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AUTOMORPHISMS

ROBERT R. KALLMAN

Let Soo be the group of all permutations of the integers.
Then the only cr-finite Borel measures on £L which are quasi-
invariant under automorphisms are supported on the finite
permutations.

1* Introduction. SL is a complete separable metrizable group
with the topology of pointwise convergence on the integers. SL is
not locally compact with this topology, and hence there is no σ-finite
Borel measure on SL which is invariant under left translations. For
if there were such a measure, then there would be a locally compact
group topology with a countable basis on S^ whose Borel structure
coincides with the usual Borel structure (Theorem 7.1, Mackey [7]).
This is a contradiction since the Borel structure of a complete separable
metric group uniquely determines its topology. In fact, Maekey's
result shows that there is no σ-finite Borel measure on SL which is
quasi-invariant under left translations. (Recall that a Borel measure
μ on a Borel space X is said to be quasi-invariant under a group of
Borel automorphisms G if μ and each of its translates under elements
of G have precisely the same null sets.) However, even if G is a
complete separable metric group which is not locally compact, then
there may well be many Borel measures on G which are quasi-
invariant under inner automorphisms. For example, let G be any
Banach Space. Since G is abelian, any measure on G is invariant
under inner automorphisms. The purpose of this paper is to prove
the following theorem. It answers a generalization of a question
posed by S. M. Ulam, and shows that the above phenomena cannot
occur for SL. It roughly states that the inner automorphism action
on Soo is so rich that some natural structures are precluded. This
is a common occurence for SL. For example, Schreier and Ulam
[8] have shown that every automorphism of SL is inner, and Kallman
[3] noted that SL has a unique topology in which it is a complete
separable metric group.

THEOREM 1.1. The only σ-finite Borel measures on SL which
are quasi-invariant under automorphisms are supported by the finite
permutations.

A result of A. Lieberman [4] will be the main tool used to prove
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Theorem 1.1. If μ is a σ-finite Borel measure on fiL which is quasi-
invariant under automorphisms, then there is, in a natural manner,
a unitary representation of SL on L2(SL, μ). It is not a priori obvious
that this representation is continuous. To show that this represen-
tation is continuous, some new theorems on Radon-Nikodym derivatives
of measures are proved in § 2. These results might be of independent
interest. In §3 we show that the quotient of S^ by SL, acting
as inner automorphisms, is countably separated—i.e., there exists
a countable set of invariant Borel sets in £L which separate orbits.
Finally, the results of §2 are used in §4 to show that the natural
unitary representation of SL on LXS^, μ) is continuous, and then
Theorem 1.1 is proved using A. Lieberman's result and §3. See
Mackey [7] for the basic definitions, theorems, and further references
on Borel spaces used in this paper.

2* A result on Radon-Nikodym derivatives* Consider the
following setup. Let X be a complete separable metric space, T a
Borel space, and for each t in Γ, let vt and μt be two positive
finite Borel measures on X. Suppose that the mappings t —> vt and
t —> μt are Borel mappings in the sense that t —> vt(E) and t —> μt(E)
are realvalued Borel mappings on T for every Borel subset E
of X.

PROPOSITION 2.1. Suppose that for every t in T, vt is absolutely
continuous with respect to μt. Then there is a Borel function d(t, x)
on T x X so that for each t in T, d(t, •) is a Radon-Nikodym de-
rivative of vt with respect to μt.

Proposition 2.1 is quite reminiscent of Lemma 3.1 of Mackey
[5], but the two results and their methods of proof are disjoint.

LEMMA 2.2. It may be assumed that vt <I μt for every t in T.

