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For a given space F, let F— E.(F)— B.(F) be the clas-
sifying fibration for fibre homotopy equivalence classes of
fibrations with fibre /. The usual theoretical construction
of this fibration offers little insight into its structure homo-
topically. Below we study this structure under the hypothesis
that F' has homotopy concentrated in a stable range. As an
application of this study, for F' a stable two stage Postnikov
system determined by a Steenrod operation, we obtain explicit
descriptions of the spaces E.(F) and B.(F).

Our study is based on two observations about these spaces for
such stable F. Firstly, B..(F) “splits” between E.(F') and B(F") [12].
Secondly, the finite Postnikov decomposition of F' will be shown to
translate into a finite filtration of K.(F). The homotopy spectral
sequence of this filtration is relatively accessible.

In the first section we review certain constructions that will be
needed in the sequel.

The second section is devoted to setting up the spectral sequence
mentioned above. Restricting attention to two and three stage
Postnikov systems, we are able to use this spectral sequence to obtain
information about the homotopy of B.(F).

Finally, in the third section we consider stable two stage systems
where it is possible to give a fairly complete geometric deseription
of E.(F) and B.(F). Again, when the system is determined by a
Steenrod operation the description is made precise. We show that
E._(F) is a certain fibre product of spaces of type L(m, n) [9] and
B_(F) is essentially the total space of a fibration over E_(F') deter-
mined by a single k-invariant for which a formula is given.

Finally, we would like to thank the referee for his many helpful
suggestions.

1. Preliminaries. We assume that all of the constructions and
computations below take place in an appropriate topological setting
(e.g., [6]). We will be interested in fibrations with a given cross-
section. James [4] would consider the first constructions to be a
fragment of ex-Postnikov theory.

NOTATION 1.1. (a) Let & = (HE, p, B) be a fibration with fibre
F. For a given space X we let B* = {f: X — E|pf = const.}, &*=
(E*, D, B) is a fibration with fibre map (X, F') and with P defined by
the formula B(f) = p(f(x)).
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(b) Let s: B— E be a cross-section for & and let z, be a fixed
point of X. For each be B we have a preferred base point s(b)e
p7b). Let Ef ={feE*|f(x,) = s(b) where pf(x,) =0} &=
(EE, D, B) is a fibration with fibre the base pointed maps of X to
F. &7¥ has a preferred cross-section of constant maps.

Given a map we may replace it by a fibration using a well known
construction. We now wish to observe that this may also be carried
out in the setting of ex-homotopy theory.

Suppose we are given a commutative diagram of fibrations. (Not
necessarily with the same fibre.)

E-1.E

b b

B— B

Define E; = {(e, h)e E x E'|f(e) = h(0)} and let #: E7 - B be
given by the formula P(e, h) = p(e).

LEMMA 1.2. &7 = (E7, D, B) ts a fibration fibre homotopy equi-
valent to &.

The proof is straightforward as is the proof of the lemma that
follows the next definition.

DEFINITION 1.3. Suppose we are given cross-sections s and § of
% and & respectively. Define E7 = {(e, h) ¢ E7|5fp(e) = h(1)} and
let »’ be the restriction of p to Ey.

LEMMA 1.4. g% = (E,'T, 2, B) is a ﬁbmti_qn witlz cross-section s
and the fibre of &7 s the fibre of the map f: F— F.

Note that we have the following commutative diagram of fibrations
with cross-section.

I BN

[
B— B -1, B
We will denote such diagrams by the notation



ON THE STRUCTURE OF B.(F'), F A STABLE SPACE 493

We will also write & (resp.-&’) interchangeably for &7 (resp. & 'f—)
takmg the appropriate meaning from context.
The following application of 1.4 is basic to much of what follows.

THEOREM 1.5. Let F, the fibre of &, be (n — 1)-connected and
let t: F— K(w, n) represent the fundamental class of H*(F, &) where
T, (F) = m.

(a) There exists a fibration £, = (K., 0., B) wzth cross-sectwn
and with fibre K(z, n), and a map of fibrations & UL & With
t|\F=t.

(b) The fibre of &’ in the sequence

gr 0B oo &1 o

ts the result of killimg the lowest nonzero homotopy group of F.

Proof. (See also [7].)

