ON MASSEY PRODUCTS

Edward O’Neill
ON MASSEY PRODUCTS

EDWARD J. O'NEILL

We present two examples: one showing the necessity of the condition that the two triple products must vanish simultaneously in order for the quadruple product to be defined; and one showing that the higher order products of a path connected, simply connected space are not completely determined by the differentials in the Eilenberg-Moore spectral sequence of its path-loop fibration.

1. Introduction. This paper is concerned with two examples concerning Massey products. Example I fills a gap in the literature since there are many references (see [2], [1], [3]) to the fact that the two triple products \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) must vanish simultaneously in order for the quadruple product \(\langle u, v, w, x \rangle \) to be defined, yet there appears to be no example proving this. Example II gives a path connected, simply connected space which has higher order products which are not determined by the differentials in the Eilenberg-Moore spectral sequence of its path-loop fibration. This is to show that the higher products are a richer source of information about a space than the above-mentioned spectral sequence, and this should be contrasted with J. Peter May's result that matrix Massey products completely determine the differentials in the Eilenberg-Moore spectral sequence (see [4]).

2. Definitions. Because of different conventions in the literature used to define Massey products and to state what it means for the two triple products to vanish simultaneously, we present the following definitions:

Let \(X \) be a topological space and \(R \) a commutative ring with identity. \(H^*(X; R) \) will denote the singular cohomology ring and \(C^*(X; R) \) the singular cochain complex. (We could use in these definitions any cochain complex which has an associative product.) If \(a \in H^p(X; R) \) or \(C^p(X; R) \), we will write \(\bar{a} = (-1)^p a \). We first define the triple product.

Definition 1. Let \(u, v, \) and \(w \) be homogeneous entries from \(H^*(X; R) \) of degrees \(p, q, \) and \(r \) respectively. Choose representative cocycles \(u', v', \) and \(w' \) for these classes respectively, and assume that \(uw = 0 \) and \(vw = 0 \). We may select cochains \(\alpha^{12} \) and \(\alpha^{23} \) such that

\[
\delta(\alpha^{12}) = \overline{u'} v' \\
\delta(\alpha^{23}) = \overline{v'} w'.
\]
One can show that the cochain
\[z' = u'a^{23} + oF^2w' \]
is actually a cocycle of degree \(p + q + r - 1 \).

We define the triple product \(\langle u, v, w \rangle \) to be the collection of all cohomology classes \([z'] \in H^{p+q+r-1}(X; R)\) that we can obtain by the above procedure. This definition differs by the sign \((-1)\) from the definition in [3] and by the sign \((-1)^{q+1}\) from Massey's original definition in [6]. One can show that the indeterminacy of the triple product is

\[u \cdot H^{q+r-1}(X; R) + H^{p+q-1}(X; R) \cdot w. \]

In order to give the definition of the quadruple product \(\langle u, v, w, x \rangle \), we must indicate what it means for the two triple products \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) to vanish simultaneously. Select representative cocycles \(u', v', w', x' \) respectively, for \(u, v, w, x \) and assume that \(uv = 0 \), \(vw = 0 \), and \(wx = 0 \). Then we may select cochains \(a^{12}, a^{23}, a^{34} \) such that

\[\delta(a^{12}) = u'v', \quad \delta(a^{23}) = v'w', \quad \delta(a^{34}) = w'x'. \]

If we let

\[y' = u'a^{23} + a^{12}w' \quad \text{and} \quad z' = v'a^{34} + a^{23}x', \]

these are cocycle representatives of \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) respectively. We say that \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) vanish simultaneously if it is possible to make the choices above so that both \(y' \) and \(z' \) are coboundaries. The purpose of Example I is to show that it is possible for both \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) to vanish, but not to vanish simultaneously.

Definition 2. Let \(u, v, w \) and \(x \) be homogeneous entries from \(H^*(X; R) \) of degrees \(p, q, r \) and \(s \) respectively. Assume that

1. \(uv = 0 \), \(vw = 0 \), \(wx = 0 \)
2. \(\langle u, v, w \rangle \) and \(\langle v, w, x \rangle \) vanish simultaneously.

