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Suppose E is a separated complex locally convex space,
U is non void open subset of E, F a complex normed space
and 2Z2(U; F) the complex vector space of all holomorphic
mappings from U into F. On 2£(U; F) we consider: the
following topologies; a) 7,,, the topology generated by the
seminorms » which are KX — B ported for some KcU com-
pact and BC E bounded. A seminorm p is K — B ported if
for every ¢ >0, with K+ ¢BcCU, there is c¢(¢) > 0, such that
p(f) = c(9) sup{|f(@)|; we K + B} for all fe I(U; F); b) =,
the compact open topology; ¢) r., the topology defined by
J. A. Barroso in “Topologias nos espacos de aplicagdes holo-
morfas entre espacos localmente convexos”, An. Acad. Brasil.
Ci, 43, 1971. The topology 7., is an generalization of the
Nachbin topology (L. Nachbin, Topology on Spaces of Holo-
morphic Mappings, Springer-Verlag, 1968). The following
results are valid: 1. 2c 2#(U; F) is t,-bounded if, and only
if, &2 is 7,~bounded. 2. ZC S#(U; F) is r.~relatively com-
pact if, and only if, 27 is r-relatively compact. 3. Let E
be a quasi complete space. Then 7, =17, on ZZ(KE;C) if,
and only if EF is a semi-Montel space. Moreover, the com-
pletion of 2#(E; C) on the t,, topology and the bornological
topology associated to 7, are caracterized via the Silva-
holomorphic mappings.

Throughout this article the following notations will be used. %
is a complex separated locally convex space; U is a non void open
subset of E: F is a complex normed space; &£ (U; F) is the complex
vector space of all holomorphic mappings from U into F: &F("K; F')
is the complex vector space of all continuous n-homogeneous poly-
nomials from E into F; (1/'n!)d”f(t) e Z(*E; F') is the nth coefficient
of the Taylor series of f at t,n=0,1,---,fe 5Z(U; F); 7, is the
compact open topology on S#(U; F'); 7., is the locally convex to-
pology on 57 (U; F') generated by all seminorms of the type

where n=0,1,-.--, K is a compact subset of U, B is a bounded
balanced subset of E; A(E;F) is ZP(*E; F) endowed with the
locally convex topology of the uniform convergence on bounded

subsets of E. We will introduce a new locally convex topology, 7.,
on S#(U; F') which, in some cases, coincides- with the Nachbin

Dx,s(f) = SUD {H%—l,— d*f(tyw . ;
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topology 7, (Nachbin [8]). The topology 7, has been extensively
studied in the theory of infinite dimensional holomorphy. (Nachbin
[7].) For example, 7,, = 7, on S#Z(E;C) = 5#(F), if E is normed.
Furthermore, z,, = 7, (the compact-open topology) on 2Z(E), if E is
a Montel space (see Corollary 1.14). In the §1, the z,,-continuous
seminorms are characterized and we generalize for locally convex
spaces a result of Dineen [5], which is true for Banach spaces. The
Toe-bounded subsets and the 7,,-relatively compact subsets of
&#(U; F') are studied. In the §2, it is given a characterization of
the completion of (£ (F), 7..). In the §38, it is given a characteriza-
tion of the 7, (bornological topology associated with 7,)-continuous
seminorms on H(E). (Here, H(E) denotes the set of all functions
f: E— C, such that there is P, in Z#("E), for n =0, 1, ---, so that,
for each K < E compact, BC E bounded, there is @ = a(B) > 0, with
f=3x,P,, uniformly on K + aB.)

For basic material on Infinite Dimensional Holomorphy we refer
to [6], [7], and [8].

1. The strong compact-ported topology.

DEFINITION 1.1. Let B be a bounded balanced subset of E and
K be a compact subset of U. A seminorm p on 5#(U; F)is K— B
ported or strongly ported by K if for each ¢ > 0, with K+ e¢BcCU,
there is ¢(¢) > 0 such that

p(f) = c(e) sup {||f(D)]]; t € K + eB}

for every fe £ (U; F'). The locally convex topology 7., on 5#(U; F)
is generated by all seminorms which are strongly ported by com-
pact subsets of U. It is called the strong compact-ported topology.

PRrROPOSITION 1.2. If K 18 a compact subset of U, B is a balanced
bounded subset of E and p is a seminorm on 7 (U; F), then the
following conditions are equivalent:

(1) p s K— B ported

(2) For each & > 0, there is c¢(¢) > 0 such that

p() < ofe) 3 e sup ||| a7

IB;teK}
for all
fe2#(U; F)||Pllz = sup {|| P()||; t e B}] .

