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We show that we can embed any countable partial ordering
into a class of co-r.e. bi-dense subsets of the rationals, each
subset of a fixed nonzero r.e. Turing degree, under an order
induced by recursive similarity transformations. Also, we
show that we can embed any countable partial ordering into
the co-simple isols under either the order induced by addition
of isols or the order induced by recursive injections.

0. Introduction. Let C denote the continuum, @ denote the
rationals, and N denote the natural numbers. We let ¢ denote the
cardinality of C and ¥, denote the cardinality of N. Given two linear
orderings H and G, we say (i) H is embeddable in G, H < G, if there
is an order preserving map from H into G and (ii) H is similar to G
if there is an order preserving map from H onto G. H is said to
be bi-dense in G if H< G and both H and G — H are dense in G.

Let = be an effective one-one correspondence between @ and the
natural numbers. We shall consider = to be an effective Godel num-
bering and thus we will identify an element or subset of @ with its
image under #. We let < or < refer to the usual ordering on N
and @ or & refer to the usual ordering on Q. Given @, 8 < Q, we
say a is recursively embeddable in B, a <,B, if there is a partial
recursive function ¢ such that a C dp, the domain of @, and the
restriction of ¢ to @, ¢ | @, is an order preserving map from « into 5.

In [5], Hay, Manaster, and Rosenstein show that complements
of recursively enumerable bi-dense subsets of @ of any fixed nonzero
r.e. degree under <, bear a strong resemblance to bi-dense subsets
of C of cardinality ¢ under <. The main result of this paper answers
a question raised by Laver. Based on the results of [5], Laver asked
whether or not the following theorem is true.

THEOREM A. Let B be any recursively enumerable set which is
not recursive and let P be any countable partial ordering. Then
there is a collection of co-recursively enumerable bi-dense subsets of
Q, each Turing equivalent to B, such that, under <., this collection
18 order isomorphic to P.

(A set A S N is co-recursively enumerable if N — A is recursively
enumerable.) In §2 of this paper, we prove Theorem A using methods
that Sack’s [8] developed to prove that any countable partial ordering
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can be embedded in the r.e. Turing degrees under the order induced
by Turing reducibility. Theorem A extends Theorems 7 and 8 of
[5], where Hay, Manaster, and Rosenstein proved the analogues of
Theorem A if the countable partial ordering P in the statement of
Theorem A is replaced either by any countable linear ordering or
by any finite partial ordering.

The proof of Theorem A will also give a result on the class of
co-r.e. isols which have been studied by Hay [3], [4], Ellentuck [2],
and others. We will show that one can embed any countable partial
ordering P into the class of co-simple isols under either the order
induced by addition of isols (due to Ellentuck [2]) or the order
induced by recursive injections. (See §1 for the definitions of the
co-simple isols and the two orderings.)

1. Preliminaries. Given B C N, we write B for the complement
of B in N. We write A <,B if A is Turing reducible to B and
A=,Bif A<,B and B=<,A. Let ¢, ¢, --- be an effective list
of all partial recursive functions where ¢, is the function computed
by the mth Turing machine. We write @j(x)] if the nth Turing
machine started on x gives an output in s or less steps. We let
I, I, --- be an effective list of all intervals of @ of the form [p, q] =
{reQp® XDq} for p,geQ.

Given a partial ordering P, we say P is an W,universal partial
ordering if any countable partial ordering can be embedded in P,
that is, if S < P for all countable partial orderings S. The rest of
this section will be devoted to defining three partial orderings. The
fact that each of the three partial orderings is W,-universal will
follow easily from the main construction of §2.

Given a, 8BS @, we define ¢ ~, 8 iff a <, and B <,a. It is
clear that ~, is an equivalence relation. Let a be any nonzero r.e.
Turing degree. We let B(a, Q) = {a: « is a co-r.e. bi-dense subset
of Q of degree a} and B(a, Q) = B(a, Q)/~,. Given equivalence classes,
[«], [Ble Bla, @), we define [@] <,[B] iff there exists aec[a] and
Be[f] such that a <.,8. It is easy to check that =, is a well
defined partial order on B(a, Q). Thus, Theorem A is equivalent
to saying that (B(a, Q), <,> is an Y,-universal partial ordering for
any nonzero r.e. degree a.

Given a, 8 C N, we say « is recursively equivalent to G if there
is a 1 — 1 partial recursive function p such that a S ép and p |«
maps « onto 8. The recursive equivalence type or RET of «, denoted
by <{a), is the class of all B recursively equivalent to a. A set
a & N is immune if « is infinite and « has no infinite r.e. subset.
A r.e. set 3< N is simple if B is immune. A set & C N is isolated
if « is either finite or immune. The RETSs of isolated sets are called
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1sols and their collection is denoted by 4. The elements of 4 can be
considered as an “effective” analogue of the Dedekind finite cardinals
and have been extensively studied by Dekker, Manaster, Myhill,
Nerode, and others. Isols (@) of sets @ such that a is co-r.e. are
called co-simple tsols and their collection is denoted by 4,. We shall
define two distinet partial orders on 4,. Addition of RETSs is defined
by <(a) +<{B) ={{2x|xca}U{2x + L|xeB}). The partial ordering
<, is defined on the RETs by A4 <, Biff 3C(4 + C = B). Given sets
a, B< N, we define @ <, 8 iff @ & B and there are disjoint r.e. sets
W, and W, such that W. N8 =a and W,N 8 =8 —a. It is proved
in [1], that for RETs (&) and {(8), (&) =, {B) iff there exists a’ € ()
and B’ € {B) such that @’ <, 8. Given sets @, 8 < N, we define a <, 8
iff there is a partial recursive function p such that « Cépand p [«
is a 1 — 1 map from « into 8. Given RETs {(a) and {(B), we define
(ay <,{B) iff there exists a’e{(a) and B’ € (B> such that a <, 8.
It is easy to check that =<, is a well defined partial order on the
class of RETSs.

