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In this paper we are concerned with determining under
what conditions equality is obtained between two different
cluster sets of a function f at a point on the boundary of
its domain. Specifically for functions defined in the unit
disc D in the complex plane taking values in the extended
plane we show that the generalized angle cluster set equals
the generalized outer angular cluster set at all points of the
boundary of D except possibly for a o-porous set. The
definition of both generalized cluster sets includes the usual
Stolz angle definition but this result generalizes the known
results. In addition the proof is shorter than proofs of less
general results.

If f is required to be meromorphic in D then an application of
the principal result gives a decomposition of the boundary of D into
a set of generalized normal points of f, a set of generalized Picard
points of f, and a o-porous set. The third result gives a different
decomposition into generalized Plessner points; generalized pre-Meier
points and a o-porous set. Again these results generalize known
results.

The notion of porosity was introduced in 1967 by E. P. DolZenko.
While he defined porous sets in higher dimensions as well we shall
limit our considerations to C: [z = 1. Porous sets have zero Lebesgue
measure and are of first Baire category and in addition isolate
properties essential for certain cluster set considerations. In turn
this allows generalizations of results of Meier [10] and others. In
a series of papers Yoshida [14-20] extended results of Meier and
others by using the notion of porosity. Yoshida’s fundamental
lemma [15, Lemma 1] has a very complicated statement and proof.
In this paper we expand this lemma; offer a succinct proof which
hopefully illuminates better the character of the results; and apply
it to obtain generalizations of some of Yoshida’s results as well as
those of Dragosh ([6], [7]), Colwell [4] and Yanigahara [13].

2. Definitions and notation. Let D be the open unit dise and
P < C. For each ¢?c(C, let 7(0, ¢, P) be the length of the largest
subarc of the arc (e*?~*, ¢¥*9) which does not meet P. If no such
arc exists define 7(0, ¢, P) = 0. According to Dolzenko [5], P is porous
at e if
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(2.0) Tm &P - g,
-0 I
DEFINITION 1. A subset P C is a porous set if it is porous at
each peP; P is o-porous if it is the finite or countable union of
porous sets.

Condition (2.0) implies that the density of P at ¢ is not unity
and so a porous set must have zero Lebesgue measure as does a o-
porous set. Because a porous set is nowhere dense, a o-porous set
is also of first Baire category. Thus porosity contains both the
metric and topological features found in Meier-type theorems. It is
known [3, p. 75] there exists a residual set on C with zero Lebesgue
measure and so zero Lebesgue measure does not imply o-porosity.
The set of rationals is an example of a set of first category and
measure 0 which is not porous. The existence of a set which is of
first category and measure 0 but not o-porous was asserted by
DolZzenko [5, pg. 3] and was constructed by Zajicek [21, Prop. 5.2].

Zero capacity and o-porous sets do not have any obvious con-
nections. If E is the Cantor middle thirds set on C and ¢“c E, it
is easy to see that v(0, 1/6", E) = (1/6™)(2/3), n =1,2, --., and so F
is porous. On the other hand E is known to have positive capacity.
To complete the analysis we construct a residual set K (thus K is
not o-porous) which has zero capacity. It will be the intersection
of complements of Cantor-type set. For convenience we construct
the set on [0,1]. Begin by letting H, be the closed interval of
length 1/4 symmetric about 1/2; then let {F{*}, ¢ = 1, 2, be the closed
intervals symmetric about 1/2* and 3/2* respectively, with each inter-
val of equal length and chosen so that, setting H, = F® UF®»UH,,

1

caszgcapHI—k?.

This is clearly possible. Proceed inductively defining H, by adjoining
to H, ,, 2"' closed intervals of equal length symmetric about the
points 4/2*, ¢ =1,8, ---, 2" — 1 and chosen so that

1

capH, <capH,_, + o

The H,’s are closed sets with H, , < H, and thus setting K, =
U;:l Hn!

cap K, = limcap H, < liﬂ [(cap H,) + kz:“nz %} -

Nn—»00 k3

1

1 _
6y

16 °

Let K, be the set obtained by the same method as used for K, except
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that we begin by selecting the initial interval about 1/2 with capacity
1/82, and all subsequent closed intervals symmetric about the same
midpoints but chosen so that the new H,’s satisfy

1

capH,<capH, , + preg

Thus K, & K, and cap K, < 9/2°. Defining K,, » > 2, in the same

fashion and setting K = Ny, K,, we have
capK=0.

