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ON ARC LENGTH SHARPENINGS

WiLLiAM A. ETTLING

This paper introduces two new sharpenings:;

THEOREM, Let A denote a rectifiable arc (with length
I(A)) of a metric space, let P denote a finite, normally-ordered
subset of A, and let [(T*(P)) denote the linear content of a
mini-tree T7*(P) spanning P. Then l.u.b.,, [{T*(P)) = I(A).

DEFINITION, If E is a nonempty subset of a set P that
is spanned by tree 7, then T is said to be on E.

THEOREM, Let o(E) denote the greatest lower bound of
the linear contents of all trees on E. If A denotes a
rectifiable arc of a finitely compact metric space, then
Lub.;c,0(E) =1(A), where E denotes any finite normally-
ordered subset of A.

On arc length sharpenings.' It is convenient to call an un-
ordered pair of distinet points p, ¢ of a metric space M a segment,
denoted by {», ¢}. Each of the points p, ¢ of the segment {p, q} is
an endpoint of the segment, and the length of {p, q} is the distance
pq of its endpoints.

A nonempty set S of distinct segments forms a chain C provided
the end points of the segments may be labelled a, a,, ---, a, (With
all the a,’s representing pairwise distinct elements of M) so that the
elements of S are {a,, a.}, {a,, a,}, *+-, {@s_, @;}. The chain is said to
join a, and a,; the points a, a,, -+, a, are the vertices of the chain.

A nonempty set S of segments forms a tree T provided each
two distinet points of the set of endpoints of the segments are joined
by exactly one chain of its segments. The vertices of T are the
endpoints of its segments. The segments of a tree are called
branches, and the linear content of a tree is the sum of the lengths
of its branches. If a tree T has set E as its vertex set, then T is
said to span E. If E is a nonempty subset of a set P, and tree T
spans P, then T is said to be on K.

A finite subset F (containing at least two points) of M is spanned
by only a finite number of trees. Let L(FE) denote the minimum of
the linear contents of the trees that span E and let T*(E) symbolize
any tree spanning FE whose linear content I(T*(E)) equals L(E).
T*(E) is referred to as a mini-tree spanning K.

Denote by o(®) the greatest lower bound of linear contents of
all trees that span P where PO E (P is a finite subset of M); that

1 From research for University of Missouri Dissertation (1973).
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is, o(F) is the greatest lower bound of the linear contents of all
trees on K. Clearly 0 < o(E) £ L(F), and easy examples of subsets
E of the Euclidean plane exist such that o(&) < L(E).

A subset A of a metric space is an ar¢ provided it is the
homeomorph of a line segment: that is, A = f(I), where f is biuni-
form and bicontinuous in the line segment I = [a, d], @ < b. The
points a = fla), B8 = f(b) are the endpoints of A. Calling a the
initial point and S the terminal point of A serves to orient the are,
and a finite subset P = (a, a,, -+, ,) of A is normally ordered
provided these points are encountered in the order of their subseripts
when the arc is traversed from « to .

This paper furnishes the following two primary theorems, along
with several other results in support of these theorems.

THEOREM 1. For each rectifiable arc A of a metric space,
Lu.b. (T*(P)) = I(4),
PcA
where P represents a finite normally ordered subset of A.

THEOREM 2. If A denotes a rectifiable arc of a finitely compact
metric space M, with length I(A), then
Lu.b. o(E) = (A4,

ECA

where E denotes any finite normally ordered subset of A.

The literature refers to this kind of theorem as an arc length
“sharpening.” Theorem 1 is similar in nature to a ‘“second sharpen-
ing” as presented by Blumenthal [1], and Theorem 2 partially
answers the question of a possible “third sharpening” posed by the
same author. Menger and Mimura [3] have previously proved a third
sharpening for arcs of Fuclidean space.

For arcs of the type of space prescribed by Theorem 2, points
not on the arc may be allowed to enter into the computation of its
length.