If U is balanced 7., is generated by all seminorms v such that for
some KcCU compact and BC E balanced and bounded, for each
g > 0 there 18 c(e) > 0 such that
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— d"f (0)

* p(f) £ c(e) g l

K+4¢eB

Jor all fe s#Z(U; F).

Proof. Let p be a K — B ported seminorm on 57°(U; F'). Thus
for each ¢ > 0 such that K 4+ ¢eBC U there exists c¢(¢) > 0 satisfying

p(f) = c(e) sup {||f(9)|]; t € K + eB}
for all fe S~ (U; F). For t =k + ebe K + ¢B we have

oo eon,

ft) = 3 Ldrfed = 3,

n=0 /n! n=0 ’I’?/!

ar*fk)b .

Thus
p(f) = c(e) gos‘” sup {Il %3"f(k)b H, keK,be B}

_cs)ge”sup{”nl!ci B;keK}

and (1) implies (2).
Conversely, suppose that p» is a seminorm on S#(U; F') as in
(2). Then

p(f) = 6(6)20sup {H%J

;keK,beB}.

Let ¢ > 0 be such that K + eBCU. Let ¢ =¢/2>0. By the Cauchy
integral formulas we get

sup {H —1;!—3”f(k)(s’b) H keK, be B}

< %Sup{nﬂk +xeb)|; ke K, beB, |\ = 2)

=L sup{lfw)l; ye K + <B} .

27!.
Hence

p(f) < o <) 35 2 sup (w1l y ¢ K + <B)
= 2(<) sup {I/)l; y € K + <B}

and (2) implies (1).

Now we suppose that U is balanced and that p is K — B ported.
Thus for every ¢ >0, with K + eBCU, we have the existence of
¢(e) > 0 such that
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p(f) = c(e) sup {||f®)|]; ¢ € K + eB}
for all fe 5#Z(U; F). Since U is balanced

Flo + &by = 511 d*F(0)(k + eb)

n=0 !

for ke K, be B. Hence
sup {|[f@®)|; t € K 4 B}
oo 1 A

= 2, sup {“;r

;keK,beB}

and it follows that

K+¢eB

p(f) = 0@ 33| -d%10)
w=oll
Conversely let p be a seminorm satisfying (*). Let o > 1 be

such that pKcU. For each ¢ >0 such that oK + ¢oBcU, we
have by Cauchy inequalities

H’— 3*(0)

K+eB
< ésup {10k + 2eb)|; ke K, be B, |\| = 0}

pi,;sup {I7&)|l; t € oK + 0B}

where K is the balanced hull of K. Hence

p(f) = o) £ sup (1@t oK + 0B}

and p is pK — pB ported.

LEMMA 1.3. Let f= 3, (d*f(0)/n)) e S#(U; F), where UC E is
balanced. Then for each KU balanced compact, BC E balanced
bounded and (,)7-,€ Cs, we have

A0y

n!

*) S

n=0

K+a,B

Proof. Let f, K, B and («,)7_, as above. By A(4) Proposition 1.8,
there is ¢ > 0 such that K + eBCU and 3., ||d"f(0)/n!)|xis < .
Sinee (@,)7-,€Cf, let n, be a positive integer such that «, < ¢ for
n = n,. Then, we get
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RN I L= OY [
K+ayB E4cB =

Hence

3 m < oo,

n=1ng ’n! KE+tay,B :
Since

7no—1 An

» M < oo ,
n=0 ’n! KtayB . )

we have (*).

LEMMA 14. If fesZ(U; F) and U is balanced, then the Taylor
series of f at 0 converges to f in (Z2(U; F), Tu,)-

PrOPOSITION 1.5. If U is balanced, the topology 7., in 22 (U; F')
1s generated by all seminorms of the type

(1) ot = 5|20

’
K+tayB

Sfor all fe 52U, F), where (@,)7-€Cf, KU is balanced compact
and BC E is bounded and balanced.

Proof. By Lemma 1.3, all seminorms of this type are well
defined. Then, it is obviously a seminerm on S#°(U; F). Now, we
show that p is 7,,-continuous. Given ¢ >0, choose 7, a positive
integer such that a, < ¢ for all » = n,, As Lemma 1.4, we get

d"f(0) d"£(0)

n! 7!