The existence of 7 is a corollary of 1.6 of [11]. In particular,
. is the first stage of the twisted Postnikov decomposition of .

In applying 1.6 of [11] one notes that the existence of a cross-
section implies that the twisted k-invariant z(¢) = 0 and that it
suffices to set s, = ts. Note that %, need not be a product. To
see this one notes that the vanishing of the twisted k-invariant does
not have the usual geometric meaning that the corresponding map
of spaces is trivial (see 1.5 of [11]).

The Functors H and H,

We now recall some facts about classifying spaces of fibre
homotopy equivalence classes of fibrations.

Let H(X, F') be the set of fibre homotopy equivalence classes of
fibrations over X with fibre F. H has a classifying space B (F)
and universal fibration £.(F) = (E..(F), 7., B.(F)) [1, 2].

One also has H (X, F'), the set of base cross-section preserving
fibre homotopy equivalences. In [12] we established the following
information about Hy(—, F') (see also [3]).

THEOREM 1.6. (a) H(—, F) is classified by a space By(F).

(b) By{F)= E.(F), the total space of the universal fibration
over B.(F). Moreover, a classifying fibration %ﬁ(F) for H, is given
by pulling Z(F) back along p,. (see [3]).

() If n(F) =0 for i <n and 1+ > 2n — 3 for some n (such an
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F is called stable) them the map Bt(F)ﬁBw(F) admits a retraction
B.(F) > B(F).

The following theorem follows at once from the proof of 1.6¢ in
[12] and should have been stated there (see 2.3 and 2.13 of [12]).
Since stable spaces are associative H-spaces we may form principal
F-bundles. Hence,

THEOREM 1.7. Let F be stable and B(F') be the classifying space
for principle F-bundles. Let B(F') LA B (F) classify B(F') as a fibra-
tion. Then the fibre of the map r is B(F) and B(F)i’» w(F)L
B,(F) is a universal fibration for H,(—, B(F)).

Since rp, ~ Id 1.7 implies:

COROLLARY 1.8. 7, (B.(F)) = w,(B(F)) @ m, (By{(F")).
In fact, 1.8 holds when F'is an associative H-space [12].

NoTATION 1.9. In all that follows we will be considering fibrations
with l-connected fibres F, F’. We will want to look at certain
subspaces of various mapping spaces. We adopt the following notation:

(a) Let (F', F'> denote the subspace of the space of maps of F”
to F such that fe<F', F) if and only if f.: 7, (F") = n (F) for all
n such that both =, (F') and =, (F') are not trivial.

(b) If F' and F have specified base points then {(F", F'), S (F", F)
denotes the subspace of base point preserving maps.

(¢) For a fibration & = (E, p, B) with fibre F, let £ (F", F) =
(E{F', F'), D, B) denote the fibration with fibre <{F”, F) and total
space EX(F, F) = U,z <{F', p7'(®)) & E.

(d) If & has a base section and F' a given base point, let
& (F, Fy, = (FH{(F", F), D, B) denote the obvious fibration with fibre
(F", F), and base section of constant maps.

() Finally if F' = F” we write &<{F) (resp. & {(F), for
Z(F, F) (resp. &(F, F),).

We complete this section by recording two more or less well
known facts.

THEOREM 1.10. [1], [3]. Let (E.(F), 9., B.(F)) and (E.(F), v,
Bi(F)) be as 1.6 then E. (F) and EF), have vanishing homotopy.

1.11. Next, let (&, p, B) be a fibration, let b,e B and ¢, € p~'(b,)
be given base points and let 6: 2B X I— B be the evaluation map
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6d, t) = I(t)). Let 8: 2B x I — E be a lifting of 6 such that 6|28 x
0 = ¢, Finally define d: 2B— F by d() =6(,1). d is called a
geometric boundary map and is unique up to homotopy class if F
is path connected.

LeEMMA 1.12. Suppose we are given the following homotopy
commutative diagram of fibrations

E- . F

b

B— B'.

d d’ .
Let 2B — F and 2B’ — F’ be geometric boundary maps then the
diagram

oB- %, F

o d’ |7

2B — F
homotopy commutes.

2. A Filtration of the space By(F'). In this section we make
use of 1.5 to give a filtration of the space B(F') by fibrations. We
then analyze the associated homotopy spectral sequence, first formally
then in the case F stable. In the stable case the F, and FE, terms
of the spectral sequence are seen to be computable in terms of more
familiar objects.