If p, is a vertex of a tree T, let B(p, denote the set of vertices
of T, which paired with p,, form branches of T. Call B(p,) the set
of vertices of T sending branches to p,. The cardinality of B(p,) is
denoted by o(p,) and is called the order of p,. A subtree of a tree
T is a tree which has each of its branches a branch of T.

LeMMA 1. Let T be a tree spanning vertex set K= {p, 0y +++, D}
If p,eFE has order o(p,) =k, then E — {p;} is the union of k non-
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empty mutually exclusive subsets, each of which is a vertex set of
a subtree of T or is a single point.

Proof. To say that a vertex p, of a tree T is of order k¥ means
that p; is joined directly (paired with) exactly k other vertices of
T by branches of T. So with respect to pairs of points of E which
are branches of T, there are k distinct disjoint subsets of E which
are joined only through point p, by branches of 7. For if the
contrary be assumed, some two of them would have a vertex in
common and the two would be connected by branches of T. Thus,
in the tree T, there would exist two sequences of branches joining
any point of the two subsets with p;, contradicting the uniqueness
of chains in a tree.

THEOREM A. If T 1is a tree spanning o set E of n distinct
points (n = 2), then T has exactly n — 1 branches.

Proof. The statement is clearly valid for » = 2. Suppose the
result holds for trees with vertex sets E of cardinality at most
n — 1, it will be shown valid for n. Let E be a set of n distinet
points, T a tree spanning E, and p€ E a vertex of T of order 7.
By Lemma 1, the set E — {p} is the sum of a finite number of
subsets E, E,, -++, E,, each of which admits a subtree T, of T but
ceases to do so after the adjunction of any point of E — {p} not
belonging to it, or is a single point. If E, consists of =, points, then
m=<n—1(@¢#=1,2, .-, 7). By the inductive hypothesis, if F, admits
a subtree T;, then T, consists of exactly m, — 1 branches. If E,
consists of a single point, no branch of 7 is admitted by E,. In
either case, each FE, admits exactly m, — 1 branches of 7. Hence
E — {p} admits exactly

r

S —D=Xn—r=@-1—r

=1

branches of T. Since T is a tree, there is exactly one point p, ¢ E,
such that {p, »} is a branch of T(:=1,2, ---, 7). Hence T has
exactly (w — 1) — 7) + » = » — 1 branches.

A normally ordered subset P = {p,, 0, ++-, »,} of an arc A with
endpoints a’, b’ is a homogeneous e-chain provided

(1) a'p, <e pb <,

(2) D:p; = &, for l@ - «7] =1 (7'7 -7 = 17 2; ct ’I’&),

(3) pipjzey for [% —"-71 >1 (’bij = 11 29 M) ’I’b).
If a normally ordered subset is such that a'p, <e¢, p,b <e, 2,0, <€
for ©=1,2 «++,n — 1, then P is called an e-chain.
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Three known lemmas needed in the proof of Theorem 1 will now
be stated without proof (cf. [1]).

LEMMA 2. For each positive number &, there exists a homo-
geneous e-chain in A.

LEMMA 3. For every positive number 0 there exists a positive
number € such that every e-chain in A ts o-dense in A.

LemMMA 4. Let A = f(I) be a rectifiable arc of a metric space
with length (A). Then any positive number 1) implies the existence
of a positive 0 such that for each finite normally ordered subset P
of A which is d-demse in A, I(P) > I(4) — 7.

Proof of Theorem 1. Since [(T*(P)) < I(P), for Pc A, then
Lu.b. [(T*(P)) = Lu.b. I(P) = I(4) .

