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Let A =[1, m;0,1], B=1[1,0; m,1]. The semigroup S, =
sgp<A, B> (including identity) generated by A, B is nonfree
if two formally different words (with positive exponents) are
equal; free otherwise. Theorem. S, is free if —=z/4 < argm
=r/4,Im| = L.

Thus S,, can be free when G,, = gp<4, B> is nonfree.

Tueorem. Values of m for which S, is nonfree are dense
on the line segment joining —2¢ to 2i; there are nonfree
values of m arbitrarily close to m = 1.

The group G, = gw{A, B) generated by A = <(1) ”{) and B =
'}n (1)) is free if m is transcendental [6], if m = 2 [13] if |m| =2
[2], and if m satisfies none of the three inequalities |m|* <2, |m? — 2| <
2, |m* + 2| < 2 [5]. Further results appear in [1, 3, 7, 8,9, 10, 11,
12]. A diagonal similarity transformation carries 4 to C = [1, 2; 0, 1]
and B to D =11, 0; », 1], » = m*2. Most of the known results are
summarized in the diagram given in [8, p. 1392], which is drawn
in the N\ plane. A value of )\ is “free” if gp(C, D) is free. The
nonfree values of )\ are dense in |\| < 1/2[5]. The semigroup S,, =
sgp{A, B) (including identity) generated by A, B is nonfree if two
formally different words W,, W, (with positive exponents) are equal,
or if W, = I; free otherwise. In conversation, S. Stein and D. Hickerson
asked whether S, can be free when G,, is nonfree. Theorems 2.4-2.6
give an affirmative answer to this question (take m = 1). For
orientation, two trivial lemmas are worth stating.

1.1. LemmA. If S, ts nonfree, then G, is nonfree.
1.2. LEmMMA. If G, i3 free then S, s free.

Let H; (K;) be the group (semigroup) generated by C and D.
Then we have:

1.3. LeEmMMA. H, (K)) is free if and only if G, (S,) is free.
As noted in [8, p. 1391] we also have:
1.4. LEMMA. H,; is free if and only if H_, is free.

However it will be seen that it is possible for K; to be free
while K_; is not free.
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1.5. PrOBLEM. Let |A|<1/2. Is it true that K, is free when-
ever K_; is free?

1.6. ProBLEM. If G, is not free, is it generated by elements
E and F such that sgp(H, F') is not free?

1.7. LuMMA. Let » = m*2. Then K_, is free if and only if
sgp {[1, m; 0, 1], [1, 0; —m, 1]} is free.

Proof. Conjugate by [2, 0; 0, m].

In §2 it is shown that if Re ) = 1/2, K, is free. This is a best
possible result in the sense that (as shown in §3) A = 1/2 is a limit
of nonfree values.

In §4 it is shown that nonfree values of A are dense on[—2, 0].
Probably they are also dense on [0, 1/2]; some results to support this
conjecture are given. It is also shown that there exists a value of
N in [—2, 0] for which K; is not free, but is torsion free.

Seection 5 applies the methods of the preceding sections to the
group H,. It is shown that, in some respects, the methods are more
powerful than those previously used. The extensive machine calcula-
tions in [3] are simplified.

In §6 it is shown that S, is almost always free if m is a root
of unity.

2. Free regions. In this section R(z) and I(z) denote the real
and imaginary parts of the complex number z in the extended complex
plane. Also, if U = [a, b; ¢, d], det U = 1, then we denote by U(z)
the complex number (az + b)cz + d)™*. Clearly if V is another
such matrix then (UV)(z) =U(V(2)). As usual a word in sgp{4, B>
means either the identity or A*B*2... or B®2A% ... where all ex-
ponents are positive.

2.1. LEMMA. (a) If R(z) > 2 then |27' — 1/4| < 1/4.
(b) If |z—1/4| >1/4 and R(z) > 0 then 0 < R(z™!) < 2.

Proof. (a) The map T(z) = z™' carries the line R(2) = 2 onto
the circle {w — 1/4]| = 1/4. Since T(4) = 1/4, T must carry the region
R(z) > 2 onto the interior of the ecircle |w — 1/4| = 1/4.

(b) The map T(z) = z™* carries the circle |z — 1/4] = 1/4 onto
the line R(w) = 2. Since T(1) = 1, T must map the exterior of the
circle onto the region R(w) < 2. Clearly R(z) > 0 implies R(T(z)) > 0.
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2.2. LEMMA. Let |MN|=1/2, RO\ =0, Riz) > 2, C=11,0; ), 1].
Then 0 < R(Cz)) < 2 for every positive integer n.

Proof. Let # =2z + nxn. Then C"(z) = 1/z'. By 2.1a we have
lz™* — 1/4] < 1/4. Hence

Z'—%‘ = l’mu~ (i-—z“)‘ = [nn| — ‘—}l‘-~z“{

Now R(z') = R(z™*) > 0. Hence by 2.1b
0<R(1/zHY<2.

2.3. LEMMA. Let
R(uw) = 1, 3} = {w|RB(wu) > 2}, 4 = {w|0 < R(wu) < 2} .

Let W =1/2,R\)=20,A=1]1,2;0,1], B=1[1,0; My, 1]. Let n
and m be any positive integers. Then:

(a) welX implies B (w)e 4

(b) wed implies AM(w)eX

(¢) A"B™(1)eZX

(d) B*A™1)e 4.