K+ayB - n=ny

w=ng K4-¢B

for all fe S#2(U; F). ‘
For n=20,1, -+, m, — 1, there is 6 > 0 such that /(K + a,B)C
K+ ¢eB. So, forall fes#Z(U; F)and n=0,1, -+, n, — 1,

| d*f(0) < 5ol 4O
I ) Netans = n!  lk+es
Therefore
i a0 é(supa'i)f‘, af0) .
n=0 n! K+a,B i<ng =0 n! K+¢B

Hence p is continuous on (2#°(U; F')r,,). Now let p, be a continuous
seminorm on (S#°(U; F), ,,). We show that p, is dominated by a
norm of the form (1). By Proposition 1.2, for some K U compact
and balanced and B c E balanced and bounded, p, satisfies: for each
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€ > 0, there is ¢(¢) > 0 such that

for all fe s#Z(U;F).

K+eB

p(f) = o) 5 [ LAD

Let 6 >1 such that 6 KcU. For P,e P(*E; F), p,(P,) < c()||P,l|x1en-
For each » and ¢ > 0, let K,(¢) be the smallest positive number or
zero such that p,(P,) < K,(¢)||P,|lx+.z for all P,c P("E; F). Since
K, (e) = c(e) for all n, we get lim,_,sup K, (e)/" <1 < 4.

Now choose a positive integer 7, such that (K,(1))Y" < é for all
n = n, and by induction take %, such that n,>n,_, and (K,1/k))"* <2
for n = n;. Let

o — {1 for n < mn,
1)k for n,=<n < N4y -

Then (@,).— € Cf and K, (a,)"* <6 for n = n,. Hence there is C >0
such that K,(e,)<C.6" for all n. Therefore by Lemma 1.4, we get

»(f) = :m(fl d f(o)) < 2%(@@1)

n!
< 3 K. (@) df(o) s
<C S d"f(O)
7=0 n! K+ay,B
<C3 a0y .
=0 n! 0K 430, B

PROPOSITION 1.6. Let 27 be a subset of SZ(U; F). 27 1S Tey-
bounded if, and only if, 2 18 t.-bounded.

Proof. It is suffices to show that if 2° is z,-bounded then 2
is 7.,-bounded. Suppose 2 is 7,bounded. By [2], Proposition 4,
for all KcU compact and BcC E bounded, there are C =0 and
¢ = 0 such that

sup{H-?-zl—'ti"f(x)HB;meK and feé%’} < Cc¢", for all neN.

Therefore, for any » seminorm on S2°(U; F'), K — B ported, given
¢ > 0, there is c¢(¢) > 0 such that

sup{p(f); fe £} = c(e)ge" sup {“% d*f(x) B; xe K and fe 4?}

= c(e) i e"Ce™ .
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Choose ¢ > 0 so that ec < 1, we obtain

sup {p(f); fe 2} < o,
that is, 2 is 7,,-bounded.

REMARK 1.7. By [3] Example 3, and above proposition we get
Tos #* To 1S general.

PROPOSITION 1.8. Let & C 5#(U; F') be tibounded. Then the
uniform structures associated with ., and 7., induce the same
uniform structure in 2. In particular, t,, and 7., induce on 27
the same topology.

Proof. Let us assume first that 0 € 22 and prove that a subset
of .#° is a neighborhood of 0 in the topology on .2 induced by 7.,
if, and only if, it is a neighborhood of 0 in the topology on 2
induced by 7.,. One half of this assertion is clear from 7., < 7.,.

Conversely, let » be any seminorm on 5#°(U; F') K — B ported. Then,
given € > 0, there is ¢(¢) > 0 such that

o(f) = c(e)g)e” sup {H-%-«i"f(x) HB; xE K} .
Since 2 is 7,-bounded, there are C = 0 and ¢ = 0 such that
sup {“%ﬁ”f(m)”l;; xe K and fe a@’} <C.c,

for all e N. Next choose ¢ > 0 so that e¢ < 1 and n,e N by

C.c(e) >, (o)™ < % .

m>ng

Define the 7., continuous seminorm q by

o) = ofe) 3, e sup {| Z-d7ta)

B;xeK} .

It is then clear that, if fe .2 and ¢(f) < 1/2, then p(f) < 1. This
proves that 7,,le = Tusle-

If we next consider any subset 2 bounded for 7z, the set
& — Z° is bounded for z,, and it contains 0. Since the neighbor-
hoods of 0 in the topology on 27 — 2 induced by z,, and 7., are
identical, it follows that the uniform structures on .2 induced by
the uniform structures associated to 7,, and 7., are identical.

COROLLARY 1.9. Let f,e 2#Z(U; F) for allce N and fe 7 (U; F),
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then f,— f for T, as ¢— oo if, and only if, f.—f for 7., as t— .

COROLLARY 1.10. Let 272 C S#2(U; F). Then Z is T,,~relatively
compact if, and only if 27 is T.,-relatively compact.