In §2, we shall prove that (B(a, @), =.), {4,, =), and {4, <,>
are all W,~universal partial orderings. We shall discuss the differences
between <, <,, and <, on the class of co-r.e. sets and the differences
between <, and =, on 4, in §3.

2. The main construction. In [5], Hay, Manaster, and Ro-
senstein constructed a set a« £ @ with the following property.

(&%) If @ is a partial recursive function such that @ < ép and
@ lais al—1 map from « into a, then {aca|p(a) # a} is finite.
If a has property .’ then «a is isolated. For if a contains an
infinite r.e. set, then « contains an infinite recursive set R =
fa, < a, <a,<---}. Let @ be the recursive function defined by

Gy if x=a, and 7 1is even
p@) =4a,., if x=a and ¢ is odd
x otherwise .

p I thus would be a 1 —1 map from « into a such that R =
{a e @]la # p(a)} contradicting property & If a is isolated, then «
has the property that for no proper subset B8 of a is a <,8. For
if Bca and a <,B, then let ¢ be the partial recursive function such
that @ £ dp and @ [« is an order isomorphism from « into 8. Let
xea — B. Thus either x © ¢(x) or p(x) Q2. If 2 p(x), then {x
() @ p(p(x)) @ p(p(p(x))) © -+ -} is an infinite r.e. subset of @ and if
o(x) @ x, then {x O ¢p(x) O p(p(x)) © ---} is an infinite r.e. subset of a
contradicting the fact that « is isolated. All sets @ we construct in
this section will have property & so that we will always have {a) € 4.
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The pI'OOf that <E(a; Q)7 §c>’ <Az7 §z>y and <Az) §e> are Ro'
universal ordering will proceed In two steps in the same manner as
Sack’s proof [8] of the fact that the r.e. degrees under Turing
reducibility is an Y,-universal partial ordering. The first step is to
construct an infinite sequence of ‘incomparable’ elements.

THEOREM 1. Let B be o nonrecursive r.e. set. There is a recursive
sequence of co-r.e. subsets of @, a, &, -+, such that

(a) For each i, @, is bi-demse in @Q,

(b) For each recursive set R = N, U;.z @, has property 7,

(¢) Foreach i, @; N U.»; &; = @ and moreover o, £:U,.; &;, and

(d) For each 1, @, =, B.

Proof. Let f be a 1 — 1 recursive function whose range is 3
and let = {ylIx(x <s & flx) =9)}. Let k: NX N> Nbeal—1,
onto, recursive function. Let 7 and ¢ be recursive functions such
that k{4, 7) = n iff e¢(n) =14 and 7(n) = j. Moreover, we assume k
is chosen so that for each ¢, N; = {y|3x(k(¢, ) = y)} is a bi-dense
recursive subset of Q. We shall give a procedure to enumerate a
r.e. set A in stages such that if ¢, = AN N,, then «,, «,, ++- is the
recursive sequence of sets required by the theorem. Each «; is co-
r.e. since @, = (AN N,) U U;.; N; and clearly the sets «, a, --- are
-pairwise disjoint.

A convenient picture for the construction of A will be to imagine
an infinite sequence of infinite columns of windows

a [n] [m] 0 = b’i 2
o o a oty

o o o p=—1—b%,

af o as @i

At the end of stage s, the windows in the ¢th column will be occupied
consecutively from the bottom up by b, < b, < --- where

{b3, b5y +o2} =N, NA = a3

and A°® is the set of elements enumerated into A by the end of stage
s. Thus the windows give us a picture of the complement of A° at
the end of stage s. Then during stage s + 1, certain elements from
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the columns will be put into A°** and the elements left in each column
will drop down to fill in any vacant windows. We shall ensure that
for each stage s > 0, 4° N N, will be finite so that a2 will be infinite
and every window will be occupied. For s > 0, 4* will always be
an infinite recursive set.

We will meet three sets of requirements in the course of the
construction. To ensure that each a, is bi-dense, we must meet the
following, requirements.

D@, nya,Nl,+ Q.

We will employ a set of markers 4(¢, n). At stage s, 4(¢, n) will rest
on an x€aj I,. Then for the sake of requirement D(z, n) we will
try to keep the element marked by 4(4, n) out of A. If we are
successful for all ¢+ and %, then each a; will be dense in @ and hence
each a, will be bi-dense in @ since & 2 UJ;.; N;.

To ensure that condition (b) is satisfied by the «,’s, we will meet
the following set of requirements.

Qn): o, A isal - 1map from A into A only if {a € A|a # @(a)}
is finite. Suppose there is a recursive set R < N and a partial
recursive function ¢, such that ¢, | U;.xa; is a 1 — 1 map from
Uiz into Uz, and {ea e U;cra:la # @,(a)} is infinite. Let ¢, be
the recursive function defined by

@.(x) if xeUN;, and zedgp,
ieR
ieR ie 73

undefined otherwise .

