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This paper is concerned with a class of algebraic sur-
faces of general type constructed from indefinite division
guaternion algebras whose centers are totally real number
fields. These surfaces are quotients of the product of two
upper half planes by Fuchsian groups obtained from the unit
groups of maximal orders of such algebras. In the case
where the field is real quadratic, we give smoothness condi-
tions for the resulting surfaces and list all smooth surfaces
of geometric genus 0. Finally, we give a lower bound for
the torsion part of H*(Z).

0. Introduction. From the unit group of a maximal order in
a suitable quaternion algebra A over a totally real number field %,
one can construct certain Fuchsian groups I” which can be identified
with discrete subgroups of GL;(R)*. I acts via fractional linear
transformation on the product of % copies of the upper half plane
to yield a quotient which is known to be a projective algebraic
variety. If one takes A to be the total matrix algebra M,(k), then
one obtains the Hilbert modular group of % and the corresponding
Hilbert modular variety.

In [4] Hirzebruch studied Hilbert modular surfaces as algebro-
geometric and number theoretic objects. The present investigation
is primarily geometric, and is concerned with the case where A is
division. Unlike Hilbert modular wvarieties, if A is division the
varieties are automatically compact. This avoids the necessity to
first compactify and then resolve the resulting cusp singularities.

By a surface we mean a nonsingular, two-dimensional projective
algebraic variety. The present surfaces are of general type and
have irregularity 0. Those of geometric genus 0 have ¢? = 8, which
distinguishes them topologically from previously known geometric
genus 0 general type surfaces which all had ¢ < 3.

In §1 we describe the basic objects, and in §§2 and 3 we
determine the numerical invariants of the surfaces. Necessary and
sufficient conditions for smoothness are given in §4. In §5 we give
a lower bound for the torsion part of H*Z), and in the final section
we list all examples of geometric genus 0 surfaces of this type
arising from real quadratic fields.

This paper is in part based on the author’s doctoral dissertation
submitted to the State University of New York at Stony Brook. I
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1. Preliminaries. Let A be a division quaternion algebra with
center a totally real number field & of degree m over Q. Fix a
maximal order O of A and let o denote the ring of integers of k.
For a prime p of %, k, will denote the p-adic completion of %, and
A, will denote the #k,-algebra A@,k,. A is determined up to
isomorphism by its center &k and a finite set S(A4) of prime divisors
of k& for which A, is division. A4 is said to ramify at these primes.
For all other p, A, is isomorphic to M,(k,). Denote this algebra by
Ak, S(A)).

Assume that the first » infinite primes are not in S(A), while
the remaining m — n are in S(A). We then have an isomorphism
f of AR with M,(R)"@ H™ " the direct sum of % copies of
M,(R) and m — n copies of the Hamiltonian quaternions H. The
subgroup At of A consisting of those units of A having totally
positive reduced norm can be identified via f with a subgroup of
GLf(R)" x H* ", and projecting to the first n factors gives an
injection of A" into GL;(R)". Identify A" with its image in GL;(R)".
Let U(O) denote the units of O and I'(1) denote those units of O,
having reduced norm (nr) 1. I'(1) is a discrete subgroup of SL,(R).
Let E= U(®)N A" and let B denote the normalizer of © in A".
The centers of I'(1), E and B are {1}, U, the units of o, and k%,
respectively. Let j denote the map “modulo center.” The j(I(1)),
j(B) and j(B) act faithfully on H" the product of » upper half planes
via fractional linear transformation in each component. If A is
division, that is, if S(A4) is nonempty, the quotient space is compact.
Moreover, since H” is complex analytically homeomorphic to a bound-
ed domain in C®, the quotient is a projective algebraic variety.
When there is no danger of confusion we write I" for j(I").

The following theorem is fundamental.

THEOREM 1.1 (Eichler-Strong Approximation). Let 9 be a two-
sided integral O-ideal. Let b be an element of 0 whose tmages via
all embeddings of k into R corresponding to ramified infinite primes
of A are positive. Let o be an element of O such that nr(a) =
b(mod™* ANo). Then there exists B in O such that 8 = a(mod A) and
nr(B) = b. (Recall that mod* is multiplicative congruence.)

Proof. See Eichler [2].

COROLLARY 1.2. For k a real quadratic field and a quaternion
algebra over k unramified at both real primes nr(UQ)) = U,.
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Proof. Put Y = Oand @ = 1. Then, for any b U,, 1 —beo=
©ONo and there exists B eo such that nr(8) =b completing the proof.

For the remainder of this section assume % to be real quadratic
and n =2. Let U, be the units of & and let U; be the totally
positive units of k. J(U,-I'Q)) = j(I'(1)). Therefore, j(E)/j(I'(Q)) =
E/U,-I'1). Consider the following exact sequences in which the first
maps are inclusions and the second are reduced norms.

1—1I'(1) E Ui > 1
1—7I'1l)— U,-I'Q)— Ui —>1

Thus, jE)/ Q)= E/U,-I'Q) = Uf/U:. U, is isomorphic to the
product of {1} and an infinite cyclic group generated by a funda-
mental unit ¢, of U,. Thus we have:

PROPOSITION 1.8. Let k be a real quadratic field. If ¢, can be
chosen to be totally positive then F(I'(1)) ts an index 2 subgroup of
J(E). If ¢, cannot be chosen to be totally positive then j(I'(1)) and
J(E) coincide.

The elements of B normalize © and are therefore generators of
two-sided principal ideals of ©O. The set of all (two-sided) ©O-ideals
forms an abelian group generated by the maximal ideals, and the
decomposition of an ideal as a product of maximal ideals is unique.
Corresponding to each maximal o-ideal p there is a unique maximal
©O-ideal such that nr(P) = p. In addition, if pe S(4), pO = B and if
pe S(A4), pO = P. Thus, an O-ideal has a unique expression of the
form B, P, --- P, a where a is an ideal of k, the P, correspond to
p, in S(4), and {3, ---, %,} is a subset of {1, ---, |S(A4)|}.

Assume that % has class number 1. This implies that the class
number of A is also 1. Choose generators /I, for the B,. For a ¢ B,
aO =11, --- I, a O with some @ ¢ k*. Thus, @ = II,, --- II, \é Where
ec U(®) and nek*. Then B has the description:

B={l; - I, e|)nek* ec UL) and
nr(ll; --- II, ¢) is totally positive} .

From this it follows that j(B)/j(E) is isomorphic to a finite direct
product of groups of order 2.