ProprosITION 1.11. Let F be complete and 27 < Z°(U; F) lacally
bou'ndeAd. Then 2 s To-relatively compact if, and only if,
{@/n)d"f(t); fe 2} is relatively compact in F,("E; F), V¥neN,
vie U.

Proof. First we assume .27 is 7,,-relatively compact. For each
£e U and ne N, the mapping

¢:: (2 (U; F), Tag) — F("E; F)
F— L
n!

is continuous. In fact, q(f) = ]l(l/n?)d”f(S)HB is a seminorm {&} —
ported. - Choose p a seminorm on ZZ("E; F') such that p(P) = [lPllB
for every Pe ZP("E; F'), we obtain n(4.(f)) = q(f). Hence the image
of 227 is relatively compact in G ("E; F') for every ne N, that is,
{(1/n1)d”f(t) fe 27} is relatively compact in Z("E;F)Vne N, vte U.

Conversely, suppose that {(1/n1)d"f(¢); fe 2} is relatively com-
pact in- Z("E; F)¥ne N, and tc U. Since .2° is locally bounded, it
is 7,,-bounded and Z7es = 2=, Hence to prove that 2= is rela-
tively compact for z,, we shall show that .27 is relatively compact
for z,, topology. Let '

6 7 (U; F) —> f{o 7 (U; P("E; F))

n! 20
On 2#°(U; F') consider the topology 7., and on [Iy , 52(U; & ("E; F))
we consider the product of the topologies z, on each factor. By [2],
Proposition 2.5, ¢(S£(U; F'))C [z, 22(U; FA("E; F)). ¢ is a con-
tinuous linear injection and ¢ is also continuous.

To show that 2 is 7., relatively compact it.is. equivalent to
show that ¢(.2”) is relatively compact for tlxe product topology. It
is- enough to show that [I,#(2") = {1/n!)d"f; fe 27}, that is, the
projection in each (s#£(U; ("E; F)), t,) is relatively compact.

By the assumption that 2 is locally. bounded, we have 2
equicontinuous by [1], Proposition 3.4, and then II,4(.2°) is equi-
continuous. So we have by assumption that I], 4(2°) is pointwise
relatively compact. Hence by the Ascoli’s theorem (Bourbaki-cap. X)
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II. (") is 7,relatively compact.

Since F is complete the closure of $(.2”) for the product to-
pology is contained in #(SZ(U; F)), so we have 2"~ is compact
for 7., topology.

The next proposition belongs to J. A. Barroso, [1], where the
proof contains some small mistakes and here they are corrected.

PROPOSITION 1.12. Suppose F # {0} and E be a locally convex
space such that corresponding to every bounded subset BC E there
8 a compact subset K C E such that B is contained in the closure
of the absolutely convex hull of K, I'(K). Then Ty, = T., on SZ(U; F).
Conversely, if 7,= 7., on Z(U) = SZ(U;C), then corresponding
to every bounded subset BC E, there is a compact subset K C E such
that B is contained in I'(K).

Proof. We prove the first part. Thus let E be a locally convex
space such that corresponding to every bounded subset Bc E there
is a compact subset K CE such that B is contained in I'(K). Since
Ty = Tos it is enough to show that 7., <7, on SZ2(U; F). Let p be
a T., continuous seminorm, K, U compact, B, such that

d—:{%-t_)B},

for all fe 2 (U; F'), where J is a finite subset of N.
For each n e N, we have that

/) = sup

sup {| 28] | < sup {20 1
< sup {| P, .., 2}
zel (K) ¢ ~
S e

By the polarization formula, we have for K (K be the balanced
hull of K), that

sup { SO g, ..., 2,) }éi— sup { f(t)(x)ll}
teKO n! n! te K,
s e Kii=1,++e,n Ze R4 oee +K
By the Cauchy formula, we obtain
{ d°f(t) } =21 sup [lf)Il .
‘eKO .m! lis 7’“ 0" yekptpEtt )

If we take o > 0 such that K, + p(K + -+ + K) = L is contained
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in U, we obtain a compact subset of U and

n'h
»(f) = sup n!p,,llfllL

Conversely, if 7z, = 7., on & (U), then 7,/E' = t.,/E’. There-
fore, the 7, -topology of uniform convergence on bounded subsets
of E is induced by 7., in E’ and 7,/E’ = 74,. Hence if BC E is a
subset bounded of E, B° is the polar of B, there is a compact subset
K of E and ¢ > 0, such that if

therefore 7., < 7, on & (U; F').