Because each K, is a residual set so also is K. (I wish to thank
Professor W. Schneider for suggesting this construction.)

For future use we note that if P is not o-porous then the sub-
set P* of P of all points at which P is not porous is uncountable.
Otherwise since P — P* is porous—as is easily seen—and a singleton
set is obviously porous we would have that P is o-porous.

DEFINITION 2. If a property & holds for all points of E < C
except possibly on a o-porous subset of E, we say that < holds
strongly on E, or that strongly on E points satisfy property ..

Substs of C which are not o-porous have the happy property
of exerting strong collective influence on the boundary behavior of
functions f at certain points of C. This is best illustrated by
Theorem 3, although out first lemma indicates the basic connection
between porosity and boundary behavior. This lemma was proved
in the angular case by Dolzenko [5, Eng. translation, pg. 5], and in
a more general setting by Yoshida [15, Lemma 1], although Dragosh
[6, Lemmata 4, 5] proved a horocyclic version using metric density
instead of porosity. We present it in a still more general setting
and a result of Satyanarayana and Weiss [12, Theorem 5] both
simplifies the proof and extends Yoshida’s result. (We thank Pro-
fessor L. Garbanati for this last reference.)

We wish to define approach to a point of C inside a reasonably
nice subdomain of D and so let 4(p) be a real valued function defined
in some open interval I, on the real line symmetric about 0. On I,
we require that

(i) h be continuous;
2.1)  (ii) klp) = k(—9);
(i) A(0) =0, (1) =1, h(p) < hp) <1, 0 = @, < P,

Call such an h an approach function. In addition if 4''(p) exists for
pel, =0, and is strictly positive, then & is said to be a convex
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approach function. An approach function h defines a boundary curve
at ¢?eC as follows. Let ¢ — e, and set

(2.2) 2p; 0, ) = (1 — k(@ — 6))e* .

Then z(p; 0, h) is a symmetric curve with respect to the radius
at ¢ and determines a boundary domain at ¢%, according to the
following

(2.3) 20, h) = {re*|r <1 — hip — 0)}.

Note that when |I,| <7, 2 is convex if h is. For 07 <1, a
truncated boundary domain is

(2.4) 2,6, k) = 26, W) {lz] = 7} .

Henceforth if A< D, A, will mean AN{jz]=r}. If hi(p) =o',
q = 0, the case ¢ = 0, defines the usual nontangential approach; for
q = 1, we have horocyclic approach; and for arbitrary ¢ = 0, the
situation considered by Yoshida. For ¢ > 0 it is necessary to define
right and left h-angles at e¢’. To this end for ¢ > 0 put 2°(p) = h(p/c),
and for 0 < @ < b, define the right angle

(2.5) R.57(6, @, b, h) = {re¥|1 —h(p — 0) <r <1 —h'(p —0);p =0},

while a left h-angle L. (0, a, b, h) is defined as in (2.5) except ¢ = 0
is replaced by ¢ £64. A reduced right h-angle Ra(6, a, b, h) (or
reduced left h-angle) is defined by replacing h* and h® in (2.5) by
h/a and h/b respectively. Any choice of 0 < a < b defines a right
and left A-angle and we omit any of the parameters in the symbol
if we can safely ignore them.

The reduced h-angle « is so called because for a convex approach
function %, and any 0 < a < b,

2a 2b
2.6 Ra(o, _2e , h<a+bv2) C R./(6,a, b, b) ;
(2.6) a+ba+bd ( )

with left r-angles also satisfying (2.6). To see this we combine the
definition of angles in (2.5) and the fact that for convex approach
functions A’ is increasing for @ # 0 to argue via the generalized
mean value theorem that

a-{—bh<(<p—0)2> <a+b>( 2 >h,<(<p_—?)2>

2a a+b/ \ 2¢ /\a+b a+b
2.7 h(¢;€> = %h'<2§i> >1.

A similar result holds for the other pair of boundary curves. Because
et/ ig g convex approach function the result of Satyanaraya and
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Weiss [12, Theorem 5] implies that the hyperbolic Hausdorff distance
at ¢ between the boundary curves of the reduced h-angle in (2.6)
is asymptotic to 1/21log (1 + 2|a — bl/1 — 2]la — b|) as [z — 1, and so
not only does a right h-angle defined by a convex h contain a reduced
h-angle but one of a positive hyperbolic width.