2.1. Applying 1.5 to the fibration Z(F') yields the fibration
w' = (F, v, B(F)) with fibre F'. Again F’ is the result of killing
the lowest homotopy group of F. Since &’ is classified by a map
0: B(F)— B'(F") we have the following diagram.

Ll

(2.2) E(F") — E' — E(F)

L,

B(F") «*— B(F) = By(F)

Writing F’ as F' and p as p' we may iterate this process giving
the sequence of spaces.
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(2.3) B(F) " B(F") % B(F*) —> - --

and the associated sequence of fibres of opposite variance.

it 2
Fe— F' «— F?* ¢—— -+

It is now our intention to study the fibres of the maps p’. Since
our diagrams are already heavily adorned we will work with 2.2
itself but state conclusions in general. )

We begin by noting that the map F’ 2 F induces i*: (F, F),—
(F', F,and 1,: {F’, F'y, — (F’, F),. The following extension of 2.2
is basic to our analysis of the maps o'

(B, F'Sy = (B, F'Sy—25 (B, Yy o (F, F,

l l l l

2.4) E(F"yy —— B{F"y— B (F', F, —— E{F,
B(F") <X~ B(F) == B(F) == B(F)

We will also need the following observation.
LEMMA 2.5. %, tnduces an isomorphism in homotopy.

Proof. Since F’ is m-connected (F’, K(m, m)), has vanishing
homotopy.

Finally, letting d(d’) be a geometric boundary map for
EXED(EKEF D)

we have the following:

THEOREM 2.6. The following diagram of spaces is homotopy
commutative.

QB(F") - 0B(F)
@.7) jﬂz d
CF', Fy X (F, T,
Moreover, i,d" and d induce isomorphisms in homotopy.
Proof. Homotopy commutativity follows from 2.4 and 1.12. d

and d’ induce isomorphisms by 1.10. Finally, ¢, is an isomorphism
by 2.5.
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Using 2.7 we can now study the homotopy of T, the fibre of the
map Q.

n(T) and x,(T)

(2.8) Since B(F) and B.(F') are connected 7, (T) = coker p, =
7, (B (F")/p.7 (B, (F)). Moreover, 7,(B.(F)) = Eq[F] the group of
base point preserving self-equivalences of F.

The map Eq[F]ﬁiEq[F’] has been studied in several places
and in fact for the stable case a formula for the image of Eq[F']
in Hq[F'] can be found in [9]. We give an interpretation of this
formula in a simple case.

Let F be a stable two stage Postnikov system determined by a
cohomology operation ¢ € H™Y(K(x,, n), 7,). Eq[F'] = aut (x,) and the
image of o in aut(w,) are precisely those a in aut(w,) for which
there is a B in aut (z,) with

K, n) =2 K(m, m + 1)

I J

K(x,, m) —— K(m,, m + 1)

commutative.

One may state conditions when p, is onto, (if x, and z, are prime
eyclie) but in general, of course, this is not the case.

On the other hand, since T is the fibre of a fibration with path
connected base and total space, all of the path components of T have
the same homotopy type. Hence the higher homotopy of T is reflected
in 2(T) which is also the fibre of ¢*: (F, F'y, — {F’', F,.

The study of 7, (T) requires similar consideration [5],[8],[9].
We will consider these groups again in §3 for some special cases.

(1), n = 2

NoTATION. We let F/F’ denote the cofibre of the map +: F' — F'.
For X a space we let S(X) denote its reduced suspension. Finally,
for base pointed spaces X and Y, let [X, Y] denote the set of base
pointed homotopy classes of maps of X to Y.

LeEMMA 2.9. If F is an H-space then
7, (T) = [S*(F/F"), F]

Jfor mn = 2.

Proof. By 2.6, it suffices to study =,_,(2T) where 2T is con-
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sidered as the fibre of the map i*: (F, F), — (F', F),. Since F is
an H-space all components of spaces of maps into F have the same
homotopy. Hence we may replace ¢* by the map of components of
maps base point homotopic to the constant map. The result is now
a standard mapping space argument.

The Spectral Sequence

In order to set up the spectral sequence we extend the sequence.