Choose generators 7, of the p, € S(4) such that nr(l,) = rw,. If
all of the w; are totally positive, then j(B)/j(E) has order 2541, If
¢, is totally positive and some I, is not totally positive, then exactly
half of the products of the /7, will be admissable coset representative
for j(B)/j(E). Therefore, the order will be 2!~ Corollary 1.2



224 IRA H. SHAVEL

guarantees the existence of ¢, and 7 in U(D) with nr(e) = ¢, and

nr(n) = —1. If ¢, is not totally positive and some nr(Il,, ---II,) is

not totally positive, then either n»r(lf, --- Il &) or mr(ll; --- II; &)

will be totally positive. Thus, all possible products of the I7, lead

to admissable coset representatives and j(B)/j(#) has order 251,
Summarizing we have:

ProposiTION 1.4. Jj(B)/j(E) is isomorphic to the product of 1
cyclic groups of order 2 where | is given by:

/1S(A)| of e, 18 mot totally positive, or if ¢,
18 totally positive and so are all of the
l = T,

IS(A) — 1  4f e, 1s totally positive and some
7, s mot totally positive.

2. The numerical invariants. Throughout this section, I' will
be a discrete subgroup of GLj(R)" commensurable with I'(1) acting
freely on H*. U(I") will denote the surface ['\H".

Let 27 be the sheaf of germs of holomorphic p-forms on U(I")
and let h*? be the (complex) dimension of HY(U, 27). Since U(I') is
Kihler, by the Hodge theory one has A”? = h%? and b = 3,,,-, h™".
As a consequence of the universal coefficient theorem and Poincaré
duality b'=5b°. The geometric genus p,, irregularity ¢, and arithmetic
genus p, of U(") are h*%, h"' and A" — A™' + A"°, respectively.

As a transformation group I' can be identified with an irreduci-
ble subgroup of SL,(R)" (see Shimizu [7]). This allows us to apply
the following proposition which is a corollary of a theorem of Matsu-
shima and Shimura [6].

PROPOSITION 2.1. Let I' be a discrete irreducible subgroup of
SL.(R)" acting freely on H™ with compact quotient. Then for I'\H":

(a) h»*=0 for p+#q and p + q¢ #= n,

(b) hoot = (Z)(an_q,q + 1)
where <Z> 18 the qth binomial coefficient and d,; is the Kronecker
delta symbol.

COROLLARY 2.2. For U(I'), h>* =0 and h"* = 2p, + 2.

Thus, b* = 4p, + 2 and b* = b* = 0. Since U(I') is connected and
orientable, b* = b* = 1. To summarize:

THEOREM 2.3. For U(l'), the Euler number E = 4p, + 4, p, =
p, + 1, B =4p, + 2 and q = 0.
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Let T* be the holomorphic cotangent bundle over U(l") and K
the canonical line bundle £2T* over U(l'). Let F be a complex
analytic line bundle over a complex manifold U. Let ¢(F) denote its
Chern class and let ¢, denote the ith Chern class of U. For simplicity,
put H?(U, F') for the pth cohomology group of U with coefficients
in the sheaf of germs of local holomorphic sections of F. The mth
plurigenus of U(I") P, is the dimension of H(U(I"), mS).

THEOREM 2.4. (Riemann-Roch-Kodaira-Hirzebruch) For an alge-
braic surface V and o complex analytic line bundle F over V

(V, F)—h(V, F)+ h(V, F)
1

= SH(F + olF)-c) + I]'E(cf + )

where h*(V, F) is the dimension of H*(V, F).
Proof. See Hirzebruch [3].

For V= U, ¢(K) = —¢, and ¢, = E(UI")) = E. Putting F = K
we have:

R(UI), K) — (UI), K) + XU, K)
= Lok ) + o(K)-0) + I1§<cf + B)

1
~leim.
A

(U, K) = h*»* for 1=10,1,2. Thus, p, +1=p, = 1/12(c} + E)
and ¢ = 8p,.

To determine the plurigenera, apply the Reimann-Roch theorem
to the line bundle mK for m = 2, and note that for the quotient V

of a discontinuous group of automorphisms acting freely on a
bounded domain in C?, AYV, mK) and h*V, mK) both vanish for
m = 2.

P, = WU, mK) = é—(c(mK)z + e(mK)-c) + ilé(cf +¢)

= —;—(mch — med) + p,

= 4p,(m* — m) + P,
= (2m — 1)’p, .

We summarize:
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THEOREM 2.5. For U)
(a) ¢l =8p,
(b) P, = p,2m — 1), m = 2.

COROLLARY 2.6. U(I") s of general type.

Proof. ¢ and P, are both positive. U(I’) has no exceptional
curves of the first kind. In fact, U(l") is a minimal model. To see
this, suppose there were a rational curve on U(I'). Such a curve
would be given by a nonconstant holomorphic map of PYC) into U.
This would lift to a holomorphic map into H® which would, by
Liouville’s theorem, be constant. Thus, there can be no rational
curves on U(I"), and by Kodaira’s definition U(I") is of general type.

3. The Euler number. Let A have center k& a totally real
field of degree m and let S(A) be nonempty. Assume further that
A is unramified at the » real primes corresponding to the n em-
beddings .., +** V. of &k to R, and ramifies at the remaining m — »
real primes corresponding to Y iy ¢ * Voo, me

The Gauss-Bonnet form on H" is

® = <_—_1.>n_dx1__/\ dy.l A vee A ___dx% A d..__yn

o " - where 2z, =z, +1V —1y,.
1 n

Under the assumption that I'(1) acts freely on H", the Euler number
of the quotient variety I'(1)\H" can be computed from the Gauss-
Bonnet formula

(1) E(I' (1) = SF"’

where I is a fundamental domain for the action of I'(1). It suffices
to determine E(I’(1)), since the Euler number is multiplicative in
finite unramified covers, i.e., if 'O (1), I" acts freely and [I": I'(1)]=1,
then [E(I") = E(I’(1)). The calculation of the integral in (1) is given
explicitly by Shimizu [7] in terms of the value of the Dedekind zeta
function ,(s) at 2:

_ (=12 (k)E(2) _
(2) E(I'(1) = U UJh(A) AL (Np— 1)

where h(k) is the class number of k, h(A) is the class number of a
maximal order of A, d is the absolute discriminant of %, U; are
the units ¢ of k for which 7. .(&) >0, n +1=17=m, S'(A) is the
subset of S(A) consisting of the finite primes, and N is the norm
map from k to Q. h(A) is the same for all maximal orders and
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coincides with the order h,k) of the Ray class group of ¥ modulo
S(A) — S'(A). hk)-[U,: Ui} = h(k)-2™*. TUsing this (2) becomes