Let p(a, b) denote the hyperbolic distance in D and N(a, s) =
{be D|p(a, b) < s}. The above result reinterpreted says that a
(reduced) h-angle at e**—provided % is convex—contains (close to e¥)
discs of a fixed hyperbolic radius. Finally note that if A(6) = ko,
g =0, k>0, then h-angles and reduced h-angles are equivalent.

3. Fundamental lemma. The lemma first is given in a set-
theoretic fashion using approach functions, and then in a hyperbolic
geometric setting using convex approach functions.

LEMMA 1 (Spotlight Lemma). Let P < C, such that P is mnot
porous at €. Given an approach function h and positive numbers
a < b, v, e, there s a value r > 0, such that
(3.0) 2,06, U RBZ(p, @, b, ) ;

elPep

and the same result holds for left h-angles.

REMARK. The right h-angles are congruent under rotation and
can be thought of as beams of light with a positive width emanat-
ing from each point of P. The beams are hyperbolically wide if &
is convex. The lemma says that if all the lights are turned on there
is an 7 > 0 such that the set 2,00, h°) is fully illuminated.

Proof. It is easy to show that it is sufficient to prove the lemma
for the case ¢ =1, and 6§ = 0. We first consider the right angle
situation. Suppose the lemma is false. Then for some choice of
0<a<b and 7 >0, there is a sequence {z,} tending to 1 inside
£2(0, h) such that
(3'1> 2 ¢ U R'—%'(ay a, b, h) ’

etlep
that is, the z, lie in the umbra of all right h-angle lights at P. Let
2(p; 0%, h*) and z(p; 0%, h*) be the unique h-angle boundary curves
through z,. See Figure 1 for a description of these and other

pertinent sets. Assume first that 6% < 62 < 0. The arc (¢"%, ¢%%) then
lies in the complement of P. We will show that the ratio

g — 65
On

(3.2)
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FIGURE 1

is bounded away from zero which contradicts the porosity hypothesis.
The two curves z(p; 6%, h*) and z(p; 6%, h*) were chosen to meet at
z, = |z,]e*». Thus

(3.3) 2 = 1 — h(%) —1- h<?—;6—3‘> .

On the boundaries of right h-angles h™! exists and is positive. From
(3.3)

. A . b
(3.4) Po—On vy — g, = o= On

a b
Since z,€2(0, h) we have that |z, <1 — h(p,) and after applying
h~' to this inequality

(e8]
3.5 S ) N |
(8:5) )

Using (3.4) and (3.5), the ratio in (3.2) equals

b—a b—a
0.
Py, >b+1>

hH(L — 24])

Thus a contradiction is reached. If 0 < 6% < 02 a lower bound for
(62 — 62)/62 is found to be b — aja + 1, while if 8, <0 <62, P is
porous at 1 by definition. The proof for left angles is done by an
entirely similar analysis.
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LEMMA 2. Let P < C, and suppose P ts not porous at e. Let
h be a convex approach function and 0 < a <b,n >0 and ¢ > 0 be
given. Then there exists r > 0, s > 0, such that for each sequence
{z,} tending to e* in 2.0, h°), there is a corresponding sequence
{et*=} in P, with the property that

(3'6) N(zm S) ; R*%’(@m a, b, h) ’ (le n.

A corresponding statement holds for left h-angles as well.

Proof. Choose 0 <a<a <b <b. Then by Lemma 1 the
collection of rays R.&7.(p, o', b, h), e¢* € P, cover 2.0, h°) for some
1 > 0. Select a point ¢»e P for which 2,e R (p,, o/, b, h). Of
course z, is also in the larger ray R.%.(p,, @, b, h)—larger by a
fixed hyperbolic distance according to the remarks following (2.7)
and the observation that each of the two sets between the larger
and smaller rays is itself a ray. Consequently R.%7.(p,, a, b, h)
contains N(z,, s) from somc s > 0, and all %, and the right A-angle
statement of the lemma is proved. A similar argment validates the
left angle case.

If h, and h, are two approach functions with h, < h,, and if
some collection of h, rays cover £,0, h,), the same collection also
cover 2,06, h,)). For example if a collection of horocyclic rays cover
an oricyclic domain they also cover any angular domain.