2

Fip L

in a trivial way by setting F* = F for » < 0. Also set
d™ = iL4% -+ i2d™ Q(BU(F™) — (F*, F), .

We have the following formal display of spaces.

cor = QBF"Y) QBYE™) QBYF" ) — ..
an—1 an ar+l
—(F"L F), (F” F>0 F"“ Fyy—
m—1 / an 1 "
Q(T” D! Q(T”)

Before extracting our exact couple from 2.10 we establish some
notation.
The general form of our bigraded exact couple will be

%

A — A
N /
ANV

B

pgt Apg = Apgsis Jogt Apg— By iy s byt By — Ay -
For the pair (F'*, F**') its Barratt-Puppe sequence is
,in-l—l 7 An
F7L+1 5 F‘n ) F'Ib/F?H'l N S(F‘n"—l) .

Note, for example, that 4" induces
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(8774 [S*(S(F), Fl— [SPHEF"[F**), F] .

THEOREM 2.11. For F an H-space there is a bigraded exact
couple (A, K, 1, j, k) as above and such that

1. 4,,= T 1 (BUEF))

2. E,,=[S"(F/F), Fl,p=1

3. dig = Jp.okh, = (SP7149)*(SPg7)*.

Proof. The exact couple in question is induced by 2.10. Hence
all that is left to prove is (3) which, like 2.8, is a standard mapping
space argument. For example one identifies j} , as induced by the pth
suspension of the geometric boundary homomorphism then observe
that (S?7'49)* is essentially an explicit choice for that map.

When F' is a stable space 2.11 takes a more convenient form.
Before stating the result we introduce some notation relating to the
Postnikov decomposition of F. Let the rth nonzero homotopy group
of F' be denoted by =, , where n, is the dimension where it occurs.
Let E, denote the rth stage in a Postnikov decomposition of F and
let k, € Hr+*(E,, x, ) be the rth k-invariant of F. Thus we have
the following decomposition of F.

F
B,
(2.12)

K(@,, 1) — B, - K(x,, n, + 1)

P
ky
K(ﬂ'—'no’ Ny) — K(ﬂ'ﬂl, n, + 1).

U

K(%,, o)

We set v, = [k,i,] € H* " (K(z,,, 0,), Tpps)-

Since we are in a stable range it makes sense to speak of S*y, €
Hrv*Y(K(w, , n, + p), T,.,), the pth suspension of 4. Note that
p may take negative values. The following well known fact motivates
our restatement of 2.11 for the stable case.

LEMMA 2.13. For p < 2n, — 2 we have that

SP7ip o SPapr, = 0.

Proof. 1t suffices to consider the case p = 0. Other cases following
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by isomorphism under suspension. For » = 0 we have the diagram-

Tr k.
.K(ﬂ'”f, ,n"r) a— Er - .K(TC,‘T+1, Npyy + 1)
Pr-1
’L,——1 kr—].
K(z,,_, %) — HE,., — K(z,,

Ryt
now S7'(y,_) = [Qk. ,-2,_,] and 2k, , is the geometric boundary of
the fibration K(r,, n,) = E, 25 E,_, so [4,2k,_] = 0 and

S(y,-) o 8°y,) = [, 2k, 20,] = 0.

We are now prepared to state the additional properties that our
spectral sequence has in the stable case.

THEOREM 2.14. Let F be stable (again, w(F) =0 n > 1% or 1 >
2n — 8) then ‘

(a) The spectral sequence of 2.11 finitely converges.

(b) B, = [K(x,,n, +p), Fl,p = 1.

(€) diq = (S ).

Proof. Firstly let n, n, %, --- n, be the dimensions in which
7, (F)+* 0. Then E,,=0p>2n — 3 or ¢ > s (2.11-2).
It is a simple matter to check that the maps

Se(EeFe) 289 Sw( K, , m,)
and
SHK T,y My + ) — K (7w, , 0, + D)
are 2n — 3 equivalences hence
(08° (D)) [K T,y My + D), F1 = [SHFF™), F].

It 6,e H"(K(z,, n,), T,,) is the fundamental class then [k,_,] =
(p¥..)'0F6, where 6* is the coboundary homomorphism in the sequence
of the pair (&, , K(z, , n,)). On the other hand if S* is the cohomology
suspension and E, JE(T s 1) —>S(K(7z:,b , M) is as in 2.10 then 6F = 4*S*.
Using this fact, (2) above, and 2. 11 8, the remainder of the proof
reduces to an examination of the appropriate diagrams.