Proof. For each t in Γ, let λ* = μt + vt. Then Xt is a finite
Borel measure on X, t->Xt(E) is a Borel mapping on T for each
Borel subset E of X, and vt ^ Xt. There exists a Borel function
d\t9 x) on T x X so that for each t in Γ, d\t, •) is a Radon-Nikodym
derivative of vt with respect to Xt. Define d"(t, x) by setting d"(t, x) =
d'(t, x) if 0 ^ d'(t, x) < 1, and by setting d'\t, x) = 0 if d\t, x) < 0
or l<*d'(t, x). d"(t, x) is then a Borel function on TxX, and d"(t, •)
is a Radon-Nikodym derivative of vt with respect to λ* for every t
in T. Let d(t, x) = d"(t, x)/(l - d"(t, x)). Then d(t, x) is a Borel
function on T x X, and d(t, •) is a Radon-Nikodym derivative of vt

with respect to Xt for every t in T.
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LEMMA 2.3. Let f(t, x) be a real-valued Borel function on T x X
so that for each t in T, f{t, •) is a bounded function on X. Then

the mapping t —» I f(t, x)dμt{x) is a Borel function.
JX

Proof It suffices to prove the lemma in case / is nonnegative.
If / is the characteristic function of a Borel rectangle in T x X,
the lemma is true since the mapping t —> μt(E) is a Borel function
for each Borel subset E of X. Consider the set S of all Borel
subsets B oί T x X such that the lemma holds for the characteristic
function of B. S contains all rectangles and is closed under com-
plements since t —> μt(X) is a Borel mapping. S is closed under coun-
table increasing unions by the monotone convergence theorem and
the fact that a pointwise limit of a sequence of Borel functions is
a Borel function. Hence, S contains all Borel subsets of T x X.
Therefore, the lemma is true for characteristic functions of Borel
subsets of T x X, and hence is true for Borel step functions. Choose
a sequence of nonnegative Borel step functions fn(t, x) on T x X so
that for each (£, x) in T x X, [fn(t, x)\n^l] is a monotone increasing
sequence which converges to /(£, x). Such a sequence exists by stand-
ard arguments since / is nonnegative. The lemma then holds for /
by again appealing to the monotone convergence theorem and the fact
that a pointwise limit of a sequence of Borel functions is again a
Borel function.

LEMMA 2.4. There exists a sequence [fn(t, x)\n^£l] of Borel
functions on T x X so that fn(t, •) is bounded for each n ^ 1 and
each t in T, and so that the nonzero members of [fn(t, ) | n ^ 1] form
a basis for L\X, μt).

Proof. Let VJyn ^ 1) be a basis for the topology of X, and let
gn(x) be the sequence of characteristic functions for the Vm and the
X — Vm(m ̂  1) in some order. For each t in T, the gn's are in
L\X, μt), and there is no element of L2(X, μt) which is orthogonal
to them all. The idea is now to apply a minor variant of the Gram-
Schmidt process to the gn'$. Define f(t, x) = 0 if I g^yfdμ^y) = 0,

/Γ \-U/2) JX

f(t, x) = ^(f l i ) g i ( y ) 2 d μ t ( y ) ) o t h e r w i s e . H a v i n g d e f i n e d f19 •••,
fk_ίt define hk(t, x) = gk(x) - Σi^fc-i/X*, x)[ \ fj(t, y)gk(y)dμt(y)) and set

S VJx /r / \-(i/2)

hk{t, y)2dμt(y) - 0, fk(t, x) = hk(t, x)(]χhk(tfyfdμt(y))
otherwise. It is an easy induction using Lemma 2.3 that each fn(t, x)
is a Borel function on T x X, and that fn(t, •) is bounded for each
n Ξ> 1 and each t in T. Furthermore, if fjt, •) is a null function
with respect to μu then fn(tf •) = 0, and so the nonzero members of
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[fn(t> O N ^ 1] form a basis for L2(X, μt), since the span of f(t, •),

•• ,fk(t, •) is the same as the span of gί9 •••, gk in L\X, μt).

Let fn(t, x){n ^ 1) be as Lemma 2.4. Define

Λ (ί, *) = Σ »t(fi(t,

Each fcn is a Borel function o n Γ x I and hn(t, ) is a bounded function
on X for all ί in T and n ^ 1. Furthermore, as is well known, the
sequence [hn(t, ) ! ^ ^ 1 ] converges in L2(X, μt), and therefore in
L\X, μt), to a Radon-Nikodym derivative of vt with respect to μt.
This is true since vt ^ μt for all t in T.