4. Consequences of the spotlight lemmma. The first consequence
of Lemma 1 is a statement about cluster sets of arbitrary functions
and generalizes the results of Dragosh [6, Lemma 6], Doleznko [5,
Theorem 1], Yoshida [15, Theorem 2] and Yanagihara [13]. If E€ D
such that e ¢ £ N C, then the cluster set of a function f along E
at ¢” will be denoted by C(f, 6, E), with again any parameter omitted
if safely done. And let W be the extended plane.

THEOREM 1. Let f be defined in D taking values in W, and h
o gwen approach function. Then strongly on C, for any choice of
0<a<b, and ¢ >0,

(4'0) C(f’ '/v(ﬁ, a, b; h’)) = C(f) ‘Q(&’ ho)) .

Proof. There is no loss of generality in assuming all angles are
right h-angles. Further by a simple argument it is easy to show
that we need prove the result only in the case ¢, b, and ¢ are rational
with b < ¢, and so we suppose the result is false in this case. Then
for some rational numbers 0 < @ < b < ¢ there exists a non-og-porous
set £ & C such that for each ¢ ¢ E the set on the left in (4.0) is a
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proper subset of the set on the right. Select any countably dense
subset P of W and let B be the positive rationals. Then ¢ ¢ F if
and only if for some choice of p,€ P and 7,€ R the closed disk
D(p,, 7,) with center p, and radius 7, is entirely contained in the
complement of f(.%.(6, @, b, b)) for some rational '€ R, and such
that D(py, 7,/2) N C(f, 200, k™)) = @. The set of all e?e E which
satisfies the above situation relative to the parameters (e, b, ¢, 7/, D,, 7,)
we denote by E(a, b, ¢, 7/, Do, 7). Thus E is the countable union of
all such E(a, b, ¢, 7, Dy, 7):

(4.1) E = UE(ay by c, 7", Dos To) .

Then at least one set in the union (4.1) is not porous. Let
E(a, b, ¢, 7, p, 7)) = E be such a nonporous set and select a point
¢i?c £ at which E is not porous. From Lemma 1 there is some
value r > 0 for which

(4.2) y 7. (@, a, b, h) 2 2,06, h°) .

(e
From our definition of £ we know that if ¢ ¢ £ then f(.%.(p, a, b, h))
omits the closed disk with center p, and radius 7, and so (4.2) implies
that f(2,(0, h°)) also omits this same closed disk. But then C(f, 24, 1°))
does not meet D(p,, 7,/2) contrary to the fact that e’ e . Indeed E
is o-porous.

To state some immediate consequences of the lemma in familiar
form we need some more definitions. Let % be an approach function
and f a function in D with values in W. A point ¢” is called an
h-Plessner (h-Fatou) point of f if C(f, .&7(6, b)) = W(C(f, 76, h)) =
{w,}), for all h-angles at e”. For h(d) = 6 we obtain the standard
Plessner (Fatou) point. The h-Fatou value w, is to be independent
of the particular h-angle used. If we use reduced h-angles in place
of standard h-angles in the above we say ¢ is a reduced h-Plessner
or reduced h-Fatouw point.

Henceforth we shall always assume a sequence {h,} of approach
functions has the two additional properties that &, = h,.,, and
h(0) = 6. If €“ is an h,-Plessner (h,-Fatou) point of f for every
h.€ 57, we say €% is an S7-Plessner (S7-Fatou) point of f. In the
Fatou case we do not assume that the various #,-Fatou values are
equal. The sequence of polynomial approach functions h,(8) = 6%,
n=1,2 ---, we call &. Finally let K,(f) be the set of all points
¢ at which the cluster sets of f along any two h-angles at e” are
equal, and put K.(f) = Nie- K»(f). Because a countable union of
o-porous sets is again o-porous Theorem 1 can be rephrased as
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THEOREM 1'. Let 57 = {h,} be o sequence of approach functions
and f a function in D. Then strongly (1) Plessner points of f are
S#-Plessner points of f; (ii) for any fixed n the h,-Fatou points of
f are also h,-Fatou points for any k < n (with the same h,-Fatou
value); (iil) K, (f) is all of C.