Then @, would violate requirement Q(»). Thus if we meet all the
requirements Q(n), condition (b) will automatically follow.

The strategy to meet requirement @Q(n) at stage s + 1 will be
to try to find an x ¢ A°® such that @i(x)| and @,(x) % x and then put
@.(x) into A°*', put a marker \(n) on x, and then try to keep x out
of A. If xc A, then x will witness that ¢,(4A) £ A. However, there
may be two reasons why we cannot put o¢,(x) into A, The first
reason is that ¢,(x) may already have another marker on it which
means we want to keep o,(x) out of A for the sake of some other
requirement. Thus, we must put a priority ranking on our list of
requirements. We shall ensure that requirements with higher priority
than Q(n) restrict only finitely many elements from being put into
A so that if ¢, | A is 1 —1 and {eae A|a # @,(a)} is really infinite,
we will be able to find a pair (z, ,(x)) for which @,(x) is never
restricted by higher priority requirements. Then we will be able
to put ¢,(x) into A and keep x out of A. The second reason is that
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to ensure each a, <, B, we use a Yates permitting argument which
puts some restrictions on which b3, can be put into A**%. Thus it
is also possible that @,(x) is not ‘permitted’ to be put into 4°*. In
such a case, we shall place a \(n) marker on x and try to keep z
out of A in the hope that sometime later we will be permitted to
put @,(x) into A. We say requirement Q(n) is satisfied at stage s
if there is an z ¢ A* with a M(#n) marker on it such that ¢(x)] and
pi(x) € A°.

To ensure that each «; has property (c), we must meet the
following set of requirements.

R(i, n): If a; S 0p, and o, la; is 1 —1, then p (@) Z U ;.

The requirements R(¢, n) have basically the same character as the
requirements @Q(n). The strategy to meet requirement R(¢, n) at
stage s + 1 is to try to find an z € such that ¢}(x)] and z # @;(x)
and either we can put ¢,(x) into A*" or ¢,(x)e N,. Then we put
@, (x) into A+, if possible, and place a I'(i, ») marker on x and try
to keep x out of A. If xc A, then xca, and x will witness that
Pula) E Ui @;. Again the same type of restrictions as described
above can restrict us from placing @,(x) into A**'. We say that
requirement R(i, n) is satisfied at stage s if there is an z € A° with
a I'(i, n) marker on it such that ¢i(x)] and ¢,(x)e A° U N..

It is clear that a; <, A for each ¢. Thus to ensure that each
a, <, B, we shall ensure that A <,8, using a Yates permitting
argument where b;, is allowed to be put into A° only if max (4, n) =
f(s). Finally to force a;, =, B, we shall use a coding argument where
at each stage s either bf,,, or b% ., will be put into A**' for each
1. Thus at each stage s > 0, 4° will be an infinite but recursive set.

We make the following priority ranking of requirements:

D(e(0), 7(0)), Q(0), E(c(0), 7(0)), D(¢(1), (1)), A1), B(e(), (1)), - -+ .

(That is, D(c(0), (0)) has highest priority, @(0) has the second highest
priority, and so on.)

Only finitely many markers will be placed on elements at any
given stage s. We assume we have infinitely many 4(¢, »), M(»), and
I'(¢, n) markers at our disposal and if at stage s + 1 we place a
marker @ on an x € A° such that at stage s, x was unmarked or had
a marker different form @ on it, then @ has never been used at any
previous stage. If an xz ¢ A° drops to a lower window at stage s + 1,
the marker on z, if any, will stay with 2 unless specifically stated
otherwise. If an z e A° is put into A°**!, then we automatically remove
any marker on x. We say a marker @ is active at stage s if it rests
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on an z < A°® and @ is inactive otherwise. For simplicity, each 2 will
have at most one marker on it at any stage s. It will be possible
for several markers of the same type to be active at a stage s. We
say a marker @, has higher priority than marker @, if @, corresponds
to a higher priority requirement than @, does. Finally, we define
(A%, m), 8) = {x|x has a marker @ on it at stage s and @ has higher
priority than 4(1, n)}. 22 (\(n), s) and £ '(4, n), s) are defined
similarly.

Construction.

Stage 0. Let A°= @. Put a marker 4(c(0), »(0)) on the least
@ in N,g N L.

Stage s + 1. Assume that A° is recursive and that at stage s

(a) A’°N N, is finite for each ¢,

(b) only finitely many markers are active and no ¢ € A°* has more
than one marker on it,

(e) for all j < s, exactly one 4(e(5), (4)) marker is active and
it rests on an x e N, N L),

(d) a Mn) marker rests on x only if ¢@}(x)] and x # ¢,(x) and
a ['(¢, ») marker rests on x only if ¢j(x)], z # @,(2), and z € aj,

(e) if requirement Q(J)(R(4, n)) is satisfied, then exactly one
MU, n)) marker is active.

