/ g)!«-!(,) (hx0) = f \π-i{gz) (ghx0) = f U-Hg.άghg-1 gx0) if / 6 M°°(X, μ);
here and below we write g z for (gH) z(g eG, ze Z).

PROPOSITION 3.9. Fix zoeZ, geG, and xoeπ~\zo). Then

Rf ff(z0)(hx0) - R'igZoXghg-' gx) for λ-a.a. heH.

Proof. Let (V, &, τ) be a proper triple at z0. Then (g Vtg tf*, τ)
is a triple at g-zQ, where τ(gx) = (ghg~\ gz) if (and only if) τ(x) =
(A, »)(α? e V). The map A -> ghg'1 preserves λ ([8], 28.72e), hence
induces a linear map Ag: L

P(H, λ) —• Lp(ίί, λ). Define ¥p

9, Bf 9 using
the first triple, bζ, Bf using the second. We claim that 3.9 is implied
by

This is clear: if (*) holds, then (assuming τ(xQ) — (idy, z0)) one has
Rf'9(zQ)(hx0) = Bf'g(z0)(h) = Bf{gz){ghg-χ) = (definitions of ^ and f)
Rf(gz)(g-hx0) = Rf{gz){ghg~^gxQ) for λ-a.a. A.

We prove (*). Using the definitions of δ£ and δ£'ff together with
the fact that the map z—>g-z preserves v, one sees that bf

p

9{z)—
A9(bf

p(z)) for v-a.a. z. Let σ 6 Lp(ίί, λ)'. Then (B' 9(z0), σ) = δ(bf

p

9, σ)(zo) =
(δ(Ag(bf

p(gz)), (?})(z0) = (δ(bζ(gz), A^σ))(z0) — (since δ commutes with
G/H) (Bf(gz0), A*σy = (A9(B^gz0)\ a); 3.9 is proved.



EXISTENCE OF A STRONG LIFTING COMMUTING 77

3.10. New let (Wn) be a Dr sequence in H consisting of compact
neighborhoods of idy (1-7). For / 6 M°°(X, μ), we define functions
Tζ (n :> 1) on X as follows.

Case I. If G is abelian, x0 e X, zQ — π(x), let

Tζ(x0) =
9Jίx) ^

Case II. Suppose G = H is Lie (see 2.8); let x0 eX, z0 =
Pick proper triples (F t, ^ , τ^Li such that \Jι

ί=ι ̂  = ^ . Pick any i
such that ^ o e ^ . % Letting τt(x0) = (fe0, ^0), let

Define

Letting r^aii) = (idy, «0), we also have

Finally, let (αOLi be a partition of unity subordinate to (^)Li, and

Case III. If X = G x F and x0 e X, z0 — π(x0), write a;0 = (g0, y0),
let F« = {(g, ya)\geg0 Wn}, and define

Tί(χ0) =

PROPOSITION 3.11. J^ αίZ three cases, T£9(x0) = Tί{g-x0) (geG,

xoeX).

Proof of Case I. Let z0 = π(α?0)- One has

( Rf'9(zQ)(hx0)ψWn(h)dX(h) = (by 3.9)

\ Rf(gz0)(ghg~1 gxo)ψwΛh)dX(h) = (since G is abelian)

( Rf{gz,){h gxa)ψWn{h)d\{h) .

Hence T{ "(a;0) = Γί(flr a5β).

REMARK. The proof just completed would work when G is non-
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abelian if one could replace (Wn)n=1 by a D'-sequence (Vn)Z=1 satisfy-
ing g~ιVng = Vn (n ^ 1, g e G). If one defines Vn = Γ\βsQg"ιW%gf then
Vn is a compact neighborhood of the identity. However, it is not
clear that the inequalities λC^F* 1) < Cx(Vn) can be arranged.

Case II. Suppose π(x0) — z0 e ^ for some i, 1 <^ i ^ I. Observe

that, since G = H, g>zQ = z0. As in 3.10, let τ^α?,) = (idy, z0), and

let τt(x0) = (K 30). Then j^i2 /^(^0)(fex ί)^0 ^(fe)ώλ(^) = (by 3.9, noting

that ghg^-g =

= \
J H

= \
J H

Comparing the first and last terms, we obtain Q(^(x0) = Qί,n(g%o)-
Hence

(3.10) Tί'°(x0) = Tζ(g.χ0) .

Case III. A rehash of methods used in Cases I and II.

3.12. We now define functions Sζ, (n ^ 1) as follows.

Case I. If G is abelian, let

Sί(χ) = T7WT \ f@)Ϋwn.Md\.(x) (z = π(x))

for all x such that

(**) fzeL~(X,Xz) and NM(f.) £ N^f) .

Let Sί(x) = 0 for all other x. By (3.8a), Sf

n(x) = Γί(a?) for μ-a.a. x.

Case II. If G is a Lie group, let

(z = π(»); FM is as in 3.10) for all xe^ satisfying (**). Then define
Sί(x) = Σ L i at(z)P(,Jx) for all such x. Let Sί(α?) = 0 if x does not
satisfy (**). By (3.8a), Sζ(x) = Γί(α) j«-a.e.