To arrive at Meier-type theorems we need to limit ourselves to
meromorphic functions and state a few more definitions. For ¢ € C,
let A(f, 6, h) be the set of all values we W such that w is assumed
infinitely often by f in each (right or left) h-angle at ¢, h an
approach function. If we use only right (left) s-angles in the above
we write RA(S, 6, h) (LA(f, 6, k). If W — A(f, 6, h) contains at most
two values then ¢ is called an h-Picard point of f. Let y be the
chordal distance on W. A point ¢ is an h-normal point of f
provided for each ¢ > 0, and for any two sequences {z,} and {z.}
with z,e€20, h°) all =, the property p(z,, 2.) —0, »— o implies
1(f(2,), f(z) — 0, m-> co. (In the angular case this is a definition
of J. M. Anderson [1, p. 103].) If &~ = {h,} is a sequence of ap-
proach functions and e is an h,-Picard (h,-normal) point of f for
each £, € 57 then ¢ is said to be an S#-Picard (S#/-normal) point
of f.

THEOREM 2. Let f be meromorphic in D and h a convexr ap-
proach function. Let Q S C be a set of non-h-Picard points of f.
If Q is not o-porous there exists a nondenumerable set Q* C Q of
h-normal points of f.

Proof. 1In the fashion of Theorem 1 — and following Meier [10] —
we write @ as a countable union of fairly nice sets. Let R be the
positive rationals. In addition let .7~ be the (countable) collection
of triples {D,, D,, D;}, where each D,, ¢ =1, 2, 3, is a closed disc in
W with rational center and radius and the triple of sets are
pairwise disjoint. Thus there exists a d, > 0 such that if T =
(D, D,, D,), then (D, D;) = d;, %+ j. Distinguish the set of all
points ¢** €@ at which f omits some three values w{®, ¢ =1, 2, 3,
(all distinet), respectively in the three truncated h-angles at e”,
o, (P, Ty, Ty, b) €ach 7, € R and wi¥’ € D;, 1 =1, 2, 8, for some T =
(D, D,, D,)e.7. Thus

(4.3) 2w, wi) = dy T 7 ,J3=123.

The three h-angles associated with the triad (w!?, wi, wi’) are one
of eight possible combinations of #-angles according as to whether

they are left or right angles. We use £ =1,2, ---, 8 to designate
the combinations.



210 D. C. RUNG

Label the set of all e¢¥ €@ satisfying the above conditions as
QUrr e, T, k). Then @ is the countable union of all such sets.
Consequently at least one set in the union, say @ is not porous, and
let @* be the nondenumerable subset of @ at which @ is not porous.
To show any e’ c@* is a h-normal point of f fix a domain of the
form 2(6, h°) and consider two sequences {z,}, {z.}, with z, € 2(6, r°)
and 0(z,, 2,) — 0, n — . Notice that for each value ¢ =1, 2, 3, the
corresponding collection of h-angles emanating from points of @ is
composed of all right or left h-angles and so by Lemma 2 where are
three sequences in Q, e*’if), 1 =1, 2, 3, such that for all » > N,, and
some 0, > 0

N(z., 0:) & -%M-(¢(ni), Taiy Tair B) 1=1,2,3.

Thus f omits all three values {w¢+'}, ¢ =1,2 3, in N(z,, 05, 0o =
minp;,, 1 =1, 2,3, for n sufficiently large, and the triad of points
{w‘,?i»“} satisfies (4.3) for fixed d,. According to Gauthier [8, p. 281},
this implies that y(f(2,), f(z.)) — 0, » — o, that is, ¢” is an h-normal
point. The result of Gauthier cited here involves the p-sequences
of Lange [9].

This result which generalizes Dragosh [7, Theorem 9] and Yoshi-
da [17, Theorem 4] can be phrased as a strong decomposition of C.

THEOREM 2'. Let f be meromorphic in D and 57 a sequence
of convex approach functions. Then strongly on C points are either
A Picard points of f or S7~-normal points of f.

Proof. For any h € 57 the set of points of C which are neither
h-Picard points nor A-normal points of f must be o-porous else by
Theorem 2 that set contains h-normal points.

The theorems of Meier, Yoshida, and to some extent Dragosh
previously mentioned arise by exploiting the behavior of f at an
h-normal point. To generalize and strengthen these theorems a few
more standard cluster sets need to be defined. Because we rely on
the usual normal function arguments we sometimes have to use both
convex approach functions and reduced angles in order to insure that
these angles have a positive hyperbolic distance from boundary to
boundary. Again we mention that for approach functions of the
form h(6) = 6**, ¢ = 0, h-angles and reduced h-angles are equivalent.