(3) B(r) = ZU2TN@ o Ny
T pe8’(4)

For the remainder of this section, let % be the real quadratic
field QV/'d) and put m = n = 2. ,(s) = {(s)-L(s, ), where {(s) is
the Riemann zeta function and L(s, y) is the Dirichlet L-series with
real numerical character y having conductor d. For positive integral
values of s, Leopoldt [5] gives the following formula:

<~2£>2n BZ,Z%

_
L2n, y) = i) @n)

2

where 7(¥) is the Gauss sum >.=} x(r)e***/? and B, ,, is the generalized
Bernoulli number which is given by the MacLaurin expansion

d—1
4 < BZI l ;X(r)tert
(4) ZZ::‘) A v= et — 1

Noting that E(I'(1)) is a_ﬂpositive integer (see Theorem 2.3), using
the fact that |7(y)| =1 d and taking absolute values of both sides
of (3) we obtain

THEOREM 3.1. If k= (QV'd), d>0 and I'V)\H? is nonsingular
then the Euler number ts given by:

E(F(l)) - -—’% peI;A) (Np N 1) :

Expanding the exponentials in (4) we have:
d—1
2Lt + 7t 4 (21 4 - o)
=0 dt 4 (A2 + (/3] -
d—1 d—1 a—1
TZﬂ x(r) + tTZ‘,Zl rya(r) + tzg{ r20(r) + -
- d(1 + dt/2! + (dtp/3) + -+ '

f_“ Bx,l 4+l —

Since y is nontrivial,

dz:f,lx(r) =0 and

ESL ) =t 5@ — md — 1) = —t S g — 1) = —t Sy

Noting that x(—1) = 1 we have:
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d—1 d—1 d—1
t Z, ry(r) = —t Z, rx(r) and tz_‘, ry(r) =0.
Putting this in (5) and comparing coefficients yields:
1 d—
(6) x,z:-d“z:‘a""X@")-

Using this formula and a PDP-10 computer at SUNY-Stony Brook,
James Maiorana computed B,, for all d < 750. The following table
gives B,, and d for all cases where B,, is less than 200.

d By,s d By,2
5 0.8 88 92
8 2 89 104

12 4 92 80
13 4 93 72
17 8 97 136
21 8 101 76
24 12 104 100
28 16 105 144
29 12 109 108
33 24 113 144
37 20 120 136
40 28 124 160
41 32 129 200
44 28 133 136
53 28 136 184
56 40 137 192
57 56 140 152
60 48 141 144
61 44 149 140
65 64 152 164
69 48 157 172
73 88 165 176
76 76 173 156
7 48 197 196
85 72

The next proposition gives upper and lower bounds for |B,,| ir
terms of d. As a consequence of the lower bound, it is only necessary
to look at fields with fairly small diseriminants to find all I"(1)-type
surfaces having small geometric genus.

PROPOSITION 3.2.

3d¥*
B
50 <| 7z]< 6
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Proof. L(2, y) = (z())/d*)m*By,,. Since L(2, x) < {(2) = 7%/6, |By,,| <
a6,  C,(2) = C(2)L(2, x) > 1, that is, [L(2, y)| = d7%*n*| By, > 6/n.
Thus,

3/2 3/2
6d >3d ]

By, > 2
1Beal > = > 55

4. Smoothness. In this section we give necessary and sufficient
conditions for subgroups of B which contain I'(1) to yield smooth
surfaces. We begin by assuming that & is totally real.

For ve A* — k*, k(7) is a maximal subfield of A, and is there-
fore, a quadratic extension of k. Moreover, for an element 7€ A%,
7(7) is the identity automorphism of H* if and only if 7 ek*.

LEMMA 4.1. Let K be a totally imaginary quadratic extension
of k, and let ¢ be a k-linear isomorphism (an embedding) of K
into A. Then, for ac K* — k*, ¢(a) = 7 is an element of A', and
() has a wunique fixed point on H® which tis the same for all
ac K* — k*. Cownversely, if j(7)e J(A"), (V) #= 1, has a fixed point
on H? then k(7) is isomorphic to a totally imaginary quadratic
extension of k.

Proof. See Shimura [8].
The next two propositions are well known.

PROPOSITION 4.2 (Hasse). A s isomorphic to My(k) tf and only
tf A is isomorphic to My (k,) for all primes p of k.

PropPOSITION 4.3. A quadratic extension K of k splits A, that
is K A= M(K), if and only if K can be embedded in A.

PrROPOSITION 4.4. A quadratic extension K of k can be embedded
in A if and only if K, = KQ .k, can be embedded in A, for all
primes p of k.

Proof. If K can be embedded in A then it is clear that K, can
be embedded in A, for all p.

Put C=AK K. By the last proposition, to demonstrate the other
implication it is sufficient to show that C, = M,(K,) for all primes q
of K. The Hasse invariant inv| | of a simple algebra over a local
field is an element of Q/Z. For quaternion algebras inv[ |=
0(mod Z) if the algebra is nondivision and = 1/2(mod Z) if the
algebra is division. If C is an algebra over L and L’ is a finite
extension of L of degree [ then inv[C& .L'] =1-inv[C]. In the
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present situation there are three cases to consider:

(a) peS(4). inv[A] =0 so for q lying above p, inv[C,] = 0.

(b) peS(A) and only one prime of K lies above. [K:Ek,] =2,
so inv[C,] = 2-inv[4,] = 0.

(¢) peS(A) and only one primes of K lie above p. Then K,
k, and inv[C,] = 1/2. Thus, C, is division but by assumption K, =
k, @D k, can be embedded in C. This is impossible since K, has zero
divisors.

Thus, only the first two cases are possible and, therefore, for
all q C, is isomorphic to M,(K,). By Proposition 4.2 C = M,(K) and
by Proposition 4.3 K can be embedded in A.

N

PROPOSITION 4.5. A quadratic extension K of k can be embedded
m A if and only if only one prime of K lies above each prime in
S(A).