PcA4 P4

It remains to show that lu.b.pc,U(T*(P)) = 1(A). By Lemma 4,
7 > 0 implies the existence of a positive ¢ such that for each P
which is §-dense in A, I(P) > Il(A) —n. By Lemma 3, there cor-
responds to this 0 a positive ¢ such that every e-chain in 4 is o-
dense in A, and Lemma 2, there exists for this ¢ a homogeneous
¢-chain P = {p, 0s, *+-, »,} in A. Then P is é-dense in A and I(P) >
I(A) —n. Now P being a normally ordered set and a homogeneous
e-chain imply that I(P) = (» — 1)e. Since each two points of P has
distance at least ¢ and tree T* spanning P has n — 1 branches,
UT*(P)) = (n — 1)e. So for each homogeneous é¢-chain P, [(P) =
U(T*(P)). Hence corresponding to each 7 >0 a subset P of A exists
with I(T*(P)) > l(A) — n; that is,

111)111? ur«(p) z i(4) .

The remainder of this paper is presented in support of Theorem
2. The following problem is similar to one found in [2].

Problem T,. Given a set E = {p, 0, -*+, .} of n = 3 points of
a metric space M. Find the mini-tree(s) on K.

If p, q, r € M are linear with ¢ metrically between p and 7, then
a mini-tree on set {p, q, r} is {{», ¢}, {g, 7}}; that is, no additional
vertices are required to yield a mini-tree on {p, q, v}. Further, the
trees {{p, r}} and {{p, q}, {g, 7}} have the same linear content.

DEFINITION. A tree T is an R-tree on a subset E = {p,, s, ***, Du}
of n = 8 points of M provided the set of all vertices v, 05, ***, Du,
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qy, v+, q, of T are elements of such that (1) o(q;) =3 (+= 1,2, «--, k),
and Q) 0=Zk=n— 2.

THEOREM B. Let E = {p, Ds -+, 0.} be a finite subset of n = 3
points of a metric space M. If a solution of the Problem T, exists,
then it is an R-tree on E or it can be replaced by an R-tree having
the same linear content.

Proof. The result is trivial, if &k = 0, in which case o(q;) = 3
is vacuously satisfied. So suppose that & > 0 and that T is-a mini-
tree on E spanning E* = {p, Dz ***, Duy ¢y ***, ¢} (Augmented vertex
set). It is easy to see that o(¢;)>1 (¢=1,2,--+,k). Suppose o(g;) =2
for some ¢ and that B(q,) = {+', "'} C E4. 1If q, is linear with vertices
2, »”, then branches {r’, q;}, {q;, ¥’} can be replaced by {+’, "'} with-
out increasing the linear content of 7. On the other hand, if +/,
»r”, ¢, are not linear, the triangle inequality implies that 7" <
1'q, + q,#"’. Then the tree formed by replacing branches {7/, ¢},
{g;, "'} by {#', "} would decrease the linear content of T, contradict-
ing the minimal linear content assumption on T. Thus o(g;) = 3 for
each 7 (1 =1,2, ---, k) or T can be replaced by a tree of equal linear
content having this property.

Without loss of generality, it may be assumed that 7 has
o(g) =3 foreach 2 (1 =1, 2, ---, k).

Then the number of branches leading from g¢-points is at least
3k/2; the number from p-points at least n/2. But n + k — 1 = (total
number of branches of T) = 3k/2 + /2, from which it is easily
deduced that k¥ < n — 2. This concludes that proof.

Let T, T’ be R-trees with vertex sets {p, Ds ***, Du» Qi Qo =+, Qi}
and {p, Dy, )y Dus @1y @3y * * *, q1}, Yespectively. The trees T and T’ have
the same structure provided the mapping f with f(p,) = »,, f¢;) = q;
t=1,2 --,m;5=1,2, ---, k) maps B(p,) onto B'(p,) and B(g,) onto
B'(q;), where B'(p,) and B'(q;) are subsets of the vertex set of 7.

In general, there will exist infinitely many trees having the
same structure. The relation “has the same structure as” on the
class of all R-trees on a given finite set & is an equivalence relation.
Because 0 <k <n — 2 and a structure class is determined largely
by the k additional vertices, it is further seen that the number of
equivalence classes of R-trees on a given set of » points of M under
the relation “has the same structure as” is finite. Let these equi-
valence classes be denoted by C, C, ---, Cy.