Select representative cocycles \(u', v', w' \) and \(x' \) for \(u, v, w \) and \(x \) respectively, and because of condition (1) we may select cochains \(a^{12}, a^{23}, \) and \(a^{34} \) such that

\[\delta(a^{12}) = u'v', \quad \delta(a^{23}) = v'w', \quad \delta(a^{34}) = w'x'. \]

Making use of condition (2) we may assume that \(a^{12}, a^{23}, \) and \(a^{34} \) were selected so that there exist cochains \(a^{13} \) and \(a^{24} \) such that

\[\delta(a^{13}) = u'a^{23} + a^{12}w' \quad \text{and} \quad \delta(a^{24}) = v'a^{34} + a^{23}x'. \]
One can show that the cochain
\[z' = \overline{u'}a^{24} + \overline{a^{35}}a^{24} + \overline{a^{13}}x' \]
is actually a cocycle of degree \(p + q + r + s - 2 \).

We define the quadruple product \(\langle u, v, w, x \rangle \) to be the collection of all cohomology classes \([z^r] \in H^{p+q+r+s-2}(X; R)\) that we can obtain by the above procedure. This definition differs by the sign \((-1)\) from the definition in [3] and by the sign \((-1)^{p+r+1}\) from the definition in [2]. An element in the indeterminacy of the quadruple product can be written as an element of a matrix triple product which we can write as
\[
\langle (u, z_1), \begin{pmatrix} v & z_2 \\ 0 & w \end{pmatrix}, \begin{pmatrix} z_3 \\ x \end{pmatrix} \rangle
\]
where \(z_i \in H^*(X; R), 1 \leq i \leq 3 \), by a result due to Kraines (see [3]).

3. Example I. We will give an example of a topological space whose cohomology contains four classes \(u_1, u_2, u_3, \) and \(u_4 \) such that \(\langle u_1, u_2, u_3 \rangle \) and \(\langle u_2, u_3, u_4 \rangle \) are both defined and vanish, but do not vanish simultaneously. Thus in the cohomology of this space the quadruple product \(\langle u_1, u_2, u_3, u_4 \rangle \) is not defined, even though \(\langle u_1, u_2, u_3 \rangle = 0 \) and \(\langle u_2, u_3, u_4 \rangle = 0 \).

Let \(X_0 = (S_1VS_2VS_3VS_4VS_5) \cup f_0 e_0 \) be the wedge of five oriented spheres \(S_i \) of dimension \(p_i, 1 \leq i \leq 5 \), where \(p_0 = p_2 + p_3 - 1 \), with an oriented \((p_1 + p_2 + p_3 - 1)\)-cell \(e_0 \) attached by the map \(f_0 \) which is a representative of the homotopy class \([i_1, [i_2, i_3]] + [i_1, i_4]\), where \(i_j \) denotes both the inclusion map \(S_j \to S_1VS_2VS_3VS_4VS_5 \) and its homotopy class, \(1 \leq j \leq 5 \). We will consider two spaces \(X_1 = X_0 \cup f_1 e_1 \) and \(X_2 = X_0 \cup f_2 e_2 \), where \(e_1 \) and \(e_2 \) are oriented \((p_2 + p_3 + p_4 - 1)\)-cells, \(f_1 \) is a representative of the homotopy class \([i_2, [i_3, i_4]] + [i_3, i_4]\), and \(f_2 \) is a representative of \([i_2, [i_3, i_4]] - [i_3, i_4]\).