Let 2 be a given approach function and f a complex function
in D. For e?ecC, let

w(f, 0, h) = [;] cif, 0,7,
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where the intersection is taken over all curves 7 which tend to e*
and which have the property that each 7 is contained in its own
reduced h-angle at e¢¥. A curve tending to ¢¥ is said to be an h-
admissible curve if there is a nested sequence of reduced angles at
e {a(0, a,, b,, h)} with b, — a, — 0, such that each angle contains a
truncated subarc v, of 7. Let

n*(f, 0, k) = NN C(f, 0, h)

where the intersection is over all h-admissible curves 7 at e If
we restrict the reduced angles to be either all right or left reduced
n-angles in these two definitions we write Rz, Rz* or Lw, Lzn* as
the corresponding cluster sets. Suppose h is a convex approach
function and e¢” is both a reduced %Z-Plessner and an h-normal point
of f. It is easy to see that

*(f,0,h)y = W.
In addition if there is some value w,¢ RA(f, 6, k), then we can prove
(4.4) w, € Re(f, 6, h) ;

with a similar result holding for left h-angles. To show (4.4) con-
sider the reduced (truncated) right h-angle in which f omits w,.
Because ¢ is a reduced Z-Plessner point of f we can find a sequence
{#,} in a smaller h-angle inside of which f(z,) — w, and so there is a
0, > 0 such that f omits w, in N(z, 0,) for = sufficiently large.
Because ¢ is an h-normal point this implies that in any 2(4, r°)
containing the reduced right angle f tends to w, in U.,-, N(z,, 0),
for any choice of 0 > 0. Each curve tending to ¢ in any reduced
right h-angle meets each of the sets N(z,, o) for some value p and
n large. Thus w, is in the cluster set of f along all curves in the
reduced right angle and (4.4) holds. These remarks together with
Theorem 2 give

THEOREM 3. Let f be meromorphic in D and h a convex ap-
proach function. Then in o strong sense the reduced h-Plessner
poiwnts of f are either h-Picard points or points e at which both

(i) =*(f,6,h)=W;

(ii) RA(Sf, 6, h) U Rr(f, 0, h) = W = LA(f, 0, h) U Lz(f, 6, h).

This theorem strengthens results of Colwell [4, Theorem 3] and
Dragosh [7, Theorem 10 (i), (ii), (iii)] in the case h(f) = 4; and
Yoshida’s result [18, Theorem 1], if A(d) = 6**%, ¢ = 0.

We could restate Theorem 3 for a sequence of approach functions
but do so only for the polynomial sequence .&° for then reduced
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angles and angles are equivalent and a more familiar appearing
theorem results.

THEOREM 3'. Let f be meromorphic in D. Then in a strong
sense the Plessner points of f are either F-Picard points or points
e at which both

(i) =n*(f, 6, h,) = W, and

(ii) RAY, 6, h,) U Rx(f, 0, h,) = W = LA, 6, h,) U Lz(f, 6, h,),
for each h, <€ 7.

We close by showing how our results contain result of Yoshida
on pre-Meier points previously referred to. Theorem 1’ tells us that
strongly points of C are K,(f) points while Theorem 2’ say that
strongly points are either A-Picard or h-normal point. If we re-
striet i(6) = 6°%, ¢ = 0, and suppose e* is an h-normal point contained
in K,(f) but is not an h-Plessner point, then for any angle «a(4, h)

(4.5) *(f, 0, h) = C(f, a0, b)) & W .

A point satisfying (4.5) is called an h-pre-Meier point. Of course
any h-Picard point of f is already an h-Plessner point of f so we
have shown the result of Yoshida in [19, Theorem 1].

THEOREM 4. Let f be meromorphic wn D and h(0) = 67, q = 0,
then strongly on C points are either h-Plessner points or h-pre-Meter

points of f.

5. Although we did not use the idea of order of curves, for
any approach function % the two boundary curves of reduced h-angles
have the same order of contact. According to an earlier result of
Seidel and Walsh [11, p. 200] the non-Eueclidean Frechet distance
(and hence the non-Euclidean Hausdorff distance) between the two
boundary curves is finite.

I wish to thank Professor Charles Belna for his assistance in the
preparation of this paper.
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