Proof of Proposition 2.1. Define

S(m, n) = [t in Γ - hs(t, for all i ^ mj .

Each S(m, n) is a Borel subset of T by Lemma 2.3, and LL^i S(m, w) =
T for each ^ Ξ> 1. Define flrw(ί, a?) as follows. Set flrn(ί, a?) = h^t, x)
if ί is in S(l, w), , and set #Λ(ί, x) = hk(t, x) if ί is in S(k, n) —

î fc-i S(j, n). Then ^ is a Borel function on T x X, and

converges ^-almost everywhere to a Radon-Nikodym derivative of
vt with respect to μt. Define d (ί, α?) = lim^oo flrn(ί, x) if this limit
exists, and set d(t, x) = 0 otherwise. Then d(ί, α?) is a Borel function
on Γ x l , and <Z(i, •) is a Radon-Nikodym derivative of vt with
respect to μt for all t in Γ.

3* A countable separability result• SL acts on itself by inner
automorphisms, giving rise to an equivalence relation = on £L. Recall
that a Borel space is standard if it is Borel isomorphic to a Borel
subset of [0, 1].

PROPOSITION 3.1. The quotient space SJ = is standard.

Proof. It suffices to show that there is a Borel subset B of SL
such that every element of SL is conjugate to one and only one
element of B. To see this, let C be any Borel subset of B. Then
[aCa~ι\a is in SL] and [a(B — C)a~ι\a is in SL] are disjoint analytic
sets whose union is £L. Hence, these two sets are both Borel sets.
Therefore, if B% (n ^ 1) is a sequence of Borel subsets of B which
separate the points of B, then the Cn = [αB̂ -α""11 α is in SL] form a
sequence of invariant Borel subsets of £L which separate orbits.



TRIVIAL BOREL MEASURES ON &. 457

Hence, the quotient space SJ = is countably separated. The natural
mapping of B-> SJ= is Borel and one-to-one onto its range. Hence,
Souslin's theorem now shows that the quotient space SJ= is standard.

One may easily check that two elements of £L are conjugate
under inner automorphisms if and only if they have the same number
of cycles of length k, for every positive integer k, and the same
number of infinite cycles.

For each of the symbols k — 1, 2, 3, , oo, let Nk = {0, 1, 2, , oo},
considered as a topological space with the discrete topology. If N
is a product of certain of the Nk's, then N is a complete separable
metric space. If fiN-^S^ is continuous and injective, then f(N)
is a Borel subset of SL by Souslin's theorem. B will be a finite
union of sets of the form f(N), for certain choices of / and N.

First of all, let N = ILSKOO Nk. There is a continuous injective
mapping / : N —> SL onto a transversal for the permutations which
contain only finite cycles. Identify the integers with the positive
integers. If a = (αlf a2, ) is an element of Nf think of ak as
representing the number of cycles of length k. Define f(ά) by the
obvious Cantor diagonal process, starting from 1 and moving right.
For example, /((3, 2, 0, 3,1, 0) = (1)(2)(3, 4)(5, 6)(7)(8, 9,10,11)(12,
13,14, 15,16)(17,18,19, 20) . Check easily that / is continuous
and one-to-one onto a transversal for the permutations which contain
only finite cycles. Let B1 — f(N).

There are only countably many conjugacy classes of infinite cycles
permutations which contain only finitely many finite cycles. Let B2 be
a countable set which is a transversal for these conjugacy classes.

The only permutations which remain to be considered are those
which contain an infinite number of finite cycles and at least one
infinite cycle. Let B'2 be those elements of B2 which contain no
finite permutations. Identify the integers with the even integers,
and then with the odd integers. Let Bz be those permutations which
on the even integers are an element of Bί9 and which on the odd
integers are an element of B2. J53 is a Borel set which is a trans-
versal for those permutations which contain an infinite number of
finite cycles and at least one infinite cycle.

Let B be the union of B19 B2, and J?3. B is a Borel set which is
a transversal for SJ = .