Look for a j < s+ 1 such that at stage s either

(1) Q(j) is not satisfied and there is an z =< s + 1 such that
re Aa - %()‘J(J); S)y ¢§+1(m)l7 AR g’j(x)’ and either r e {bz,f(s), b?l,f(s)-i—l}
for any % or if & €{bf s, % s}y then y € (bl s, b5 s} — {o} implies
y ¢ £ (MJ), 8), and moreover either

(1A) @) ¢ {b3,.] max (¢, n) < f(8)} U 227 (M), 8) or

(1B) (=) €{b:,| max (i, n) < f(8)} — S£Z(\J), s) and if b5, = p;(),
then for all b, = @;(y), where y has a AM(n) marker on it, max (7, n) >
max (e, k) + 1,

(2) Condition (1) fails and R(e(3), 7(4)) is not satisfied and there
is an # < s+ 1 such that x¢ A* — S22 (c(d), (7)), 8), piH(@)], ¢ #
Pi(®), and either » & {b% s, 0% 51} for any 4 or if @ € {bf s, b3 r00r11)s
then y €{b: s, b} s} — {0} implies y ¢ 227(I'(c(4), (7)), s), and more-
over either

(2A) @) € [{b%.| max (3, n) < f(8)}U 22 (T (e(d), 7(3))s 8)] — Noii
or

(2B)  @.i(x) €{bi,.| max (1, m) < f(8)} — (2L (), 7(3), 8)) UN,i»»)
and if b, = @, (x), then for all b2, = @, (y) where y has a I'(c¢(j),
(7)) marker on it, max (4, ») > max (e, k) + 1.

If there is no such 7, go to Case 0. If there is such a j, let e(s+1)
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be the least such 5 and go to Case 1 if e(s + 1) satisfies condition
(1) and go to Case 2 otherwise.

Case 0. For each 1, consider the pair z; = b} ., and ¥; = b sy
and the markers that currently rest on «, and %,, if any. If «, is
not marked, put x; into A*™. If x; is marked and ¥, is not marked,
put ¥, into A*™., Otherwise, suppose marker @, rests on x; and
marker &, rests on y,. If @, has higher priority than @,, put ; into
A**t and if @, has higher priority than @,, put y, into A**. If @,
and @, have the same priority, then @, and @, must either be Mn)
markers or I'(4, n) markers for some n. In such a case, let b, =
@ (2;) and b, = @, (y,). Put z, into A" if @,(x,) is in

2 (M), s\ (I'(3, ), 8))
and @,(y;) is not and put y; in A** if @,(y,) is in
G2 (M), s)(&Z (I(1, n), 8))

and @,(%;) is not. Finally, if @,(2.), @.(¥:) € 2 (\(n), s)(SZ(I'(1, m), 8))
or @,(®), ¢,(¥;) ¢ S (\(n), 8)(Z (I3, n), 8), put =z, into A if
max (@, m) =< max (¢, k) and put y, into A*** if max (a, m) > max (¢, k).

Case 1. Let e = e(s + 1) and z be the least x corresponding to
e such that @, (x) satisfies condition (1A) if there is a pair (y, @.(%))
satisfying condition (1A) or ¢,(x) satisfies condition (1B). if there is
no pair (y, ¢,(y)) satisfying condition (1A).

(A) If @,(z) satisfies condition (1A), place a new M\(e¢) marker on
2z and remove any marker that was on z at stage s and all \(e)
markers that were active at stage s. Then put ¢,(2) into A*** if it
is not already in A°. For each 4, also put either b}, or b ..
into A**' according to the instructions in Case 0. (Note: our choice
of z ensures that z¢ 4*'! so that requirement @, will be satisfied at
stage s + 1.)

(B) If @.(z) satisfies condition (1B), place a new \(e) marker on
2z and remove any marker that was on z at stage s. Then, for each
1, put either b5 ;,, or b .., into A*™* according to the instructions
in case 0.

Case 2. Let ¢ = e(s + 1) and let z be the least x corresponding
to ¢ such that ¢, (x) satisfies condition (2A) if there is pair
(Y, Pro(¥)) satisfying condition (2A) or ¢, (x) satisfies condition (2B)
if there is no pair (¥, @,.(¥)) satisfying condition (2A).

(AY If @,.(2) satisfies condition (2A), place a new I'(c(e), r(e))
marker on z and remove any marker that was on z at stage s and
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all I'(c(e), r(e)) markers that were active at stage s. Then put ¢,(2)
into A" if @,(z) ¢ £ (cle), r(e), 5)) U N,,, U A°. For each ¢, put
either b ;. or bi;,, into A**' according to the instructions in Case
0. (Note: our choice of z ensures that z¢ A*** so that requirement
R(c(e), r(e)) will be satisfied at stage s + 1.)

(B) If @,.(z) satisfies condition (2B), place a new I'(c(e), r(e))
marker on z and remove any marker that was on z at stage s. Then
for each ¢, put either b, or b; s, .. into A*** according to the in-
structions in case 0.

This completes the definition of A*™'. It is possible that for some
4 and =, requirement Q(n)(R(j, »)) was not satisfied at stage s but
there is now some % e A" with a M=n)I'(J, »)) marker on it and
@.(x) € A* because @,(x) € U, {5 s 05701} and ¢@,(x) was forced into
AT, In such a case, we keep the M(n)(I'(J, »)) marker on the least
such z and remove all other Mn)(I"(7, #n)) markers that were active
at stage s. Finally, some of the 4(¢(4), (%)) markers for ¢ =< s may
have been removed. Inductively we place new 4(c(¢), r(¢)) markers
for © < s + 1 as follows: having placed 4(c(j), 7(5)) markers for j < 1,
place A(c(t), (%)) on the least zeaii N I, which is unmarked if
A(e(z), r(¢)) was removed during stage s + 1 and otherwise leave
Ae(n), r(2)) where it is. (This is possible since A4 N N, is finite
and N, is dense in Q.)