V={TeFE;||T|lx =sup{ T(x);xc K} < ¢},

then V£ B°. Therefore BC B*cV’ But if xze V° we claim
1 T(x)| £ €| T|lx for all Te E'. In fact if § >0 and TeE’, then
for G =¢eT/(|T||x + 0), we have [|G|lxr<¢ and so GeV and so
|G(x)] £ 1. This gives |T(x)| =< ¢(]| T||lx + 9) and as ¢ is arbitrary,
it follows that |T(x)| <¢e7Y|T||x for all TeE'. So if L is I'(K)
then |T(ex)| £ || Tl = || Tz, if € V° and T e E’. This implies, via
the separation theorem, that exe L for xe€ V°. Thus V°ce™L. So
BcV®ceL. This completes the proof.

REMARK 1.13. In the second part of this proof it is enough to
suppose that z,=7,, where 7,, is the locally convex topology generated
by all seminorms of the type:

p(f) = sup)| D)l ,

for all fe 2Z(U; F), where KCU is compact and BC E is bounded.

COROLLARY 1.14. Let E be a locally convexr space so that the
closure of the absolutely convex hull of every compact is compact.
Then 7, = To, o0 SZ(E) if, and only if, E is a semi-Montel space.

One part of the proof of the Corollary 1.14 is given more di-
rectly by considering seminorms of the type

f— sup {||d'A(0)x||; x € B},

for all fe 5#Z(F), where BC E is bounded. This seminorm is ,,-
continuous, thus 7,,-continuous and, by hypothesis, z,-continuous.
Therefore for all TeE and xzeB, |T(x)| Zc¢||Tllx =< ¢l] Tllru, for
some KcU compact and ¢ > 0. Then, via the separation theorem,
we obtain that Bce¢.I'(K). Sence I'(K) is compact by hypothesis,
this implies that E is a semi-Montel space.
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2. The completion of (5#°(K), T,,). In here, the completions
are considered as subspaces of the space of the G-holomorphic fune-
tions in E. We denote by 5#(F) the set of all functions f: E—C
such that there is P, in the completion of Z,(*E), forn = 0,1, ---,
so that for each K ¢ E compact, BC E bounded there is a = a:(B)ZO
with f = 3, P, uniformly on K + aB. V/Ve\use the notation SZ(F)
for the completion of (S77(E), z'.,,s)/aﬁd Z(*E) for the completion of
Z("E). Here we prove that S#(E) = 5#(E). For this we need
the following lemma. :

T T~

LemMA 2.1. If fe o#A(E), there is P, e L ("E), forn=0,1, ---,

such that f(t) = S, P.(t) for each te E. Furthermore, if » is a
Tos-CONtINUOUS Seminorm on 7 (H), such that

d"f(0)

nl

o(f) =3,

n=0 K+ayB

for all fe 7 (E), for some KU balanced compact, B E bounded

NS
balanced and (@,):_,<cCy, then the extension D of » on S#A(E) s
given by:

2(F) = 311 Pullsse,s Jor all fe SA(E) .

Proof. Let fe ;7//8(\15’) and (f.).es @ Cauchy net in (SZ2(H), T.,)
such that lim,.,f,=Jf. Note that in particular, for each tec K,
limge s fo(t) = f(t). Then, if » is a r,,-continuous seminorm on
(S#(R), T.,) given K C E compact balanced, B £ bounded balanced,
(@,)2.,eCy and € > 0, there is M€ 4 such that, for a, 8> ),

<eg.

K+a,B

=0 'n,!

Hence for any positive integer m and «, 8 = )\, we have

“fa(O) df4(0)

n!

<e.

K+tayB

(1) 3

Since (fs)ses is a Cauchy net in (#(E), 7.,), for n =01, ---,
(d"fs/n))seq is & Cauchy net in F(*E). For each n=0,1, ---, let
P, = lim;. . d*f;(0)/n]. If we take @ = and the limit in (1) for
Bed, we get

m

d"f(0)
n!

(2) <e,

2
=0 K+ay,B

for any positive integer m.
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In particular we get

S P e = 5 [ SO 4,
n=0 =0 n! K+ayB
Thus
(3) D AR ) Lk £
n=0 =0 n! E+a,B

By (3) we have in particular that >.7, P,(¢) is finite for each te E.
If we take the limit in (2) for m — -, we get in particular for
each te K,

id fa(O)(t) P,,(t)) <efor @z and e>0,

n=0

that is,

falt) — g Pﬂ(t)| <e.

Therefore, for each te K, lim,.,f . t) = 3.2, P(t), that is, f({) =
S o PJt). This proves the first part of the lemma.