Proof. In the proof of the last proposition, it was shown that
if a quadratic extension of % can be embedded in A, then no prime
of S(A) can have two primes of K lying above it. Now, suppose
there is only one prime of K lying above each pe S(A), then K, is
a quadratic extension %,. Since inv[4,] = 1/2, any quadratic extension
of k, splits A,. Thus, K, can be embedded in A, for all primes
peS(A). ForpeS(A), A, = M,(k,). K, is either isomorphic to k, Pk,
or is a quadratic extension of k%, In the first case K, can be
embedded in M,(k,) on the diagonal, and in the second case it can
be embedded via (left) regular representation. Thus, K, can be
embedded in A, for all p and applying Proposition 4.4 yields the
desired result.

PROPOSITION 4.6. Assume that k has class number h(k) = 1.
Then I'(1) has a fixed point om H® if and only if there is an
integer N > 2 such that k(L) can be embedded in A, where {y s a
primitive Nth root of umnity.

Proof. If v s+ +1 has a fixed point on H? then 7 is an element
of a finite subgroup of I'(1) and there is a minimal integer N such
that vY¥ = 1. Conversely, let ¢ be an embedding of %({y) into A and
put ¥ =4(y). 7 is in some maximal order O of A. k) =1
implies that all maximal orders in A are conjugate, i.e., there is an
x e A* such that 27 O'% = O. avx* also has order N, so we may as
well assume that v is in O. nr(¥¥) = nr(¥)" =1. Thus, nr(Y) = *1
and either 7 or 7% is in I'(1). This completes the proof.

For the remainder of this section £ will be a real quadratic field.
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If Q(y) can be embedded in A then [Q({,): @] divides 4 and so N¢
(3, 4, 5, 6, 8, 10, 12}, Putting {, = ¢/Y we have:

N=3 or 6, Q) = Q(V =3)

N=4, QL) = Qv —19)

N=5 or 10, Qly) D QWV'5)

N=28, QL) =Q(V'2,1)DQ(1'8)
N=12 QLY = Q13,1 >Q12).

k({y) is not a subfield of R. Thus, if Q(,) can be embedded in A,
[kCx): k] =2. For N=5 or 10 d must be 5, and for N = 8 or 12
k coincides with Q(V8) or Q(1/12), respectively. Therefore, for
d # 5, the only possibilities for N are 3, 4, and 6, and elements of
order 8 or 12 can only occur for d = 8 or d = 12, respectively.

PrOPOSITION 4.7. Assume k has class number 1. Then ['(1) acts
freely on H® if and only if all of the following hold:

(a) Some prime im S(A) splits in k(v —3)/k.

(b) Some prime in S(A) splits in k(v —1)/k.

(e) If d =05, some prime in S(A) splits in k({;)/k.

Proof. I'(l) has an element of order 8 if and only if it has an
element of order 6, and this is the case if and only if Q({,) can be
embedded in A. Q({,) can be embedded in A if and only if k(v —3)
can be and by Proposition 4.5 this is equivalent to none of the prlmes
in S(A) splitting in k(1 —3)/k.

I'(1) contains an element of order 4 (resp. order 8) if and only
if Q) (resp. Q) can be embedded in A, which is the same as
k(v —1) admitting an embedding into A. This is equivalent to none
of the primes in S(A) splitting in k(v —1)/k.

If I'(1) contains an element of order 12 then it also contains
elements of orders 8 and 4, and k(v —3) and k(v —1) can be
embedded in A. Conversely, if k(1 —3) and k(1 —1) can both be
embedded in A, then I'(1) contains elements of orders 8 and 4 and
hence an element of order 12.

Finally, if d = 5 there exists an element of order 5 or 10 if and
only if %k({;) can be embedded in A.

K = k(v —3) (resp. k(1 —1)) is a biquadratic extension of @ and
has the three quadratic subfields k, k, = Q(v'—3) (resp. Q(1/'—4)) and
k, = QD) where D is the discriminant of Q(1/—3d) (resp. Q(V —d)).
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K
VRN
(1) k, &k k,
N/

Q

In view of the last proposition, we would like to determine how
primes split in K/k in terms of the three quadratic extensions of Q.
Let G = Gal (K/Q), q be a finite prime of K lying above p of k and
pZ of Q, G, be the decomposition group of g and G, be the inertia
group of q. Put K, = the decomposition field of q and K, = the
inertia field of gq. K, is the largest field contained in K in which
pZ splits completely, and K is the largest field contained in K in
which pZ is unramified. Moreover, K, is contained in K,. In a
relative quadratic extension a prime either ramifies (¢), splits (g) or
remains prime (f).

The possibilities for diagram (1) are:

O K =K,=4q.

(I) K, = some intermediate field (say k,) and K, = Q.

e/ | \f
YARATERN
K,

Noel S
SN e
K,

(III) K, = K, = some intermediate field.
e/ | \g
79 N\

K, =K,

N el /
IN | e

(IV) K, = K, K, is an intermediate field.
K,

7 1\
/9 N
K,

N fl S
s\ | ST
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(V) K, =K,=K.
KT:KZ

9/ |\
VAR INEAN

N gl 9/
AN V4

(V) K, =K, K, = Q. This situation does not occur
because G,/G, must be cyclic.

Examining these diagrams we conclude that p splits in K/k if
and only if pZ splits in &k, or k..
In the case d = 5 we have the diagram

Q&)
|
k
|

Q

p splits in Q({,)/k if and only if pZ splits completely in Q((;)/Q and
this is the case if and only if p = 1 (mod 5).
Combining these results with Proposition 4.7 yields:

THEOREM 4.8. Assume that k is a real quadratic field and
hk) =1. Then I'(l) acts freely on H® if and only if all of the
Sollowing hold:

(1) (—38/p) = 1or (D/p) =1 for some pe S(A), where pZ = pN Z
and D s the discriminant of Q(V —3d).

(2) (—=1/p) =1or (4/p) =1 for some pe S(A) where pZ =pNZ
and 4 is the discriminant of the field Qv —d).

(3) If d =25, there exists peS(A) such that pZ =pNZ and
p = 1(mod 5).

THEOREM 4.9. Assume k has class number 1 and assume further
that o fundamental unit ¢, of k greater than 0 is totally positive.
Then E acts freely on H* if and only +f both of the following hold:

(1) I'Q) acts freely.

(2) Some peS(A) splits in k(V —e,)/k.