This completes the description of stage s + 1. It is easy to check
that each stage is completely effective and that conditions (a)-(e)
hold at each stage. We let A = J, 4° so that 4 is r.e. We now
prove a sequence of lemmas that will complete the proof of the
theorem.

LEMMA 1. For all ¢ and n, lim, bf, exists.

Proof. b5, % b4 only if f(s) £ max (4, n). Since f(s) < max (3, n)
only finitely often, lim, b}, exists.

LEMMA 2. A <,85.

Proof. It follows from our construction that for all =, x = b3,
and 2 = b% only if ¢ =7 and k¥ < n. Thus to decide if xe 4, first
find ¢ and % such that x = b?,. Then recursively in G, find a stage
¢t such that Vs (s = ¢ — f(s) > max (4, »)). Since for any j and %, b5, =

% only if f(s) < max (4, k), it follows that Vkvs Ak <n & s=t —
sr=2>0;,). ThuswxeAiff we¢{bl, -, b,} ={b;y ++-, b;,,}. Therefore,
A<, 8.
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Since for each 4, @, = ANN, <, 4, we have that a, <,5. Thus
to prove that for each i, a, =, 8, we need only show that for each
i’ 18 éT ai'

LEMMmA 3. For each 1, B <, «,.

Proof. We note that for each 4, a;, = {b,, b,,, ---} and b,, <
b,, < +-- since for all s, b, < b, < ---. To decide if xep, first
find, recursively in «;, a stage ¢ such that vk (k<2 + 1 — bl = b, ).
Since for any pair (j, ») and stage s, b5, = b5 only if there is a
k < n such that b ,e A", it follows that Vsvk (k<2 +1&s=t—
b, =b,,). Since at each stage s + 1, we put either b ., or b ;.
into A**Y, it follows that Vs (s = ¢ — f(s) > x). Thus, xcB if x€pB*
and hence @, =, B.

LeMMA 4. For each n, the requirements D(c(n), r(n)), Q(n), and
R(e(n), r(n)) are met.

Proof. We proceed by induction. Fix n = 0 and assume that
for all 4 < n, the requirements D(¢(z), »(4)), Q(%), and R(e(z), 7(¢)) are
met and there is a stage ¢t > » and an integer p such that: (a) For
all s =t and 7 < m, no new 4(c(3), r(5)), M), or I'(e(y), (7)) marker
becomes active or old 4(e(3), (9)), M3), or I'(e(g), r(j)) marker is
removed at stage s, (b) If bi, € 22 (4(c(n), r(n)), t), then max (4, k) <
p, (€) Vs (s=t— f(s) > ), and (d) Vs(s=t—e(s) =n). Thus by
stage ¢ all 4(e(z), r(2)), M¢), and I'(¢(z), (%)) markers with 7 < n rest
on elements that never move after stage .

First, we consider the requirement D(¢(n), #(n)). Suppose that
at stage t + 1, d(e(n), r(n)) rests on zealiy N IL,,. We claim that
for all s =t + 1, 4(e(n), r(n)) rests on z and thus z €, N L,,. For
assume s =t + 1, x = bi,,,; for some 7, and 4(c(n), r(n)) rests on x
at stage s. Then at stage s + 1, if ¢(s + 1) is defined, e(s + 1) = n
so that « # 2, © # @,..nv(#) for 2z as defined in Case 1 and x = z,
2 # Ppen(2) for z as defined in Case 2. Thus the only way « could
be put into A*** is if je{f(s), f(s)+1}. By our choice of ¢ f{(s)>»
and thus the y € {bl) r10 Dim,s04a} — {&} 18 DOt in ZZ(d(c(n),7(n)), s)-
Hence 4(e(n), r(n)) must have a higher priority than the marker
on y, if any, and hence y and not « would be placed into As*.
It follows that after stage ¢t + 1 no new dJ(e(n), r(»)) marker is
ever introduced so that Vs (s =t + 1 — Z20\(n), 8) = SZ(\(n), s + 1)).
Let © = b,.,),, and choose t, > t and p, > p such that max (¢(n), k) < p,
and Vs (s = t, — f(s) = p.).

Now consider the requirement Q(n). First we show that if Q(n)
is ever satisfied for some s > ¢,, then requirement Q(n) is met and
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there is a stage ¢, and an integer p, such that (a’) for all s = ¢,
1< mn, and j <mn, no new A(c(s), r(%), (%), or I'(e(y), r(7)) marker
becomes active or old 4(c(z), (7)), M%), or I'(e(4), (7)) marker is removed
at stage s, (b) if b, € S22 (c(n), r(n)), t,), then max (4, k) < p,, ()
Vs (s=t,— f(s) > p,), and (d') Vs (s = ¢, —e(s) > n \V (e(s) = n and we
are in Case 2 at stage s)).