THEOREM C. Let E = {p, 0, *--, D.} be a subset of a finitely
compact metric space M. There exists a mini-tree on E. (As in
[2], ». 447, with modifications.)
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Proof. Since there are only a finite number of the aforemen-
tioned equivalence classes, it suffices to show that if Ce{C,,C,, ---,Cy},
then there exists on E a mini-tree in C.

The structure of trees in C stipulates which of the pairs g¢,p;,
q:9;, p:;0; Will be segments as branches of trees in C.

If £ =0, there are no ¢ points. Since E is finite, there are
only a finite number of ways to form pairs of elements of £. Hence
a minimum length tree can be selected.

If #+0, each R-tree in C has vertex set -consisting of
{p,, s ++-, .} together with &k additional ¢-points. Let these be
denoted qu Q2 ***y Qi For 1 = L2 .. s k: let -Ei = {pip Digy = * p‘li} =
{p;: p;e E and {q,, p;} is a branch of trace of trees in C}. Let N,
N, be sets of unordered pairs of natural numbers, defined as follows:

N, = {{4, 5}: {9;, 9;} is a branch of trees in C},

N, = {{, 5}: {p;, p;} is a branch of trees in Cj}.

Then the linear content of a tree in C is

23
@ v ) = 20 jglqipij + > aq;+ X pD;.

i=1 {t,5teN; {i,jre Ny

Now suppose that {g,, G,, ---, 7.} represents a specific (fixed) set of
g-points. Since E* = {p, Do ***, Duy Tu» @o» ***, G} is a finite set, there
exists a mini-tree 7(k) spanning set E4. Let L, denote the linear
content of this mini-tree. Let set X = {r: 7€ M and min; rp; < L,}.
Then every g-point of a tree of minimal linear content in C is in X,
for otherwise the length of such a tree would be greater than L,.
Thus if {q,, @, * -+, ¢} is a set of g-points of a mini-tree of C, then
{q, @2 ++-, qx} is an element of the Cartesian product X*. Since X
is bounded and M is finitely compact, X is compact. Tychonoff’s
theorem implies that X* is compact. But f(q, q, -+, q;) is continu-
ous on X* and so assumes a minimum value on X*. This proves
the theorem.

Suppose that A denotes a rectifiable arc of a finitely compact
metric space M. Denote by I(A) the length of arc A and let P, =
{v}, % ---, D29} (4 =1, 2, ---) be an ¢;-chain in arc 4 and lim,_.. ¢, = 0.
By the above theorem, there exists a mini-tree T(P,) spanning a
set P} containing P,. Denote by I(T(P,) the linear content of
such a tree. Then for each 4, [(T(P,)) < 3.»9! pipit* < I(A). Hence
Lu.b., T(P,)) = UI(A).

LEMMA 5. If T(P,) is a mini-tree on an €~chain P, of A, then
each branch of T(P,) has length at most ¢,.

Proof. Suppose that the length of a branch of T(P,) were
greater than ¢,. Then that branch could be deleted from T(P,),
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destroying the connectedness of 7'(P,); the connectedness could then
be restored by pairing an appropriate two successive points of P, as
a branch. This would result in a tree T'(P,) of smaller linear
content than that of T(P,), contradicting the mini-property of T(P,).

Note the following two possibilities:

Either (1) there exists 6 > 0 and for infinitely many ¢, point
p; € P} such that distance p,4A = 9,
or

(2) for eachd > 0, there exists a positive integer N such that
1 > N implies p,A < o, for each p, € P}.

THEOREM D. Let A be a rectifiable arc (with length 1(A)) of a
Sinitely compact metric space M and let P, (t = 1,2, ---) be an &,
chain in arc A and lim,.. &, = 0. Then statement (2) above holds.