Proof. Suppose j(7)ej(E), j(¥)#* 1, has a fixed point on H:Z
By Lemma 4.1 k(7) is totally imaginary quadratic extension of k.
nr(Y) = &F, and we may assume m is nonnegative. We can find
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v, € B with j(7v,) = 7(v) and nr(7,) =€, or 1. To see this suppose
m = 2l (resp. 2] + 1) and let v, = ve;'. Then nr(7,) = nr(7)-nr(e;t) =
1 (resp.¢,). If m is even j(7v) is in I'(1) and has a fixed point on
H® If m is odd then 7} = +¢, for some s since ¥ has a fixed
point. Choose s to be minimal. =»nr("}) = &} = nr(7v)’ = ¢;. Put
Y. =7 J(7,) = 7(7,) and k(7. = k(7). By the minimality of s,
v, ¢k* but 7i= +e.ek*. Since this must be a totally imaginary
extension of k, k(7,) = k(v —e). If t is odd then k(7,) = k(1 —¢,)
can be embedded in A and by Proposition 4.5 this is equivalent to
none of the primes in S(A4) splitting in k(v —e,)/k. If ¢ is even then
k(7) = k(V/=1) can be embedded in A and I'(1) has a fixed point.
Conversely, suppose ¢ is an embedding of k(1 —¢,) in A. Put
Y =¢(V'—¢,). 7 is in some maximal order of A which, because k
has class number 1, may be assumed to be O. Moreover, 7 is a
unit of O, and by Lemma 4.1 it has totally positive reduced norm.
Thus, ¥ is in F and has a fixed point. This completes the proof.

LEMMA 4.10. k(V —¢,) is an extension of Q with Galois group
Z|2Z X Z|2Z. Moreover, we have the following diagram of subfields:

k(v —é&.)

RN
/ N

/ AN
QV =tre, +2) k=QWV'd) Qv —tre, — 2)
AN /
AN /

N |/
Q

where tr s the trace map from k to Q.

Proof. Let a denote V' —¢, and B denote 1 —¢, where prime
denotes Galois conjugation in k& and the square roots are chosen such
that Im () > 0 and Im (8) > 0. (aB) =1, therefore aB = +1, but
a and B are purely imaginary, and Im (@) and Im (8) are both posi-
tive. Therefore a8 = —1 and a = (—1/8). Put é=a + B and 7 =
« — B. Then

(1) &=(@+ Bl = —¢, —¢, +2aB = —tre, — 2ek(V —¢,).

(2) PP=(a—BP=—¢ —¢, — 2B = —tre, + 2ek(V —¢,).
Adjoining & and 7 to Q give two distinct intermediate quadratic
extensions of @ neither of which is %, whose compositum coincides
with k(v —¢,). Therefore, k(1 —¢,) is a biquadratic extension of @
and the lemma follows.
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THEOREM 4.11. Assume k has class number 1, and let ¢, be a
fundamental unit of k greater than 0. Then B acts freely on H*
if and only if all of the following hold:

(1) E acts freely on H”.

(2) For all totally positive m;,x,;, --- m;, there exists peS(4)
such that p splits in the extension k(V —m, --- 7,)/k, where
{2 -+ 7/1} cf{L, .- IS(A>|}'

(8) For all totally positive mw,m,, -+ 7;¢&,, there exists pe S(A)
such that p splits in the extension 10(1/—713l coe T8k, where
{t, =+, wpC{L, -+ -, [S(A)]}

Proof. Fix a set of generators for the maximal O-ideals 3,
which correspond to the p, in S(4), and choose a set of generators
7w, for the p, for the p, in S(4) such that =, > 0 and nr{l,) = =«,.
Suppose Y€ B has a fixed point on H® Recall that v is of the
form II, ---II;en where ¢ U(®D), nek* and nr(ll, ---II,e\) is
totally positive. For simplicity, denote the product 7, ---II,, by
II, --- II,. Replace ¥ by v, =1, ---II,ce. By Lemma 4.1 k(7)) is a
totally imaginary quadratic extension of k. Let » be the least
positive integer for which Y/ ek*. Form the two-sided ©O-ideals
T O=B, -+ - Pa and VO =P .--Pja” where a is an ideal of k. Since
v7ek*, r must be even. Put » =2s and v, = 7. kS k(7)) k()
and [k: k(7)] = 2. Thus, k(7. = k(7)) and j(7,) and j(7,) have the
same fixed point.

If s is even then 7, = ac® where ack™ and nr(e) is totally
positive. Therefore, K has a fixed point. If sis odd, say s = 2t + 1,
then v, = Il « -« [ = II, « - - I1,€*"'b where @ and be k*. nr(7?) =
nr(Y,)* = Vs since viek*. Thus,

Vi = nr(Yy) = £nr(l,) -« nr(Il)nr(E Yo = +x, -« - 7Eb

where ¢, € U,. ¢, =¢l. Therefore, k(7,) = k(V/'—=x, - m,(e,)) Where
¢, appears only if ¢ is odd, and the minus-sign is chosen because the
extension must be totally imaginary. Thus, if j(¥) has a fixed point
on H?, k(V/'—mx, -+ m(e,)) can be embedded in A which is equivalent
to none of the p, in S(A) splitting in k(V' —7, - - - 7,(e0))/k.

Conversely, suppose ¢ is an embedding of k(V' —=x, --- m,(,)) in
A. Putv =¢(V' —m, --- w,(e,)). By Lemma 4.1, 7 has totally positive
reduced norm. Consider the ideals YO and 7*©. Noting that
#(7") = 7* we have M*O =7, - 7O =Bi --- P.. Thus, 7O is a two-
sided ©-ideal and 7 normalizes ©. Therefore, ¥ is in B and has a
fixed point on H*.
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5. The torsion part of H*Z). Let I' be a subgroup of B
acting freely on H*® and put U = I'\H?. =,(U) is isomorphic to j(I")
and, therefore, H,(U, Z) is isomorphic to j(I")/s(I") where j(I'Y is
the commutator subgroup of j(I'). The exact sequence

0—sZ——>R—>R/Z—0

induces a long exact cohomology sequence. Consider the following
fragment of that sequence:

-« — H{U, R)— H'(U, R/Z)

(1) P
—> HNU, Z)— H U, R)— --- .

By the universal coefficient theorem
(2) H,(U, R/Z) = Ext (HXU, Z), R/Z)® Hom (HXU, Z), R/ Z) .

Since HY U, Z) is free, the Ext term vanishes, and the right hand
side of (2) is just the Pontryagin dual of H¥U, Z) which, since
b = 0, is isomorphic to itself. Applying Poincaré duality to both
sides of (2) then yields:

H U, R|Z)= H(U, Z) .

In (1) 60 is injective because b* = 0, and since H* U, R) = R*’*,
the image of ¢ is precisely the torsion subgroup of H*(U, Z). Thus,
HU, Z)... = H(U, Z).