Suppose u > ¢, and Q(n) is satisfied at stage w. Thus there is
an ¢ ¢ A* with a M(n) marker on it such that oi(x)] and @,(x)c A%
We claim that x can never be put into A and the marker A(m) is
never removed from x so that @(n) remains satisfied for all s = u.
For suppose s = u, x € A°, and x has a Mn) marker on it so that Q(n)
is satisfied at stage s. If e(s + 1) is defined, then either e¢(s + 1) >n
or ¢(s + 1) =n and we are in Case 2 at stage s + 1. Hence marker
Mn) is not removed from a for the sake of a higher priority require-
ment and thus the only way = can be put into A*™ is if ¢ = b, for
some ke{f(s), f(s) + 1}. By our choice of s = u > ¢, f(s) > », and
thus the ye{bi ), b5 s} — {®} is not in 2Z(\(n), s). Thus \n)
must have a higher priority than the marker on y, if any, and hence
y and not x would be placed into A***. Thus it follows that after
stage u, no new A(n) marker is ever introduced so that Vvs(s = u —
2 (I (e(n), r(n)), 8) = 22T (c(n), r(n)), u). We have also shown that
xc A so that if x =b,, we need only choose p, > max (p, i, k) and
t, = u such that vs (s = ¢, — f(s) = p, and b}, = b, ,) and then p, and
t, will satisfy conditions (a")-(d’).

Now consider the case where there is no stage s = ¢, such that
Q(n) is satisfied at stage s. We claim that under this assumption,
there are only finitely many s = ¢, such that e(s) = n» and we are in
Case 1 at stage s. For suppose there are infinitely many such s; we
will show that 8 is recursive, contradicting our choice of B. First
we shall prove by induction that if  =t, and there is an zecA*
with a A(n) marker on it at stage u such that ¢,(x) = b}, ¢ SZ2(M(n), w),
then for all s> wu, there is a ye€ A’ with a A(n) marker on it at
stage s such that @,(y) = b, ¢ Z2(\Mn), s) and max (4, l) = max (4, k).
Let s = u and assume there is a y with the properties above. Now
either y & {b} s, b} s(s)41} for any < or if y € {b; ), b s.4:), then since
f(8) > p, the ¥ €{b] sy, 0% 511} — {y} does not have a higher priority
marker than A(n) on it. Thus at stage s 4+ 1, it cannot be that
Sf(8) < max (4, I) because then (y, #,(y¥)) would be a pair which could
satisfy @Q(n) and hence our choice of s = wu > t, would imply that
¢(s + 1) = n and that we are in Case 1 at stage s + 1. In such a
case, Q(n) would be satisfied at stage s + 1 which we assumed is
not the case. Thus f(s) > max(j,!) and @,(y) = b}, = b%%. Since
e(s + 1) = n, it follows that if e(s + 1) is defined, then y # z, y %=
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Pesrn(?) if we are in Case 1 and ¥ # 2, ¥ & P,r6en(?) if We are in
Case 2 at stage s - 1. Thus the only way ¥ could be put into A%
is if y €{b] sy b% fs)1} fOr some 1.

Since f(s) > p, M(n) is the highest priority marker that could
rest on either b ;,, or b ;... Thus the only way y could be put
into A*™ is if the ¥ €{b ), 0} ;1 — {¥} also has a \(n) marker on
it and @,(¥") = b3, . € 22 (M(n), 5) and max (@, m) = max (4, ). Moreover,
it must be the case that f(s) > max(a, m) and hence b, = bl
Thus either ¥ or % is in A" and has a A(n) marker on it at stage
s +1. Since Z£(\(n), s) = SZ(M(n), s +1), we can conclude that
Pu(Y), Pu(¥) € AT — SZ(M(n), s + 1) and hence either (¥, ¢,(¥)) or
(v, @.(y¥")) satisfies the required properties at stage s + 1.

We define I* = max ({max (7, k)|3y(y € A° and ¥ has a A(n) marker
on it at stage s and @,(y) = b5, ¢ 2 (W(n), 5)}). The immediately
preceding induction proved that if s = ¢, and [* is defined, then f(s) > [
and [I**' is defined and I°™* = I°*. Thus if s = ¢, and [° is defined, then
vu (4= s— f(u) >1*=19. Now suppose s, = ¢, e¢(s) =n, and we
are in Case 1 at stage s,. If z is defined as in Case 1, then ¢,(z)
must satisfy clause (1B) of the definition of e(s)) so that ¢,(2)¢
(), 8, — 1) = 2Z(\(n), s). Thus It must be defined. If s, > s,
and e(s,) = n and we are in Case 1 at s,, then let 2* denote the z
defined in Case 1 at stage s,. We know [***is defined, [*2™* = I*, and
@,(#*) must satisfy clause (1B) of the definition of e(s,); thus ¢,(z*) =
b m ¢ 7 (NMn), s, — 1) and max (a, m) > " + 1. Then z* has a \(n)
marker on it at stage s, and ¢,(z*) = b2, where max (e, g) > [*™' since
no more than one element is removed from any one column. Thus
I2 > [, It follows that if there are infinitely many s = ¢, such
that e¢(s) = n and we are in Case 1 at stage s, then we can find a
recursive sequence of stages ¢, £ s <8, < ---suchthat I <l2< ...,
But the existence of such a sequence would imply that 8 is recursive.
For to decide if 2 ¢ B, we need only find a stage s, such that [ =«
and then we know x ¢ B iff 2 €8 since Vs (s > s, — f(s) > [%).