APPLICATIONS 2.14. We now apply 2.13 to certain simple cases.
We assume %, > 1.

1. F= K(m,, n). This situation was studied in [11] where it
was shown that By(F) is a K(Aut (,,), 1).
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We rederive this result from 2.13 by noting that E.,=
[K(m,, no+ D), K(,, n)] =0 p=1. Also E}, =0 trivially for ¢ = 0.
Thus we conclude that 7, (B(K(x,, n,) =0 n=2. Finally, we know
that 7,(By(F)) = E[f] = aut (x,,) (2.8).

2. F = (K(rm,, n), K(x,, n), k). Here K, ,=0q+#0,1. By ele-
mentary obstruction theory one shows

(a) By =0,p=1.

(b) E,,=[K(z,,), n, + p, K(x,, n)], » = 1.
Thus:

T(By(F)) = H"" " (K(T 0y Mo)y T,

for n = 2.
We will discuss the actual structure of By(F') in §3.

3. F= (K(TC,,LO, %0), K(ﬂ',,,l, nl)? K(TL'M, 'nz); ku kz)'
As above: (a) E,,=0,q+ 0,1, 2 (trivially)
(b) EL,=0,p=1 (as in 1 above).
(¢) E%.= H"(K(m,,n + D), 7,), »= 1.
po = HY(K(®,, 7, + ), T,)p = n, — M, + 1 (as in 2 above).
(d) In general for p = 1 there is an exact sequence

[Ch %) (%)

H”Z(K(n'%o, Ny + p)! nz) E— E I Hm(K(n-noy n, + p)’ Tp) —

We next consider the HE*-terms.
(e) For p=1E:,=kerd,, = ker (S*"'y,)* and for p=m, —n, + 1
2, = coker (S?4r))* where

(Sp—l/‘/ﬁ)*: H”Z(K(ﬂnl’ n, + p)} 71'-%2) Ea— H”Z(K(ﬂ:nof Uz + D — 1)’ nnz .
Thus, for p = n, — n, + 1, there is a short exéct sequence
0 — ker (SP7')* —— 7, (By(F)) —> coker (S?y)* — 0 .

A more complex sequence can be written down using (d).

4. As a last example we apply (8) to an explicit case. The
results are indicative of the sorts of conclusions we will draw in the
next section.

Let F be a stable space based on the Adem relation S¢°Sq¢* =
0. Thus, letting n be a base stable dimension we have the following
Postnikov system for F.
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il

F* = K(Z, n + 3) -2 F L F

l l

K(Z,n+ 1) B -2 K2, 0+ 4)

l

K(Z, n) % K(Z, n + 2)

where ki, = Sq¢® and, in the notation of 2.11 ‘7, = ..
By (3) a, b, c, d above we conclude that the nonzero E'-terms in
our spectral sequence are

B, = H"(K(Zy n + 1), Z,) = Z,[S¢’]
E.. = E;, = Z[5¢']
k. = K, = Z,[1d] .

All of these are immediate except the first which follows from (3)
d by a simple evaluation of the various terms in the sequence. By
2.14 (0), di, = [S¢*]*: E., = Ei, thus E:, = E?, = 0.
Further, it is not difficult to verify that d}, -+ 0 thus E%, = 0.
Thus the nonzero E*terms are:

2o = 2y

Ei,=Z,.
Again, checking that 7 (By(F)) = Z, we have that

2 (B(FY) = Z, 1=13,4
s ~ [0 otherwise .
THEOREM 2.15. In a Postnikov decomposition of By(F'), k.1, = 0.

Thus the simply connected covering space of B(F) is K(Z,, 3) X
K(Z,, 4).

Sketeh of proof. k., is either Sg® or zero. Let X = S(P*), the
suspension of real projective 4 space. If k7, = Sq* then one verifies
[X, B.(F)]= Z,. On the other hand, a direct calculation shows
H[X, Fl= Z,® Z, which agrees with the assumption k., = 0.