Note that one cannot use the results of Effros [1] for Proposition
3.1, as there are infinitely many conjugacy classes which are dense
in Soo. As this is the case, one cannot conclude that SJG is coun-
tably separated, where G is an open subgroup of SL which acts by
inner automorphisms. This will cause a slight technical complication
in the next section.
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A computation shows that if a is an element of S^ which is not
a finite permutation, then the conjugacy class of a has power of the
continuum. Hence, if μ is a <7-finite Borel measure on SL which is
quasi-invariant under inner automorphisms, then the only point
masses of μ must lie in the finite permutations.

Let G be an open subgroup of £L and let a be an element of
Soo which is not a finite permutation. Then [hah~ι\h is in G] is not
compact. Indeed, simple computations show that [hah~ι \ h is in G] is
not even bounded. In this computation we use the fact that any
open subgroup of £L contains an open subgroup of the form GB,
where B is a finite set of integers, and GB is the subgroup of SL
which leaves B pointwise fixed.

LEMMA 3.2. Let a he an element of SL which is not a finite
permutation. Let B be a nonempty subset of the integers, and let
B' be a much larger subset. For b in GB, let Cb = [bcac^b'1 \c is in
GBr]. Then for sufficiently large B', infinitely many Cb's are disjoint.

Proof. Choose B" so large that a does not act as the identity
on B" and a(B") is not contained in B. This is possible since a is
not a finite permutation. Let Br be the union of B" and a(B"). Then
cac~ι\B" = a\B" for all c in GB>. Choose p in B" so that a(p) =
Qf V =£ Q> and p and q are not in B. For a fixed large r and each
integer n, let bn = {p, r)(q, n). Each bn is an element of GB for all
large n. A computation shows that bnab~\r) = n = &Λcαc~16»;(r) for
all c in GB,9 and for all large n. Hence, for all large n, the Cbn's
are disjoint.

4* Proof of Theorem 1Λ* The proof of Theorem 1.1 is largely
carried out through a sequence of lemmas. Let /ίbea σ-finite Borel
measure on SL which is quasi-invariant under automorphisms and
which is not supported by the finite permutations. It may then be
supposed that μ({x}) = 0 for all x in SL. For each t in SL, let μt(E) =
μit^Et) for all Borel subsets E of S^. By assumption, each μt is
absolutely continuous with respect to μ. We may assume that μ(SL)
is finite.

LEMMA 4.1. The mapping t —> μt(E) is a Borel mapping on SL
for each Borel subset E of SL.

Proof. If E is an open subset of SL, the mapping t —> μt{E) is
upper semicontinuous by Fato's Lemma. Let S = [E\E is a Borel
subset of £L, and the mapping t —> μt(E) is a Borel function on £L],
S contains the open sets, is closed under complements since
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is finite, and is closed under countable unions by the monotone con-
vergence theorem and the fact that a limit of a sequence of Borel
functions £is again a Borel function. Hence, t —> μt{E) is a Borel
function for all Borel sets E.

Proposition 2.1 now shows that there is a Borel function d(t, x) on
Soo x SL so that d(t, ) is a Radon-Nikodym derivative of μt with respect
to μ. If / is in L2(SU μ), define (U(t)f)(x) = /(fr'xtXdit, x))1/2. One
can compute that t->U(t) is a homomorphism of SL into U{L\S^, μ)).

LEMMA 4.2. The mapping t->U(t) is continuous in the strong
operator topology.

Proof. It is an easy consequence of Theorem B, p. 168, Halmos
[2], that L2(SL, μ) is separable. Hence, £7(L2(SU μ)) is a Polish group.
In order to show that t —> U(t) is continuous, it suffices, by a well
known theorem of Banach, to show that t —> I7(ί) is a Borel mapping.
To do this, simple approximations show that it suffices to prove that

t -> \(U{t)χE)(x)χF(x)dμ(x) = J χ ^ ( r ^ ) χ F ( ^ ( έ , x)ί/2dμ(x) is a Borel map-
ping, for every pair of Borel subsets E and F of SL. This, in turn,
will be true, if the following holds. Let f(t, x) be a nonnegative
Borel function on £L x SL so that each f(t, •) is in Lι(Sco, μ). Then
the mapping t -> \f(t, x)dμ{x) is a Borel mapping. This statement