Proof. Suppose the contrary. Then there exists 6 > 0 and for
infinitely many <, a point p, € P} such that p, has distance from A
greater than or equal to 6. The number of points of P} which can
be connected with p;, by a chain of T(P,) of length at least 6/2 is at
least 21/2¢91 gince by the above lemma, T(P,) has at least [(0/2)/e;]
branches. Since Py is connected by branches of T(P,) and P} contains
P,, each of the above mentioned 20/®%1 points is connected to each
of the points of the ¢;-chain P, on arc A by a chain of length greater
than §/2. Since T(P;) is a tree, these chains have no vertices in
common. Thus for infinitely many ¢, I{(T(P,)) > (§/2)-20/*41, and hence
lim,_ ., I[(T(P,)) = o. But Lu.b., l(T(P,)) < I(4) < oo,

Intuitively, the above result says that for each ¢ > 0, almost
all of the mini-trees T(P,) are contained within a “tube” of radius
0 about the arc A.

THEOREM E (Continuity). Let [(T(E)) denote the linear content
of a mini-tree T(E) on E = {p, 0, +++, .} T M, and suppose that
E* = {p, Dy +*y D Qs Qo5 =+ +, G} 45 the vertex set of T(E). Let ¢ >0
be given and consider points P, vy, +--, V; (for some j such that 1<
7 =< n) with distances p;p; <6 =¢/(32n — 3)) (t =1,2, «++, 7). Then
a mini-tree on E' = {p], Ds, <, Diy Vi1, ***, D} has linear content
WT(EN) such that |[(T(E)) — (T(E")| < e.

Proof. Consider a tree T' spanning {p], Di, =**, D ity =y Duy
4., G2 ***, G} and having the same structure as mini-tree T(¥). Now
KT(E)) = 3, 0,0, + >, 0.9, + >, ¢.9,, With I(T") possibly differing from
I(T(E)) only in the distances of the types p,p, and ».¢,. But

00; = 00, + D0, + D0 < D0, + 20,
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2, = 00, + 0.0, < PP, + 0, and
0 = Pro, + 0.9, < D,q; + 0 .

In total, there are n + k — 1 branches in the tree 7" and £k < n — 2.
So there are at most 2n — 8 branches in 7". Therefore,

2n—3 2n—3
(1) < >l w0 + ; 20 + > 0.9, + g. o+ >.4q,4,

= 3, 0.0 + 209 + 24,9, + 223 30
= UT(E)) + (2n — 3)-3¢/(3(2n — 3))
= U(T(E)) + ¢ .

But a mini-tree on E’ has linear content [(T(E")) < I(T") <U(T(E)) + e.
Hence —e¢ < U(T(E)) — (T(E")).

Now it remains to show that I(T(E)) — I(T(E')) < e. Suppose
the contrary; that is, that there exists ¢, > 0 such that for each
0 >0 (and in particular, for ¢ = ¢/(8(2n — 3)) there are points
pi(i =1,2, -+, 7) with pp, <6 (¢t=12 ---,7) and UT(E)) =
{T(E)) —¢&. But for ¢, there is § = ¢/(8(2n — 3)) such that
prp, < 8 =1,2, -+, 7) implies that I((T(E")) < (T(E")) + & (by the
first part of the proof). (Here I(T(E")) denotes the linear content
of a mini-tree on E” = {p!, ), +++, D7, Dis, ***, P,}). In particular,
the p! = p,(i = 1,2, -+, j) are such that p/p; < 8. Then I(T(E)) <
UTE")) + & = ((T(E)) — &) + & = (T(F)). This contradiction es-
tablishes the result.

Proof of Theorem 2. Let P be a finite normally ordered subset
of a rectifiable arc A of a finitely compact metric space M and
I{(T(P)) denote the linear content of a mini-tree on P (and spanning
vertex set P* D P). Defining [*(A) = L.u.b.pc, (T(P)), it suffices to
show that [*(4) = I(4). To do this let I(4) = Lu.b.pc, D0t DiD;spy
and denote by A; the subarc of A lying between p, and p,,,. Then
1*(A;) = p.p;, bolds, and it remains to show that 1*(4) = S22t 1*(4,).
But this follows by complete induction on the statement [*(4, + 4,) =
I*(A,)) + 1*(4,) the proof of which follows.