3. B{(F) and B, (F) for stable two stage systems. In this
gection we give explicit descriptions of B{(F') and B.(F) for certain
stable two stage systems. These descriptions are based on a presen-
tation of B,(F') as the total space of a fibration with fibre a product
of K(z, n)’s and base a K(z, 1). We first develop this presentation.
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3.1. To fix notation for this section, assume we are given the
following Postnikov decomposition of F'

K@, 1) —— F .

Lo,

k
K(TCO: 'no) —_— K(nlu n, + 1) .
Associated with this decomposition is the principal bundle pairing
o: K(m, n) X F— F'.

Finally, for spaces X and Y, C,(X, Y) will denote the space of maps
homotopic to a given constant map.

The following construction is basic to the remainder of this
section.

3.2. Suppose we are given a pairing
C: X N\ K(my, mg) —— Ky, m, + 1)

Let C: X x K(w,, n,) — K(z,, m, + 1) be the pairing induced by .

Let k: X x K(m, m,) — K(x,, n, + 1) be the composition of projec-
tion onto the second factor and k.

Finally, let m denote multiplication in K(z, n, + 1) and 4: X x
K(my, n,) — (X X K(zm,, m,))* denote the diagonal map.

We have the following pullback diagram of fibrations

1
X x Kz, 1) ™, g m + 1)

Letting ¢ be 7 composed with projection onto the first factor,
we have the following lemma.

t . . . .
LeEMMA 3.8. E — X s a fibration over X with fibre F and with
cross-section.

In general (F, ¢, X) is not a product. To see this we show by
example that the geometric boundary homomorphism of the associated
fibration (E(F), %, X) may be nontrivial. We will use this com-
putation for other purposes as well.

3.4. The pairing ¢ induces a pairing of mapping spaces.

d: C(F, K(r,, m)) X (F, Fy,— (F, I,
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which in turn induces
g C‘o(F’ K(ﬂ:u 'n/x)) — <F, F>o

by the formula 6(f) = o(f, Id), where Id is the identity map on F.
On the other hand, { induces

20 2X N\ K(my, ny,) —> QK(z,, 1, + 1)
which in turn induces
QT 2X — C(K(m,, o), K(w, n.)) -
We have the following

THEOREM 3.5. A geometric boundary homomorphism d: 22X —
(F, F,, for the fibration (E{F>, D, X) is given by the composition.

3.6. 02X C(K(m, n), Kz, m) D C(F, Kz, n) S (F, F,

Proof. Referring back to the definition of d (1.11) the proof
amounts to a verification that the given composition is a suitable
choice for d.

ExampLE 38.7. Let X = C(K(m,, n,), K(zw,, n, + 1)). One has the
evaluation pairing

¢: C(K(wy, 1), K(z,, my + 1)) N\ K(7oy 1) —> K(7yy m, + 1)

hence one may apply the construction 3.2.

LEMMA 3.3- In the setting of 3.7,
d,: ﬂi(QCO(K(ﬂ:o, n,), K(z,, ny + 1))) — 77:1:(<F; F>0)

is an isomorphism for © > 0.

Firstly, Q2 is, in fact, the identity map on the spaces in question.

For 4 > 0, p* is an isomorphism by a simple obstruction theoretie
argument as in 2.14.2b and &* is an isomorphism by similar consi-
deration taking into account the properties of the pairing o.

In what follows we denote the space C\(K(=m, n,), K(z,, n, + 1))
by the letter “K”. Again, 3.2 gives a fibration over K with fibre
F and cross-section.

THEOREM 3.9. Let k: K — By(F) classify this fibration. Then:
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(a) K 1s a product of spaces of type K(z, 1) for 0<i<n,—n,+1.
Moreover w,(K) = H" " (K(xm,, 1y + 1), Ty
(b) £y T (K)— w,(B(F)) is an isomorphism for ¢ + 1.

Proof. (a) is a well known result ([13]).
(b) follows at once from 3.8, 1.10 and 1.12.

3.9 may be interpreted as saying that the universal covering
space of By(F') is a product of K(x, n)’s. Thus, in order to determine
the structure of B,(F'), we must know its fundamental group and
the action of this group on the higher homotopy groups.

As we have indicated (2.8) 7,(By(F')) = Eq[F]. Let

t: Eq[f] — aut (%, (F)) X aut (z, (F))
be defined by the formula 7z[f] = fx X fx. Denote the image of = as

A A

#. 7 induces a map
7. B(F)— K(#, 1) .