We now specialize to the case where I' = I'(1) and %k is real
quadratic. The strategy is to build a normal subgroup M of I'(Q)
which contains I"(1)" for which I'(1)/M is known.

For a maximal ideal p of o and the corresponding B of O, let
®, and @, denote the maps reduction modp and %, respectively.
When the context makes it clear which map we mean, we will
simply write @.

LeMMA 5.1. Let Np = q = p’* and F, = the field having q ele-
ments. Then
(a) For peS(A) the following diagram commutes:

0 -2, MF,)

Lnr ldet
o

0o — F,

(b) For peS(A) the following diagram commutes:
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]
O — qu
lnr lN: norm from Fg to F,.

0 — F,

Proof. (a) O can be taken to be M, (o). By definition, the
reduced norm coincides with determinant and the diagram com-
mutes.

(b) Take xe9O. k(x) = K is either a quadratic extension of k
or coincides with k. Since z is integral over o, x €px the ring of
integers of K. If K=1Fk, @yx) =0, (x)eF, and nr(x) = 2’. Then
N(@y(x)) = @,(x)* and @,(nr(x)) = O,(x*), and the diagram commutes.
Suppose K == k. The canonical involution ¢ of A induces Galois con-
jugation on K and nr(x) = xa* = Ng,(x). Put g =0, N P. Then &
restricted to o, is @, and the following diagram commutes:

@
Dx — Dg/q

[see |

D—(D—> o/p .

This completes the proof.

LEmMmA 5.2. (a) For peS(4), o(I'Q)) = SL,(F,).
(b) For peS(4), o(I'1)) = {xe Fp| N(z) = 1} = U(q) where N
18 the norm map from F, to F,.

Proof. O(I'(1))TSLy(F,) (resp. U(g)). To shown the equality take
x € SL,(F,) (resp. U(q). By Lemma 5.1 nr(®~*(x)) =1 (mod p). Since A
is totally indefinite and nr(® *(x)) is integral, we can apply Theorem
1.1 to obtain @eO such that 07'(x) = a (modP) and =nr(a) = 1.
Moreover, since nr(c) is a unit of &, a is a unit of ©O. This
completes the proof.

Let I'(B) denote the kernel of the restriction of @ to I'(1). For
p in S(A)

1— Ulg)— F, 25 By —1

q

is an exact sequence of abelian groups, and F7, and F¥ are cyclic of
orders ¢* — 1 and ¢ — 1, respectively. Thus, U(q) is eyclic of order
q + 1.

Put M, = N,esc0 I'(P). Since the P, are pairwise relatively
prime, M, = I'(B, --- B,) and O/P, «-+ P, = O/P, X O/P, X --+ X OfP,.
The following lemma is an easy extension of Lemma 5.1.
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LemMMA 5.3. For p,eS(4)

O -TBI, O X e x OB,

e |

Dy, ---
0 —“ﬂ_,o/pl X+« X 0D,

commutes where N = the product of the norm maps from Fp to F,,.

Since I'(1)/I'(P;) = U(q;) for p, € S(A), @y,..., (I'(1)) = Ulg,) X -+ X
Ulg,). Thus, I'Q)/M, = Ulq,) x +-- x Ulg,) is abelian and I'(1)D
M, > I'(1).

For pe S(A4)

1—— I'(P) — (1) -2 SL(F,) — 1

is exact. SL,(F,) is isomorphic to S, and has a normal subgroup A,
of index 2. For simplicity, let A, also denote the copy of A, in
SL,(F,). For a prime p, lying above 2Z with Np, = 2, put M(p,) =
9,'(A;). The sequence

1 I(Py) — M(p,) —2 A, —— 1

is exact. Thus M(p,)/I'(B,) = A,. Since I'Q)/I'(B,) = S,, I'1)/M(p,)
is of order 2.

PSL,(F,) is isomorphic to A, and A, contains the Klein 4-group
V as a normal subgroup of index 3.

1 —— {1} — SLy(F,) —> PSLy(F,) — 1

is exact where J is the map “modulo {#1}.” Let V also denote the
copy of V in PSL,F,). J V) is a normal subgroup of SL,(F;) of
index 3. Put M(p,) = &~(J (V)). The sequence

1 —— I'() — M(py) —2 J (V) — 1

is exact. Thus, I'(Q)/M(p,) = SL,(Fp)/J X(V) is of order 3.
For | =2 and 3 we make the definition:

M(p) if there is only one prime §p lying above
{Z having norm [ which is notin S(4).

M) = M(p) N M(p") if there are two distinet primes lying
above [Z neither of which is in
S(4).
') otherwise.
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Finally, define M to be M, N M(2) N M(3).

For p and ¥ two distinet primes lying above 2Z (resp.3Z) and
having norms 2 (resp.3), the quotient of I'(1)/(M(p) N M®¥')) by
Mp)/(M(p) N M(')) is isomorphic to I'(1)/M(p) which has order 2
(resp. 3). The order of M(p)/(M(p) N M(p')) is 2 or 1 (resp.3 or 1).
It is of order 2 (resp.order3) if and only if M(p)- M(p’) properly
contains M(p) which is the case if and only if M(p) = M(y’). Since p
and v’ are distinct ideals, M(p)/(M(p) N M(}’)) has order 2 (resp. 3) and
I'(1)/(M(p) N M(p")) has order 4 (resp.9).

We have calculated the order of I'(1)/M, but we are interested
in the order of j(I'(1))/j(M). If M contains —1 then j(I"(1))/5(M) is
isomorphic to I'(1)/M. If M does not contain —1 then jF(I'(1))/5(M)
is isomorphic to I'(1)/{*+1}M, and |7(I"(1))/5(M)| =1/2|(1)/M|. —1e¢M
if and only if —1 ¢ some I'({3,). This is equivalent to some U(q,)
containing —1 and this is the case if and only if some ¢, is odd.

We summarize this discussion as:

THEOREM 5.4. Suppose k is a real quadratic field and I'(1) acts
Sreely on H®. Put U= T'Q)\H®. Then the order of H¥U, Z),, is
divisible by a-b-c-1],cc (NP — 1) where

(12 if for some peS(A) Np is odd.

a .
1 otherwnise.

4 if there are two distinct primes lying above 2Z
neither of which is in S(A4).
b =<2 if there is only one prime lying above 2Z having
norm 2 which is not in  S(A).

1 otherwaise.