For an arbitrary ¢ > 0, there exists two finite subsets E;cC A4,
and E;C A, such that I*(4,) — ¢ < I(T(E)) and 1*(4,) — ¢ < [(T(E))),
where T(E;) denotes a mini-tree on Ej(¢ = 1, 2). By Theorem E, the
linear content I(T(F;) varies an arbitrarily small amount in a
sufficiently small neighborhood of a point of Ej;. It is thus possible
to choose E; and E; such that the common endpoint », of A, and A4,
lies neither in E| nor E;, so the last point ¢, of E; and the first
point ¢, of K, are different from p,. Let A] be the subarc of 4
between p, and q,; A, the subarc between ¢, and p..
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Since a metric space is a normal topological space, there exist
two open sets U, and U, which contain the subarcs A, and A4,
respectively, and which have disjoint closures. If d denotes the
distance of the set A + A4; from the boundary of U, + U, then
d>0. Let ¢ be such that 0 < ¢ < min{d, ed/l*(4, + A,)}. There
exist two normally ordered finite sets &, and E, such that E.C
E c Al and E;cC E,c A;, and such that each two successive points
in E, and FE, have distance less than 6. Let F = E, + E, and let
I(T(E)) denote the linear content of a mini-tree on E (and having
vertex set E* D E).

Now decompose the finite sets E, (¢ = 1, 2) into finitely many
classes such that two points of E, are in the same class provided
the set E*.U, contains the end points of segments of a chain of
T(E) joining the two points. If a given point of E, is not connected
by such a chain to any other point of E,, then the point is in a class
by itself. Let »,(¢ = 1, 2) be the number of these classes. Since E*
is connected by chains of T(E), every two classes of FE, are such
that each point of one class is joined by a chain of T(E) to each
point of the other, but which does not have all of its vertices con-
tained in U,. According tothe definition of these classes and because
of the disjointness of U, and U,, every two of these n, + m, chains
are disjoint. On the other hand, each pair of these chains has
distance apart at least d, since K, + E, as a subset of A; + A, has
distance =d from the boundary of U, + U, Then (n, + n,)d <
UTE) <14, + A,), and so 6 < ed/((n, + n)d) = ¢/(n, + n,). Hence
(n, + ny)o < e. )

Now for each class, except for the two which contain the last
points of E, and E,, introduce a segment consisting of the last point
of the class and the next point of E, or F, (according as the class
is in E, or E,, respectively). Since each pair of successive points
in E, and E, has distance < 4, then each of the above n, + n, — 2
segments has length < 6 and is therefore contained in U, or U,
respectively. Augmenting T(E) with these n, + n, — 2 segments
yields a set S of segments containing T(F) and such that I(S) <
UT(E)) + (n + 1y — 2)-0 < UT(E)) + (n, + n)-0 < UT(HE)) + e.

Set S is such that each two points in E, are joined by a unique
chain (of S) which is contained entirely in U,. Since U, and U, are
disjoint, S must contain two disjoint trees T,(E,) on E, and T,(F,)
on FE,, such that I(T,(E)) + U(Ty(E,)) < I(S) < I(T(E)) + ¢. Therefore,
for mini-trees T(E,) and T(E,) on E, and E,, respectively, I[(T(E))) +
UT(E)) < UT(E)) + e.

On the other hand, E;C E, implies that (T(E}) < (T(E,)) and
since E; was chosen so that [*(4,) — ¢ < I(T(EY) (i =1, 2),
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*(4)) + 1*(4,) = UT(EY) + ¢ + UT(EY)) + ¢
= UT(E)) + UT(EY)) + 2¢
< (UT(E)) + €) + 2¢
< sup (T(E)) + 3¢
=1*4, + A4, + 3¢.

Since this holds for each ¢ > 0, I*(4,) + I*(4,) < I*(4, + 4,), and the
theorem is proved.
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