The following theorem gives a fairly complete hold on the geometry
of By(F).

THEOREM 3.10. Up to homotopy, the sequence of maps

K

K-> B(F)—> K(#, 1)

18 a fibration.
Moreover, the action of T on w(K) is just the restriction of the
usual action of aut (w,) x aut (z,) on H™"(K(w, n, + 1), 7).

Proof. Since the base of 7 is a K(Z, 1), to show that the sequence
in question is a fibration it suffices to check that

(a) k4 m(K) = m(B(F))t > 1 (as was verified in 3.9).

(b) 0--m(K) = my(By(F)) = m(K(#, 1)) — 0
is exact.

To verify (b) we first observe that 7, is onto essentially by
definition.

Next, self-equivalences in the image of k, are represented by
compositions of the form

@11 F- Fx FP53 Kix, ny) x FP23 K, n) x F—> F

where h: K(z,, n,) — K(z,, n,) is some map [h] € 7,(2K) = 7,(K).

On checks that

1. Such compositions induce the identity map on homotopy.
Hence 7.k, = 0.
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2. Suech compositions are homotopic to the identity if and only
if h is homotopic to the constant map. Hence £, is a monomorphism.

To show that ker 7, = im &,, let « € 7,(By(F")) be such that 7.(x) =
0. Consider = [f] € Eq[f] under the appropriate identification. By
hypothesis,

p([f]1 — 1) = 0e[F, K(m, m)]

Hence, there exists a map ¢: F'— K(z,, n,) such that 7,[¢g] = [f] — 1.
Again by hypothesis,

0 = g: W (F') — 7, (K(7,, 1)) -

Thus ¢*[g] = 0. Since we are in the stable range [g] = p*[h] where
h: K(w,, n,) — K(x,, n,). Finally considering [h]en,(K) (3.11) one
verifies £,.[h] = x.
That the action of 7 on w;(K) is as stated is a similar verification.
We now consider a situation where we can give an explicit
model for B{(F).

3.12. For a given prime p let k& be a nontrivial stable operation
of type (Z,, Z,, n, n,). Then aut (x) = aut (7,) = Z,_, and since k
is nontrivial # = Z,_, (see 2.8).

Consider the twisted Eilenberg-MacLane spaces sz_l(n,.(K), 1) [10].
Since 7, (K) is p-primary the fundamental classes of the cohomology
of the fibre live to E, in the twisted Serre spectral sequence of
By{(F)— K(Z,_,, 1)[10, 11]. Hence there are geometric representations
of these classes as commutative diagrams of the following form

By(F)—> L;,_(7w(K), %)

Zp_y

K(Zp—u 1) = K(Zp—-u 1)

where the top map is an isomorphism in homotopy in dimension %
and in dimension 1. We then have

THEOREM 8.13. Let F be determined by a stable operation of
tyve (Z,, Z,, Ny, n,). Then

B(F)= X L, (m(K) ),

K(Zp_1

the fibre product over K(Z,_, 1).

For » = 2 this reduces to an ordinary product.
We may use 3.13 to determine the structure of B.(F). For
simplicity we only write down details for p = 2.

Recall that the fibration B(F)—»Bw(F)LB,(F) is a model for
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&y B(F)) (1.7). Hence B.(F) is the total space of this fibration.
For the case p = 2 we have essentially constructed this total space
in 3.5. In particular, let &k, ¢ H""*(K(Z,, n, + 1), Z;,) be k delooped.
Identifying B.(F') = K = C(K(Z,, n,), K(Z,, n, + 1)) and ByB(F)) =
C(K(Zy m, + 1), K(Z,, n, + 2)), we have the following theorem.

THEOREM 3.14. B.(F) s the pullback of the following diagram.

(8.15) i

BAF)X x K(Zy ny+ 1) ™® gz, m, +2).

Proof. Since 7 = 0 this is an immediate consequence of 3.10.

FINAL REMARKS 3.16. For » # 2 a similar construction can be
given. The difference between the two cases is that the k-invariant
for p # 2 is a twisted k-invariant. Therefore, in (3.15) one must
replace K(Z,, n) by L;,_(Z,, n) and products by fibre products. The
formula for the k-invariant in this case is similarly generalized.
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