is clearly true if / is the characteristic function of a Borel rectangle
in Soo x £L. Let S = [B\B is a Borel subset of £L x £L, and the

mapping t —> \ dμ(x) is a Borel mapping. S contains all Borel

rectangles, is closed under complements since μ{S^) is finite, and is
closed under countable unions by the monotone convergence theorem
and the fact that the limit of a sequence of Borel functions is again
a Borel function. Hence, S contains all Borel subsets of SL x SL.
Therefore, the above statement holds for all nonnegative Borel step
functions. Choose an increasing sequence of nonnegative step func-
tions fjt, x) on SL x SL which converge to /(£, as). Such a sequence
exists by standard arguments since / is nonnegative. The statement
now follows in general, again by the monotone convergence theorem
and the fact that the limit of a sequence of Borel functions is a
Borel function.

LEMMA 4.3. There is an open subgroup G of SL and a finite
G-invariant Borel measure v on £L which is absolutely continuous
with respect to μ.

Proof. By Theorem 3 of Lieberman [4], there is an open sub-
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group G of £L so that U\G contains the trivial representation as a
direct summand. Hence, there exists a unit vector f(x) in L2(£L, μ)
so that f(t~lx£)(d(b, x))1/2 = f(x) μ-almost everywhere, for every t in
G. Hence, \f(t~1xt)\2d(tfx) = \f(x)\i μ-almost everywhere. Define
v{E) — \\f(x)\2χE(%)dμ(x). A simple computation completes the proof.

Proof of Theorem 1.1. Let C be the support of v. C is G-invar-
iant. Let q: SL-* SJ= = Y be the natural quotient mapping. g(C)
is an analytic subset of the standard Borel space Y. Define ΰ(E) —
v{q~~\E)) for all Borel subsets E of Y. For each y in Y, there is a
Borel measure λy supported on q~~\y) Π C, so that if / is a positive

S r
/cϊλy is a Borel mapping, and l/ώ> =

\{\fdxy\dv{y). Furthermore, if y —>X'y is another such choice of
measures on Y, then λ̂  = Xy for £-most all y (see Lemma 11.1, Mackey
[6], and the references cited there). Since v(C) is finite, Xy(C) must
be finite for ^-almost all y. By altering the λ/s to be the zero
measure on a v-null Borel set, it may be supposed that Xy(C) is finite
for all y in Y. Let [an\n ^ 1] be a dense sequence in G. As v is
G-invariant and q is G-equivariant, an argument analogous to the
preceding one shows it may be assumed that each Xy is invariant
under each an. Now suppose that X is a finite Borel measure on C
which is invariant under each an. Then if U is open in C, λ(α Ua~ι) =
λ(Z7) for all open sets U, by two uses of Fatou's Lemma. A
standard argument now shows that X is invariant under G. Hence,
it may be assumed that each Xy is G-invariant. Choose an a in
C so that a is not a finite permutation and Xq{a) is not the zero
measure. Such an a must exist. As G is open in SL, there are
only countably many G-orbits in g" 1 ^^)) ίl C, At least one of
these orbits must have been positive λ9(α)-measure. It may be
supposed that the G-conjugacy class of a is this orbit. Let Ga be
the centralizer of a in G. There is a natural continuous, bijective,
G-equivariant mapping ψ: G/Ga —> (G-conjugacy class of α). Use ψ
to transfer Xq{a) to a finite G-invariant Borel measure λ on G/Ga.
By Lemma 3.2 there is an open subgroup H of G and a sequence of
elements bn(n ^ 1) in G so that the sets bnHGa are disjoint in G/Ga.
As H is open and λ is G-invariant, X(bnHGa) = X(HGa) > 0. Hence,
X(G/Ga) = °o. This is a contradiction. Thus, there is no tf-finite
Borel measure on SL which is quasi-invariant under automorphisms
and is not supported on the finite permutations.
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