9 if there are two distinct primes lying above 3Z
neither of which is in S(A).
¢ = <3 if there is only one prime lying above 3Z having
norm 3 which is not im  S(A4).

1 otherwise .

6. Examples. In this section we will determine all p, = 0 (non-
singular) surfaces arising from groups lying between I'(1) and B and
algebras over real quadratic fields of class number 1.

In practice it is a simple matter to apply the conditions of
Theorems 4.8 and 4.9, but the conditions of Theorem 4.10 are
considerably more difficult to verify partly because the extensions
are not always Galois. The following lemmas are helpful in this

regard.
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LEMMA 6.1. The primes p,=mwo, 1=z =1, all ramify in

k(V =z, -+« m(e)/k.

Proof. For any p = mo among the p, ---, b, consider the p-adic
valuation | |, of ¥ and the corresponding value group V,. The p-
adic completion %k, of k also has value group V,. Let q be the ex-
tension of p to k(v —mx, -+ m(e). Put a=1V'—nr, - (). The
g-adic valuation of @ is V[Na|, = V[z[,. Thus |V,/V,| =2 and p
ramifies in k(a@)/k.

LEMMA 6.2. Let K be an algebraic number field with minimal
polynomial f(x)€ Z[x]. Then the discriminant d(f) of flz) divides
the absolute discriminant d(K) of K and the quotient is the square
of an integer, i.e., d(f) = m*d(K). Moreover, if p does not divide m
then the number of distinct irreducible factors of f(x) wn Z[x]/pZ[x]
18 the same as the number of primes of K lying above (pZ).

Proof. See Borevich and Shafarevich [1].

In cases where Lemma 6.2 is not applicable one can either factor
the polynomial p-adically or use the following lemma.

LEMMA 6.3. Let F be o local field with prime element mw and
let flx) be o monic polynomial in F[x] with integral coefficients.
Put r = ord, (d(f)). Then, tf flx) factors modulo =™** as a product
of t irreducible polynomials then [ factors in Flx] as & product
of t trreducible polynomials.

Proof. See Borevich and Shafarevich [1].

The integer » in Lemma 6.3 is sometimes fairly large. In these
cases the following observation is useful.

LEMMA 6.4. The minimal of k(V' —x, « - 7,(¢,))/Q s of the form
flx) = a* + ax® + b. flx) can factor as a product of quadratic poly-
nomials in only the following three distinct ways:

<x2 _ —a ngﬁ _—a-— 12&2“—“‘@)

@+V2V b —ax + VD)@ — V2V b —ax +1D)
@+ V—2/b —ax — V)@ -V —-2Vb —ax — VD).

Moreover, if it factors in any two of these ways then it must factor
completely.
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As was remarked earlier, the lower bound for |B;,| given in
Proposition 3.2 provides an upper bound for the possible discriminants
that can lead to surfaces of any given geometric genus. For example,
if we are interested in p, =0 surfaces I"(1)\H?, then |By,| <24 since
the Euler number is 4. In this case d < 55.

For simplicity we write A(d; v, b,, -+, ;) for the algebra having
center k£ = Qv d) and S(A) = {p, by, -+, ). We denote a prime of
k lying above pZ by p,. If there are two distinct primes lying
above pZ we denote these p, and p,. Finally, put UU") = I'\H?.
We identify a group I" lying between E and B with the primes of
k corresponding to a complete set of coset representatives for
Jj(IM/4(E). For example, if the representatives are II and 1 with
'S = poO, then we denote this group by I', or more compactly by
I, (and I, by ).

ExAmprLE 1. A(12; b, by).

2Z ramifies and 5Z remains prime in Q(1'12). Thus, E(UI' (1)) =
(4/12)(26 — 1) (2 — 1) =8. (—1/5) = 1. Therefore, by Theorem 4.8
U(I’'(1)) is smooth.

& = 2+ 173 which is totally positive has trace 4. Since 5Z
splits in Qv —6), p, splits in k(1 —¢,) (see Lemma 4.10). Thus,
k(1 —e,) cannot be embedded in A and by Theorem 4.9 U(E) is a
smooth p, = 0 surface.

ExampLE 2. A(13; b, p.) and A(13; p;, bs). 13Z ramifies and 3Z
splits in Q(V'13). E(U(I'(1))) = 4/12(13 — 1)(8 — 1) = 8. Thus, UI"(1))
is a candidate for a smooth p, = 1 surface. To check for smoothness,
note that (—1/13) =1 and (—3/13) = 1. Then, by Theorem 4.8,
U(I'(1)) is smooth.

&, = 3/2 + 1/13/2 and is not totally positive. Therefore, 7(I'(1))
and j(&) coincide.

To find p, = 0 surfaces we must look for index 2 subgroups of
j(B). The possible sets of coset representatives are {II,, 1}, {II;, 1}
and {II,/1,;,1}. In view of Lemma 6.1, the last group cannot lead
to a smooth surface.

Let us begin by considering I, and the algebra A(13; b, p..)
where 7, = 1/2 + 1/13/2. 7, is not totally positive. By Theorem 4.11
we must check whether k(V —7e,) = Q(V —(4 + 1V/13)) = K can be
embedded in A. The minimal polynomial of K/Q is f(x) = x* + 8x* + 3
and d(f) = 28.13%.8. 183 divides d(K) because 13Z ramifies in k/Q.
flx) = (x + 3)(x — 3)*(mod 13) and by Lemma 6.2 there are two primes
of K lying above 13Z. Since p,, is the only prime of %k lying above
13Z, p,, must split in K. Therefore U(I,) is smooth.
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Now consider A(13; 9, ;) and I 7w, = —1/2 +1/13/2). K =
E(V —ree) = QV(—5 — vV13)/2). flw)=2a*+bx*+3 and d(f) =
24.3-13%  flz) = (z — 2)(z + 2)*(mod 13) and U([";) is smooth.

Consider I';. 7,;=1"13. We must check whether K=5k(V/ —¢,) =
Q(V'(—13 — 31/13)/2) can be embedded in A. flx) = a*+ 132* + 13
and d(f) = 2¢-8*-13%. In this case we cannot use Lemma 6.2. Instead
we will factor f(x) 3-adically. 18 is a 3-adic square because (13/3) = 1.
In fact V18=(1,7,16, ---). 2183 —13=(1,1,19, ---) which is
again a 3-adic square and thus, f(z) factors in the second way listed
in Lemma 6.4. @® — 4b = 117 = 3°-13. Again, this is a 3-adic square
and by the lemma f(x) factors completely. Thus, there are four
distinct primes of K lying above 3Z and K cannot be embedded in
A for either choice of A. This leads to two more smooth p, =0
surfaces U(l,,).