Case III. If X = G x Γ and a; satisfies (**), let

Sί(x) = — 1 — \ f(x)ψVn

(Vn is as in 3.10). Otherwise let Sζ(x) = 0.
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PROPOSITION 3.13. For each n, Sζ, and hence Tζ, is μ-measura-
ble.

Proof. We prove this in Case I; the other cases are handled
similarly. Let /y be a bounded sequence of continuous functions such
that fό —•>/ μ-a.e. Let

^ \ Mhx)ψWn(h)dx(h).

Then Sj is continuous (use uniform continuity of f$ and equicontinuity
([7]) of the transformation group (H, X)). Now, for z in a set
CdZ of v-measure 1, fjU-uZ) —*fz λ,-a.e. (2.6). Consider the set
C1 = {z 6 C\ (**) holds for /,}. By dominated convergence, Sj(z) <
for all a e π - ^ d ) . But μ(π-\CJ) = 1; hence 3.13 is proved.

PROPOSITION 3.14. Iw Case I, II, and III:
( a) l i π w Γ£(a?) = f(x) μ-a.e. (/ e M°°(X, /*));
(b) if f is continuous, then lim^oo T{(x) = /(a?) everywhere)
(c ) ί/ / e M-(X/H, v), then lim,^ Γ£(a?) = δ(f)(π(x)) for all x.

Proof (a) Case I. It is sufficient to show that Sί(x)—>f(x)
μ-a.e. By version 2 of the Main Derivation Theorem (1.7), one has,

for geL\H,X), VMWn)[g(h)ψWn.h(h)dX(h)--+g(h) λ-a.e. Consider

the set C= {ze Z\(**) of 3.12 is satisfied}. Note v{G) = 1. Fix z e C
and x0 e TΓ""1^). Then if x — hx0, one has

X(Wn) J^

for λ-a.a. h; i.e., for λ^-a.a. x.

f(hxo)ψWn.h(h)dX(h) >/(Λa?0) - f{x)

Now if A = {x e X\ lim^̂ oo Sζ(x) exists and equals /(#)}, then A is
^-measurable. We have just shown that, for v-a.a. z, A intersects
π~\z) in a set of λ^-measure 1. Hence (2.6) A has ^-measure 1. So
Sζ(x), and therefore T{(x), converges to f(x) μ-a.e.

Case II. We use the notation of 3.12. Observe that, if

f π(x) satisfies (**), τ^x) — (hf z), and τ^x,) = (idy, z), then

X( WM) JH

By version 1 of 1.7, the right-hand side tends to f(hXi) = f(x) for
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λ-a.a. h; i.e., for λ^-a.a. x. Let A* = {x £π~1(0>

i)\Pί,n(x) —>f(x)}. Argu-
ing as in Case I, we find that μ(At) = μ{π~\^). Let A = {x\Sζ(x) —>
fix)}. Let z satisfy (**). Then A n π~~\z) has λz-measure 1. For,
let iif , ik (1 <£ k <£ ϊ) be those indices ί such that ze ^. Then
Γ""1^) Π A ^ (1 2̂ 3 ^ fc) has λz-measure 1, since Pi>n(x) —>f{x) λ2-a.e.
The definition of S{ now implies that XZ{A Π π"1^)) = 1. Again argue
as in Case I to obtain μ{A) = 1.

Case III. The proof contains nothing new, hence we omit it.
(b) Case I, II, III. By 3.8b, Rf{z) = fz for all z. The Main

Derivation Theorem for continuous functions gives convergence every-
where (as noted in 1.7, this is a simple observation). Combining
these two facts with the definition(s) of T{ yields the result.

(c) Case I, II, III. Use 3.8c and the definition(s) of Tζ.
We are ready prove 2.7.

3.15. Proof of 2.7. Let U be an ultrafilter on N = {1, 2, 3, . •}
finer than the Frechet filter (see [5], and [10], p. 83). Since \Tί(x)\ ^
JVooCf) for all x (3.4c and 3.5), we may define Tf(x) = liπv T{. Let
p(f)(x)=Tfix)(xeX,feM°°(X,μ)). By choice of U and 3.14a,
Pif) = f μ-z.e. Hence (i) of 1.4 is satisfied. By 3.6, (iii), (iv), and
(v) are also satisfied. If / = 0 μ-a.e., then \T{ix)\ = 0 for all n, x,
and this together with linearity shows that 1.4 (ii) holds. Combining
these facts with 3.14b, c shows that p is a strong linear lifting
which extends d.

By 3.12, p commutes with G. Now, the group G of self-mappings
of X satisfies the condition of Theorem 1 of ([9]). Hence we may
apply the method of Remark 2 following ([9], Theorem 1) to obtain
a lifting p commuting with G. By the proof of (j) => (jj) in ([11],
Theorem 2, p. 105), p is strong. By the proof of ([11], Theorem 2,
p. 39), p extends d. So p has all the necessary properties.

REMARK 3.16. It should be emphasized that the only point in
the proof which requires special assumptions on G occurs in the
proof of 3.11. If one could assume g~ιWng = Wn (g e G), Theorem 2.2
would hold for any compact G.
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