P
By (8), wehave p(f) is finite for each fe 5#(E). Now, to prove
that P(f) = Dw-o || Pullxsa,s it is enough to prove that, for ¢ > 0
there is n,e€ N and » €4, such that for m = %, and a = ),

arf.(0)

n!

m

m
IPnnK+a,,,,B_"Z <e.
n=0 7=0

K-+ayB
But by (2), for a =), meN and ¢ > 0,
2 .l drf, (0)

égwﬂmwrﬂiﬁﬁn

n!
é—é Pn—— diay(O)

K+oa,B

<e¢.

K+a,B

REMARK 2.2. On 2#(F) we may define the r,,-topology and
show in the same way as Proposition 1.5 that this topology is equi-
valent to the topology defined by the seminorms of the type used
there. Furthermore as /13 the Lemma 1.4, we obtain that if fe
S#(E), thereis P, in & (*E) for each n = 0,1, ---, so that 3= P,
converges to f in (SZ(H), Tu,).

S
PROPOSITION 2.3. SZ4(H) = S7(E).
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P

Proof. By definition, we have SZ(E)C o#(E). /Iiet now fe
&Z(E). Then by the remark above, there is P,e 2 ("E) for each
n=20,1, --., such that Y2, P, converges to f in (S&(H), t.,). For

P P S

each k=0,1, ---, n, P,e A ("E)C 27 (E). Therefore 32, P, e s7(E).
Since Cr_, P,)y-, is a Cauchy sequence in (5#(E), z,,) we have by
the remark above and the previous lemma, that (3%, P2, is a

s
Cauchy sequence in 2#(F). Therefore, f= >, P, belongs to
S

().

3. The 7, topology on H(E). We denote by H(E) the set of
all functions f: £ — C such that there is P, in Z°(*E)forn=0,1, -,
so that for each K < F compact, BC E bounded, there is @« =a(B) >0
with f = 3=, P, uniformly on K + aB. §"f(0)/n! denotes the nth
coefficient of the Taylor series of f at 0, n =0, 1, ---, for each fe
H(K). We may define the 7,,-topology on H(E) as in 1, and obtain
similar results to Propositions 1.2 and 1.5. 7, denotes the bornological
topology on H(E) associated with z,.

ProrosITION 3.1. Let f = X2, P, pointwise, with P,e FP("H),
neN. Then the following three conditions are equivalent:

(1) feH(E).

(2) For each KCE compact balanced, B CE bounded balanced
and (a)g. € CF, we have

nz:% ”Pn”K+a,nB < o0

(3) For each KCE compact balanced, B CE bounded balanced
and (@,)7.€Cy, we have

lim || P, [#3,2 = 0.
n—0

LEMMA 38.2. 2 C H(E) is tobounded if, and only tf, 18 Te,
bounded.

LEMMA 38.8. Let (f,)7-s be a bounded subset of (H(E), T.,), then

9= 5000 c ).
=0 'n!

LEMMA 3.4. Let 27 be a bounded subset of (H(E), T,,) then the
set (W F(0)n!)e o ser 18 bounded in (H(E), t,).

The proof of the Lemma 3.2 is the same as Proposition 1.6.
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Proposition 3.1 and Lemma 3.3 are proved in the same way Dineen
proves Proposition 2 and Lemma 5 [4] with minor modifications.
Lemma 3.4 is proved in a similar way as Lemma 1.2 [5].

PROPOSITION 8.5. Let p be a seminorm on H(E) with the fol-
lowing properties:

(1) For each n=0,1,---,p induces on F(*E) a topology
weaker than or equal to the Ty-topology.

(2) Xinp@A0)/n) < oo for every f= 3:.,6"(0)/n! ¢ H(E).
Then, »,(f) =2, 0(0"f(0)/n!) is a continuous seminorm on
(H(E), Tw)-

Proof. Since 7, is a bornological topology it is suffices, to show
that for each bounded set .2 on (H(E), 7,), we have sups.. 0.(f) < .
By condition (1), we get for each n that

* sup o(P19) < -

few

Now suppose sups.. p,(f) = «. By (*) and the definition of p,,
we thus have for each positive integer =,

& (6°£(0)
sup 32 9(0) = =
Choose f, such that 3o, p(6f,(0)/n!) = 2 and take n, such that
9"£,(0)
Sp(7?) 21

n=0
By induction, choose for each k, f, such that

a=ny_q1+1 'n,'

and take 7, such that
ng 3” . 0
2. p(—z—"(—)->zl (ne z k).
n=np_+1 %!

Let
_{fx for Oénénl,
=1 for me<n=n (k=2).

By Lemma 3.3,

g=3700 ).
n!

n=0
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But
nio) = 3, p(L0) = o

n!

which contradicts (2). Then sups., p.(f) < < and p, is a continuous
seminorm on (H(E), 7).