ExampLE 8. A(17; b, bi), AQT;Piy P, A(LT; b, biy) and A(LT; pi, bly).
Both 27 and 13Z split in QV/'17). E(U(I'(1))) = 8/12.(18 — 1)(2 — 1) = 8.
(—1/18) =1 and (—38/18) =1. Thus, U{'(1)) is a smooth p, =1
surface.

¢, =4 + 117 and is not totally positive. The possible coset
representatives for index 2 subgroups of B are {II., 1}, {/Ii, 1} and
{II,IT};, 1}. As before we can immediately eliminate the last case.

Let 7, = ((8 + V17)/2), 7, = (—8 + VID)/2), n,= 2+ 117 and
7, = —2 + 1/17. None of these are totally positive.

Consider I, and the appropriate algebras. K = k(V —ms8,) =
QV (=29 — TVIN)2). f(x) = x* + 29* + 2 and d(f) = 2°-T*-17%. flz) =
(2* + 2)(x — B)(& + 5) (mod 13). Thus, three primes of K lie above
13Z and either p, or p;; splits in K/k. We would like to factor
g(x) = 2* — (29 + TVI7)/2 p-adically and p-adically. By Lemma 6.3
it suffices to factor g(z) mod 7, and mod 7j,.

—(29 + VID/2 = —(29 + TVID)2 + 2 + VI + 3V17)/2 (mod 7,,)
=12 (mod 13)

12 is a square modulo 13 and thus, g(z) factors. Therefore, there
are two primes of K lying above p, and U(l,) is smooth if the
algebra is chosen to be A(1T; b, Pis).

—29+TV1D/2 = —(29+TVT11)/2+2—V1IT)(—14+3V1T)/2 (mod =)
=11 (mod13)
11 is not a square modulo 13. We conclude that U(I',) is not smooth

if the algebra is chosen to be A(QT; b,, bis).
Consider I, K = k(V —7ig;) = QV (=5 —V1D)[2). flx) = a* +
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52 + 2 and d(f) = 2°-1T%. f(z) = (x* — 5)(x + 4)(x — 4) (mod 13). Thus,
there are three prixges of K lying above 13Z. Again to factor
g@) = 2* — (=5 — V17)/2 pj-adically it suffices to factor g(x) modulo
Tise

(=5 —VID2= (=5 —-V1ID2+ 2+ VIT(—1+VTIT/2 (modr,,)

=5 (modl13)

fl

Thus, g(x) does not factor p,adically. We conclude that I'; and
A(17; p:, b)) do not lead to a smooth surface.

(=5 —=VID2=(-5—-VID2+ @2 —VIDA + VT2 (modz)
=3 (mod13)

Thus, g(x) factors modulo 7, and U(l’;) is smooth if the algebra is
chosen to be A(1T; p;, biy).

Consider I'y,. K = k(V —7wes) = Q(V —25 — 61V17), flz) = a* +
502 + 13 and d(f) = 2-3*.13-17%, f(x) factors 2-adically as a product
of three irreducible polynomials. Thus, one of p, or p; splits in K/Ek,
but this provides no information about which of these primes splits.
Instead we factor g(z) = a* — (25 + 61/17) p,-adically and pi-adically.
d(g) = 4(25 + 61/17). By Lemma 6.3 it is sufficient to factor g(x)
modulo 7 and modulo 7. =7} = (45 + 111/17)/2 and

—25 — 6117 = —25 — 6117 + (—3 + VIT)(45 + 11V 1T)/2 (mod x2)
1 (mod 8).

Thus, g(x) factors p,-adically. We conclude that U(l",) is smooth if
the algebra is chosen to be A(17; b, o). =® = (46 — 111/17)/2 and

—25 — 6V1T = —25 — 6117 + (83 + 1V17T)(45 — 11V17)/2 (mod z)
=5 (mod8).
Thus, g(x) does not factor p;-adically. We conclude that U, is
not smooth if the algebra is chosen to be A(17; b, bis)-
Finally, consider I, K =k(V —7e,) = Q(V —9 — 2V/17) and
d(f) = 22.13-17%. Let g(&) = #* — (—9 — 21/17). Again, we factor
g(x) modulo 7} and modulo 7;°.

—9 —2VT17T = —9 — 217 + (—16 + 4V 17)(45 + 11V17)/2 (mod =3
=5 (mod8)

—9 — 217 = —9 — 21T + (—29 — TVIT)(45 — 11V17)/2 (mod z¥)
=1 (mod8)

Thus, U(I'},) is smooth if A = (17; p,, b,) and is not smooth if A =
A(LT; by, blo)-
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The following are all p, = 0 (nonsingular) surfaces arising from
I’ lying between I'(1) and B.
(I) Smooth I'(1)-surfaces having geometric genus 0.

(1)
(2)
(3)

A(8; 9y, s)
A(12; p,, bi5)
A(12; p,, ply)

(I1) Smooth E-surfaces (F = I'(1)) having geometric genus 0.

(1)
(2)
(3)
(4)
(5)
(6)
(7)

A(12; by, D)
A(12; p,, i)
A(12; by, Piy)
A(21; b, by)
A(21; p,, bs)
A(24; by, bs5)
A(24; b, b7)

(IIT) Smooth geometric genus 0 surfaces from I, F & I' C B.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
10)
(11)
(12)
13)
(14)

Algebra
A(5; by, bay)
A(5; b5, Do)
A(5; by, )
A(5; b, D)
A(5; 9, D)
A(5; ’pzl pAl)
A(5; p,y Piy)
A(5; D, Piy)
A(8; b, 1)
A(8; s, b7)
A(13; b, bis)
A(13; by, 1)
A(13; pi, 91s)
A(13; p, Pio)

Group
ry
Iy
Iy
Iy

I
I
FIS

For the next 4 examples it is necessary to specify the particular
In QV17) both 13Z and 2Z split. Let p, be the ideal
generated by (3+1/17)/2 and 9! be the ideal generated by (—3+1/17)/2.
Similarly, p,, is generated by 2 + V17 and p, is generated by —2 +

primes.

V1T,
(15)
(16)
amn
(18)

AT by, Pra)
AQLT; by, Piy)
A1T; b3, 9o
A(LT; 1i, Bls)

F13
I,
I
I
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