Thus we have shown that if @Q(n) is never satisfied at any stage
s=t, then e(s) = n and we are in Case 1 at stage s for only finitely
many s = f,. Since new \(n) markers can be introduced only at stage
s’ where ¢(s) = n and we are in Case 1 at stage s, it follows that
there are ¢, and p, which satisfy conditions (a’)-(d’). However we
must still check that if Q(n) is never satisfied for any s = ¢, then
requirement Q(n) is met. Suppose requirement Q(n) fails. Thus
ACdp, and @, ] A is a 1 — 1 map from A into itself and
{a e Ala # @,(a)} is infinite. We have shown the existence of a stage
t, such that for all s = ¢, either e(s) > n or ¢(s) = n and we are in
Case 2 at stage s. But considerstaget,. Since ZZ27(\n), s)=2(\(n), t)
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for all s = ¢,, there must be an x € A such that  # @,(x) and p,(x) =
b, e SZ(M(n), t,) and if [*2 is defined, then max (7, k) > l'2 + 1. Now
suppose s > t, is a stage such that ¢ (x)]. Then @;(x) = b5, for some
m >k and either ¢ ({b] ;. b5 7} for any 7 or if x € {bi ), b5 rer41)s
then since f(s)> »,, the ¥ €{b s 0% riey11} — {2} does not have a higher
priority marker than M\(n) on it. Thus the pair (x, ¢,(x)) would be
candidates to satisfy Case 1 of the definition of e(s) for = unless
[ is defined and max (j, m) < I°"* + 1. Therefore, since our choice
of t, precludes us from being in Case 1 with e(s) = n at stage s, it
must be the case that max (4, m) < I*"* + 1. Now if I’2 was defined,
then [** > ['2, Thus we must conclude there is a stage s’ = ¢, such
that either [*~' was undefined and [* is defined or [*~' is defined
and ¥ > *"'. But both of these cases imply that we are in Case
1 with e(s’) = n a stage s’ which contradicts our choice of ¢,. Thus
requirement Q(n) must be met.

We have shown requirement Q(n) must have been met and there
are t, and p, satisfying conditions (a’)-(d"). The argument for require-
ment R(c(n), r(n)) is almost exactly the same as the one for requirement
@(n). Namely, we can show that if there is an s = ¢, such that
R(e(n), r(n)) is satisfied at stage s, then requirement R(c(n), r(n)) is
met and there is a stage ¢, and an integer p, such that (a”) for all
s=t, and j =m, no new 4(c(J), (5)), MJ), or I'(c(5), r(j)) marker
becomes active or old A(c(3), »(9)), M3), or I'(e(y), (7)) marker is
removed at stage s, (b)) if b, €22 (dle(n + 1), r(n + 1)), t,), then
max (%, k) < p,, (") Vs(s = t,— f(8) > py), and (d”) Vs(s = t, —e(s) =
n + 1). If there is no stage s = ¢, such that R(c(n), r(n)) is satisfied
at stage s, then we can argue that the assumption that there are
infinitely many s = ¢, such that we are in Case 2 with e¢(s) = n at
stage s leads to the contradiction that S is recursive. Hence there
can be only finitely many s such that we are in Case 2 with ¢(s) = »
at stage s and thus there are ¢, and p, satisfying conditions (a”)-(d").
Finally, we can argue that existence of ¢, and p, implies that require-
ment R(c(n), r(n)) is met. These arguments complete the induction
step for =.

THEOREM 2. Let B be any recursively enumerable set which s
not recursive and let P = (N, £*) be a recursive partial ordering.
Then there s a collection co-r.e. bi-dense subsets of Q with property
P, each Turing equivalent to B, such that under <, <, <,, this
collection is order isomorphic to P.

Proof. Since P is a recursive partial ordering, R, = {j e N|+ =* j}
is a recursive set for each 7. Let M be a map from N into the set
of all subsets of N defined by M(7) = U;z, @;. It easily follows that
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for each ¢, M(%) is a co-r.e. bi-dense subset of @ which has property
& and is Turing equivalent to 8. We shall prove that M is an
order preserving map from (N, <*) onto {M(7)|7€ N} under either
<; <, <, First we show M is 1 — 1. If M%) = M(k), then it
must be the case that R, = R,. Thus ieR,={jeN|j<*k} and
hence © <* k. Similarly k¥ <* ¢ so that ¥ = 7. Now suppose 7 =<*k
and ¢ # k; we show that M(z) <, M), M(7) <, M(k), and M(3) <, M(k).
R, is strictly contained in R, since ke R, — R,. Thus M(:) < M(k).
Moreover if W = Ujcz, N; and W = U3, N; where N; are the sets
defined in Theorem 1, then W and W are recursive sets. Also
W ME)=WNNjer, @=Njer, @;=M(7) and W Mlk)=WNUjer, &=
Ujecr—r, @ = M(k) — M(3). Thus W and W witness that M(7) <, M(k).
It follows immediately from the definitions of <,, <,, and <, that
Ve, BEQ@<;B—a<,8—a<,6). Thus we also have M%) <, M(k)
and M(v)<,M(k). Now suppose 1Z*k. Thus 7 ¢ R, so that a,N M(k)=
a;NUjer, @ = @. We claim that M(¢) <, M(k). For if M(:) <, M(k).
then there is a partial recursive function ¢ such that M(?) & dp and
@ M(3) is a 1 — 1 map from M(¢) into M(k). But then a;, & M(3)
and M%) S U,.; ¢; imply that @ [, is a 1 — 1 map from «; into
Uj.: @; and thus a; <, U;.; @;. But our construction in Theorem 1
ensured a;, £, U;.; @. Thus M(t) <, M(k) and hence M(3) <, M(k)
and M(3) <, M(k). Thus M is an order preserving map as claimed.