PROPOSITION 38.6. Let p be a continuous seminorm on (H(E), T4).
Then:

(i) For each n=0,1,---,p induces on F("E) a topology
weaker than or equal to the ., topology.

(i) If f= 3. 6°(0)/n! € H(E), then 35, p(@"f(0)/n!) < .

LEMMA 3.7. If fe H(E), then the Taylor series of f at 0 con-
verges to f in (H(E), Ty)-

Lemma 3.7 is proved in the same way Dineen proves Proposi-
tion 7, [4] with minor modifications.

PROPOSITION 3.8. The topology 7, on H(E) is generated by all
seminorms which satisfy the following conditions:

(1) () = S p(0"f(0)/n)) for all fe H(E).

(2) For each m=0,1,---,p induces on F("K) a topology
weaker than or equal to the zy-topology.

Proof. By Proposition 3.5, if p satisfy (1) and (2), then p is
Tp-continuous on H(E).

Let ¢ be a t,-continuous seminorm on H(E). Proposition 3.6
gives that

Sa(° ”f“))) < oo for each f = Zof(o)eH(E)

=
By Proposition 3.6,
2(f) = goq(i”%('_())>
is a continuous seminorm on (H(E), 7,;). Lemma 3.7 gives
q(f) = lim q( }:i M)

Hence every continuous seminorm on (H(E), t,) is dominated by a
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continuous seminorm with satisfies the required conditions. This
proves the proposition.

REMARK 3.9. If U is an open balanced subset in E, we obtain
the same results on H(U).

PROPOSITION 3.10. The topology 7, on SZ(E) is generated by
all seminorms which satisfy the following conditions:

(1) p(f) = Swse p(8"f(0)/n!) for all fe H(E).

(2) For each m=0,1,---,p induces on F("E) a topology
weaker than or equal to the Ty,-topology.

Proof. If p is a seminorm on SZ°(F) satisfying (1) and (2) then
it can be defined in H(F) and, by Proposition 8.8, p is 7,-continuous.
Hence p is bounded on the 7,-bounded subsets of H(E), thus on the
7,-bounded subsets of S#°(F). This implies that p is 7,-continuous
on S#(KE). Now, if p is 7,-continuous seminorm on S#°(E), then
it is clear that (2) holds. If fe H(E), &2 = {f} is z,bounded in
H(E). By Lemma 3.4, (n*(5"f(0)/n!))s_, is t,-bounded in H(E), hence
in SZ(KE). Thus

sup p( ”f(O)) %M
and
= (6"f(0) &1 -
%1”(_—%! )éM”Z:g; <+ oo
Therefore

p(f) = gﬂ’@ﬁ)

defines a seminorm on SZ(E) satisfying (1) and (2), hence z,-con-
tinuous (by first part of the proof). Thus, since p < p,, 7, can be
defined by seminorms satisfying (1) and (2).

We wish to thank professor M. C. Matos for the suggestions and
fruitful discussions at all article.

REFERENCES

1. J. A. Barroso, Topologia mos espagos de aplicacoes holomorfas entre espagos local-
mente converos—Anais da Academia Brasileira de Ciéncias, 43, 1971.

2. J. A. Barroso and L. Nachbin, Sur Certaines propriétés bormologiues des espaces
d’applications holomorphes, Troisiéme Colloque sur 1’Analyse Fonctionelle, Liege 1970
C.B.R.M (1971).

3. J. A. Barroso, M. C. Matos and L. Nachbin, On bounded sets of holomorphic-
mappings, Proceedings on Infinite Dimensional Holomorphy. ‘Lectures Notes 364,



STRONG COMPACT-PORTED TOPOLOGY 49

Springer-Verlag, 1974.

4. 8. Dineen, Holomorphy tyves on a Banach Space, Studia Math., 39 (1971).

5. , Holomorphic Functions on Locally Convex Topological Vector Spaces: I—
Locally Convex Topologies on H(U)-Annales de L’ Institut Fourier de L’ Université de
Grenoble—Tome XXIII—Fascicule I.

6. L. Nachbin, A glimpse at infinite dimensional holomorphy, Proceedings on Infinite
Dimensional Holomorphy, University of Kentucky 1973, Lecture Notes 364, Springer-
Verlag, 1974.

7. , Recent developments in infinite dimensional holomorphy, Bull. Amer.
Math. Soec., 79, (1973).

8. , Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik
47, Springer-Verlag, 1969.

Received November 29, 1976 and in revised form October 14, 1977.