In \(H^*(X_1; Z) \) and \(H^*(X_2; Z) \) we will let \(u_i \) denote the cohomology class represented by the cocycle which assigns \(+1\) to the cell \(S_i \) and \(0 \) elsewhere, \(1 \leq i \leq 5 \), and \(z_i \) denote the class represented by the cocycle which assigns \(+1\) to the cell \(e_i \) and \(0 \) elsewhere, \(0 \leq i \leq 2 \). Then using Lemma 7 in [6], in \(H^*(X_i; Z) \) we have
\[
\langle u_1, u_2, u_3 \rangle = (-1)^{p_1+p_2+1}z_0 = (-1)^{p_1+p_2+1}u_1u_3
\]
and
\[
\langle u_2, u_3, u_4 \rangle = (-1)^{p_2+p_3+1}z_1 = (-1)^{p_2+p_3+1}u_2u_4.
\]

Similarly in \(H^*(X_2; Z) \) we have \(\langle u_1, u_2, u_3 \rangle = (-1)^{p_1+p_2+1}z_0 = (-1)^{p_1+p_2+1}u_1u_3 \) and \(\langle u_2, u_3, u_4 \rangle = (-1)^{p_2+p_3+1}z_2 = (-1)^{p_2+p_3+1}u_2u_4 \). Since \(H^*(X_i) \cdot u_3 = 0 \) and \(u_2 \cdot H^*(X_i) = 0 \), the indeterminacy of \(\langle u_1, u_2, u_3 \rangle \) is \(u_1 \cdot H^*(X_i) \)
and the indeterminacy of \(\langle u_2, u_3, u_4 \rangle \) is \(H^*(X_i) \cdot u_i, \ i = 1, 2 \). Thus for both \(X_1 \) and \(X_2 \), \(\langle u_1, u_3, u_4 \rangle \) and \(\langle u_2, u_3, u_4 \rangle \) both vanish. Depending on the parity of \(p_2 \), either \(X_1 \) or \(X_2 \) will be the space required.

As in [2] on p. 148, we can define in our situation an operation denoted by \(\langle \langle u_1, u_2, u_3 \rangle, \langle u_2, u_3, u_4 \rangle \rangle \) which consists of all ordered pairs \((u_1, u_2, u_3, u_4) \) that one can obtain, where previous notation has been used here. One can see that in our situation the operation \(\langle \langle u_1, u_2, u_3 \rangle, \langle u_2, u_3, u_4 \rangle \rangle \) is a coset of \(H^{p_1+p_2+p_4-1}(X_i) \times H^{p_2+p_3+p_4-1}(X_i) \) modulo the subgroup \(\text{Image} (\Phi) \), where \(\Phi: H^{p_2+p_3+p_4-1}(X_i) \to H^{p_1+p_2+p_3-1}(X_i) \times H^{p_2+p_3+p_4-1}(X_i) \) is defined by \(\Phi(z) = (\bar{u}_1 z, \bar{u}_2 z) \). For our example we desire \(\langle \langle u_1, u_2, u_3 \rangle, \langle u_2, u_3, u_4 \rangle \rangle \in \text{Image} (\Phi) \).

But if \(p_2 \) is even, then in \(H^*(X_i) \) we have
\[
\langle \langle u_1, u_2, u_3 \rangle, \langle u_2, u_3, u_4 \rangle \rangle = ((-1)^{p_1+p_2+1} u_1 u_2 u_3, (-1)^{p_2+p_3+1} u_3 u_4) \\
= (-\bar{u}_1 u_2, \bar{u}_3 u_4) \in \text{Image} (\Phi).
\]
And if \(p_2 \) is odd, then in \(H^*(X_i) \) we have
\[
\langle \langle u_1, u_2, u_3 \rangle, \langle u_2, u_3, u_4 \rangle \rangle = ((-1)^{p_1+p_2+1} u_1 u_2 u_3, (-1)^{p_2+p_3+1} u_3 u_4) \\
= (\bar{u}_1 u_2, -\bar{u}_3 u_4) \in \text{Image} (\Phi), \text{ as desired.}
\]

Note also that if \(p_2 \) is even, in \(H^*(X_2) \), or if \(p_2 \) is odd, in \(H^*(X_1) \), we have examples of spaces where the quadruple product is defined, but is not strictly defined in the sense of May (see [3], p. 538).