COROLLARY 2.1. Let B be any recursively enumerable set which
18 not recursive and let P be any countable partial ordering. Then
there is a collection of co-r.e. bi-demse subsets of Q with property
P, each Turing equivalent to B, such that under <, <, or <,
this collection 1s order tsomorphic to P.

Proof. It is a well known result of Mostowski [7] that there
is an W,-universal recursive partial ordering on N. Thus assume
that (N, =*)> is an W,universal recursive partial ordering on N and
let P=<{(%, =£**) be any countable partial ordering. If f: & — N
be an order preserving map from P to (N, <*), then Mof is an
order preserving map from P to {M(i)|i€ N} under either <, <,
or <,. Thus {M(4)|7€ N} is a collection which satisfies the properties
required by the corollary.

COROLLARY 2.2. Let a be any mnonzero r.e. degree. Then
(Bla, Q), =, {4,, £, and {4,, > are all YWruniversal partial
orderings.

Proof. (N, £*) be as in the proof of Corollary 2.1. Since 7 # j
implies either ¢ £* j or 7 £*1, it follows that either M(z) <, M(j) or
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M(35) <,M(z). Thus 25 j implies M(4) and M(J) are in distinct equiva-
lence classes mod~, and that the recursive equivalence types {M(¢))>
and {M(j)> are distinct. Also, since each M{(7) has property &7
each M(%) is isolated and thus M(%) € 4,.

3. Differences between the partial orderings. First we briefly
discuss the differences between <,, <., and <, on the co-r.e. subsets
of Q. We noted earlier that V&, BCQ (¢ <,8—a>,B—a<,B8). We
show that none of the reverse implications hold. Let N = {6, i, 2, .- -}
denote the natural numbers as they sit inside of Q. Since N is a
recursive subset of @, there is a 1 — 1 recursive function from @
onto N. Thus Q «, N but it is clearly the case that Q « . N. Next
consider the recursive sets K ={0,2,4, ---} and D ={1, 8,5, --.}.
Clearly E <,D but E <, D since EZ D.

Finally, we give an example to show that <, and <, do not
agree on A,. We start with a few definitions. A set & & N is cohesive
(r-cohesive) if a is infinite and there is no r.e. (recursive) set W such
that W @ and W N « are both infinite. (Note: it follows immediately
that if @ is cohesive or 7r-cohesive, then « is isolated.) A r.e. set
B is maximal (r-maximal) if B is cohesive (r-cohesive). Given r.e.
sets BC A we say B is a major subset of A if A — B is infinite
and for any r.e. set W such that WU A = N, N — (W U B) is finite.
Lachlan proves in [6] that every nonrecursive r.e. set has a major
subset and that a major subset of a maximal set is an #-maximal
set. So let A be a maximal set and B be a major subset of A. Let
a=A and 8= B. Thus « is cohesive and B is r-cohesive so that
{ay,{B>ed,. Also @ £ £ so the identity map shows that ¢ <.8
and hence (a) <,{B>. We shall show that {a) £,{B)>. Suppose
{a) £,{B>. Then there are sets &' c<{a) and B €{B) such that
& <,B'. Thus o < B and there are r.e. sets W, and W, such that
W.NnE =a and W,N B =B — a'. Also since o’ € (@) and 8 € {5,
there are 1 — 1 partial recursive funections ¢ and p such that a’ S dg
and ¢ @ is a 1 —1 map from a’ onto @ and 8 dp and p [ B is a
1—1 map from B onto B. It must be the case that 8'—a’ is infinite.
For suppose B’ — o' is finite. If a” = p(a’), then B — @ is finite
and hence AN a” and A N @ are infinite since AN B and A N B are
infinite. Now gop™ [ @” is a 1 — 1 map from a” onto @. Let U be
the r.e. set ANdgop™. Then gop™*(U) is a r.e. set such that
gop (U)Na2qep™(UNna”)andgep (U)Na2qop(UNa). Thus
gep (U)Na and gop (U) N @ are both infinite which violates the
fact that « is cohesive. Next, consider the r.e. sets U, =W, N dp
and U, =W, N op. Then p(U,) and p(U,) are r.e. sets and p(U) N B =2
p(U,NA) = p@) and p(U)NB 2 p(U,NL) = p(8 — ). Thus
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oU)N B and p(U,) N B are both infinite. Now let V, = BU p(U,)
and V, = BU p(U,). Note that U, UU, 2 dp 2 8 and hence p(U,) U
»(U,) 28 = N — B which implies V, UV,=N. From the enumerations
of V, and V,, we can construct recursive sets R, and R, as follows.
We put = in R, if z is enumerated in V, before it is enumerated in
V, and put « in R, otherwise. Then R, =R, and RNB=V,NB =
pU)NBand R,NB=V,NB =p(U,) NB. Thus R, violates the fact
that A is #-cohesive. Thus (a) £, (B> and we have proved the
following.

THEOREM 3. =, and =, do not agree on /..

We wish to thank A. B. Manaster for introducing us to this
problem and for helpful conversations.
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