UNIVERSIDADE ESTADUAL DE CAMPINAS
C.P. 1170
13.000—CAMPINAS, BRAZIL






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
C.W. CURTIS Los Angeles, California 90007
University of Oregon R. FINN AND J. MILGRAM
Eugene, OR 97403 Stanford University

, li i 30.
C. C. MOORE Stanford, California 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF. BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA' INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 77, No. 1 January, 1978

Dan Amir, Chebyshev centers and uniform convexity ..................... 1
Lawrence Wasson Baggett, Representations of the Mautner group. I . ... ... 7
George Benke, Trigonometric approximation theory in compact totally

diSCONNeCted GroUPS . ... ... 23
M. Bianchini, O. W. Paques and M. C. Zaine, On the strong compact-ported

topology for spaces of holomorphic mappings....................... 33
Marilyn Breen, Sets with (d — 2)-dimensional kernels .................... 51
J. L. Brenner and Allen Kenneth Charnow, Free semigroups of 2 x 2

PRALTICES .« o v v ettt e e e e et et 57
David Bressoud, A new family of partition identities...................... 71
David Fleming Dawson, Summability of matrix transforms of stretchings

and SUDSEQUENCES . ... ... ...ttt 75
Harold George Diamond and Paul Erd6s, A measure of the nonmonotonicity

of the Euler phi function ................c.eeueeiiiiiiieeeennnnnns 83

Gary Doyle Faulkner and Ronald Wesley Shonkwiler, Kernel dilation in
reproducing kernel Hilbert space and its application to moment

Problems . .. ... ... e 103
Jan Maksymilian Gronski, Classification of closed sets of attainability in the

Plane ... ... .. . e 117
H. B. Hamilton and T. E. Nordahl, Semigroups whose lattice

isBooleam.......... ... .. .. i,
Harvey Bayard Keynes and D. Newton, Minimal (G, t)-e.
Anthony To-Ming Lau, The Fourier-Stieltjes algebra of a 1

semigroup with involution . .......................
B. C. Oltikar and Luis Ribes, On prosupersolvable groups
Brian Lee Peterson, Extensions of pro-affine algebraic gro
Thomas M. Phillips, Primitive extensions of Aronszajn spd
Mehdi Radjabalipour, Equivalence of decomposable and ?

OPETATOTS . . o oot ettt et ettt
M. Satyanarayana, Naturally totally ordered semigroups . .
Fred Rex Sinal, A homeomorphism classification of wildly

two-spheres in S3 ...
Hugh C. Williams, Some properties of a special set of rec

SCQUENCES . ..o ettt ettt


http://dx.doi.org/10.2140/pjm.1978.77.1
http://dx.doi.org/10.2140/pjm.1978.77.7
http://dx.doi.org/10.2140/pjm.1978.77.23
http://dx.doi.org/10.2140/pjm.1978.77.23
http://dx.doi.org/10.2140/pjm.1978.77.51
http://dx.doi.org/10.2140/pjm.1978.77.57
http://dx.doi.org/10.2140/pjm.1978.77.57
http://dx.doi.org/10.2140/pjm.1978.77.71
http://dx.doi.org/10.2140/pjm.1978.77.75
http://dx.doi.org/10.2140/pjm.1978.77.75
http://dx.doi.org/10.2140/pjm.1978.77.83
http://dx.doi.org/10.2140/pjm.1978.77.83
http://dx.doi.org/10.2140/pjm.1978.77.103
http://dx.doi.org/10.2140/pjm.1978.77.103
http://dx.doi.org/10.2140/pjm.1978.77.103
http://dx.doi.org/10.2140/pjm.1978.77.117
http://dx.doi.org/10.2140/pjm.1978.77.117
http://dx.doi.org/10.2140/pjm.1978.77.131
http://dx.doi.org/10.2140/pjm.1978.77.131
http://dx.doi.org/10.2140/pjm.1978.77.145
http://dx.doi.org/10.2140/pjm.1978.77.165
http://dx.doi.org/10.2140/pjm.1978.77.165
http://dx.doi.org/10.2140/pjm.1978.77.183
http://dx.doi.org/10.2140/pjm.1978.77.189
http://dx.doi.org/10.2140/pjm.1978.77.233
http://dx.doi.org/10.2140/pjm.1978.77.243
http://dx.doi.org/10.2140/pjm.1978.77.243
http://dx.doi.org/10.2140/pjm.1978.77.249
http://dx.doi.org/10.2140/pjm.1978.77.255
http://dx.doi.org/10.2140/pjm.1978.77.255
http://dx.doi.org/10.2140/pjm.1978.77.273
http://dx.doi.org/10.2140/pjm.1978.77.273

	
	
	