4. Example II. The differentials in the Eilenberg-Moore spectral sequence associated with the path-loop fibration of a path connected simply connected space are completely determined by higher order Massey products (see [3]). This might lead one to conjecture that the differentials in the spectral sequence contain all the information about the higher order products that our definition contains. But to see that this is not the case, we will consider the Eilenberg-Moore spectral sequence of the path-loop fibration of the following space.

Let \(X_0 = S_1 \vee S_2 \vee S_3 \vee S_4 \) be the wedge of four oriented spheres, where \(\dim S_i = p_i > 1 \), \(p_4 = p_4 + p_3 - 1 \), and we let \(r = p_1 + p_2 + p_3 - 2 \). Let \(i_j \) denote the homotopy class of the inclusion \(S_j \to X_0 \) and let \(f \) be a map from an oriented \(r \)-sphere into \(X_0 \) which represents \([i_1, [i_2, i_3]] - [i_2, i_1]\). If \(e \) is an oriented \((r+1)\)-cell, we may attach \(e \) to \(X_0 \) via the map \(f \) and call the resulting space \(X_1 \). In \(H^*(X_1; \mathbb{Z}) \) let \(u_i \) be the cohomology class which is represented by the cocycle which assigns +1 to \(S_i \) and 0 elsewhere, and let \(z \) be the cohomology class represented by the cocycle which assigns +1 to \(e \) and 0 elsewhere.
By using Lemma 7 in [6], we can easily show that the triple product \(\langle u_4, u_2, u_3 \rangle = (-1)^{p_1+p_2+p_3}u_4 = (-1)^{p_1+p_2+1}z \) and thus is nontrivial; however in the Eilenberg-Moore spectral sequence associated with the path-loop fibration of \(X_i \), this triple product, being decomposable, would be trivial.

REFERENCES

Received July 28, 1977. These results are taken from a dissertation [5] written under the direction of William S. Massey. The author wishes to express his gratitude to Professor Massey for his guidance, encouragement and suggestions during its preparation.

FAIRFIELD UNIVERSITY
FAIRFIELD, CT 06430
Ata Nuri Al-Hussaini, Potential operators and equimeasurability 1
Tim Anderson and Erwin Kleinfeld, Semisimple nil algebras of type δ 9
Stephen LaVern Campbell, Linear operators for which T^*T and $T + T^*$ commute. III ... 17
Robert Jay Daverman, Special approximations to embeddings of codimension one spheres ... 21
Donald M. Davis, Connective coverings of BO and immersions of projective spaces ... 33
V. L. (Vagn Lundsgaard) Hansen, The homotopy type of the space of maps of a homology 3-sphere into the 2-sphere 43
James Victor Herod, A product integral representation for the generalized inverse of closed operators .. 51
A. A. Iskander, Definability in the lattice of ring varieties 61
Russell Allan Johnson, Existence of a strong lifting commuting with a compact group of transformations ... 69
Heikki J. K. Junnila, Neighbornets .. 83
Klaus Kalb, On the expansion in joint generalized eigenvectors 109
F. J. Martinelli, Construction of generalized normal numbers 117
Edward O’Neill, On Massey products .. 123
Vern Ival Paulsen, Continuous canonical forms for matrices under unitary equivalence ... 129
Justin Peters and Terje Sund, Automorphisms of locally compact groups . 143
Duane Randall, Tangent frame fields on spin manifolds 157
Jeffrey Brian Remmel, Realizing partial orderings by classes of co-simple sets ... 169
J. Hyam Rubinstein, One-sided Heegaard splittings of 3-manifolds 185
Donald Charles Rung, Meier type theorems for general boundary approach and σ-porous exceptional sets .. 201
Ryōtarō Satō, Positive operators and the ergodic theorem 215
Ira H. Shavel, A class of algebraic surfaces of general type constructed from quaternion algebras ... 221
Patrick F. Smith, Decomposing modules into projectives and injectives 247
Sergio Eduardo Zarantonello, The sheaf of outer functions in the polydisc .. 267