Proof. Let U =][u,0;0,1],C=1|1, 0; »,1]. Then B = U'CU.
(a) Letwel, z=wu. Now B"(w)=U"'C"Uw)=u"'C"(z). Hence

R(uB™(w)) = R(C()) .

But by 2.2 we have 0 < R(C%(z)) < 2. Thus B"(w) € 4.
(b) Let wed. Then 0 < R(wu) < 2.
Now

R(uA™(w)) = Rlu(w + 2n)) = Rluw) +2n >2n = 2.

Thus A w)e 3.

(¢) We have ud"B™1) = (vm + u™ )™ + 2nu. Now R(2nu)=
2n =z 2. Also ROwm + u™) = R(Ovm) + R(u™) > 0, since R(wm) = 0
and R(u™') > 0. Thus R(uA"B™(1)) > 2 and A"B™(1)e 3.

(d) RuA™(1))=R(u + 2mu) =1 + 2m > 2. Thus A™(1) ¢ 3.
Hence by (a) we have B"A™(1) e 4.

2.4. THEOREM. Let R(\)=0, N =1/2, R(u) =1, A =11, 2;0, 1],
B =11, 0; »u, 1]. Then the semigroup K,, generated by A and B is
Jfree.
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Proof. Suppose W, and W, are different words in K, with W, =
W,. Let X and 4 be as in 2.3.

Case 1. One of the words, say W, is the identity I. Clearly
A" =1 or B™ = I is impossible for any positive n. Also A"B™ =1
or B™A" =1 is impossible since A"+ B™™ for positive » and m. Thus
W, has length = 3. Since the relation W, = I implies the relation
Wy = I, where W is any cyclic permutation of W,, we may assume
that W, starts with A and ends with B. Let W, = A*»B¥» -.. A®'B%,
x; > 0,9y, >0. It follows from 2.3 that W,(1)e Y. But W,(1)=1¢e4,
a contradiction.

Case 2. Neither word is the identity but one of them (say W,)
has length 1. Let P =0, 1; Mu/2, 0]. Then the map X — PXP™ is
an automorphism of K;, sending A— B and B— A. Because of
this we may assume that W, = A4*. Clearly W, = B* since A*1+ B"
and W, = A" since A* = A¥' implies %, = y,. Thus W, is of length
=2. We may assume that W, starts and ends with B, for otherwise
we could cancel and either return to Case 1 or obtain the desired
condition. Let W, = B*»A» ... B144B%, It follows from 2.3 that
W.1)e 4. But RuW,(1))= R(u(l+2x,))=1+2x, > 2, hence W,(1)e 3,
a contradiction.

Case 3. Each word is of length =2. We may assume that W,
and W, do not start with the same letter or end with the same
letter, for otherwise we could cancel it. We consider two cases.

3.1. One word (say W,) starts with B and ends with A. Then
W, = B®»A% ... B*1A" and W, = A™»B*» ... AnB, From 2.3 we
conclude that W (1) e 4 and W,(l)e 2, a contradiction.

3.2. One word (say W,) starts with B and ends with B. Then
W, = B*»A¥» ... B2t AY"B and W, = A™B®» ... AnB A", From 2.3 we
conclude that W,(1)e 4, W,(1)e 3, a contradiction.

2.5. THEOREM. If R(\) <0 and |I\)| = 1/2 then K; is free.

Analytic proof. Clearly one of the tangent lines drawn from
» = + yi to the circle |z| = 1/2 intersects the circle in a point (¢, d)
withe=0. Set N =c¢ + di. First assume ¢#0. Let b= (y — d)c,
#u=1-+0bi. The condition on the tangent line yields (y — d)(x — ¢)"*d¢™
=—1. Hence

r=(@+cE—dyt=[d*+E—dbec+d)]c=c—0bd.
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Thus uN = ¢ — bd + (bc + d)i =2+ yi = ). By 2.4 we have K, =K,
is free. If¢c=0thend = +1/V' 2,y =d. Letu =1 — ad . Then
» = u\N and K; = K, is free by 2.4.

Geometric proof. Let N lie on the semicircumference |\ | = 1/2,
R(O\V)= 0. If R(u) =1, the locus » = u)\ is the line through )\ and
perpendicular to the radius drawn from 0 to A. As A\ varies, »
sweeps out all of the region (M| R(\) < 0, I(\) = 1/2} (and more).

2.6. THEOREM. Let

—(tovzg_o N o=(tovg-09 L
P=(20/T-1, 2),Q = (303 -1, 1)

Then K, is free if N is in the (closed) exterior of the bullet-shaped
region tllustrated.

-2 +01 lzl=%

Q

Proof. By 2.4 we have R(\) = 0, |[N| = 1/2 implies that K, is free
and by 2.5 we have R(\) < 0, |I(\)| = 1/2 implies K, is free. By [8,
Theorem 3, p. 1390], the group H,; (and hence the semigroup K))
is free if N is not in the interior of the convex hull of {z||z| = 1}U
{2, —2}. But the tangent lines drawn from (—2, 0) to |z| = 1 intersect
y=1/2 and y = —1/2 in P and @ respectively.

3. Some nonfree semigroups. In this and all remaining sections
let A, B,C, D be as in §1.

It is known [3, 8] that there are some values of m for which
gp{A, B) is not free; the value m = 1 has been known for long time.
To obtain values of m for which S, = sgp{4, B) is not free requires
methods attuned to this special problem.

3.01. DEFINITION. A relation w,(A, B)=w,A4, B)between 2 words
in S, is reduced if no cancellation is possible. The degree of a
reduced relation is the greater of the lengths of the words w,, w,.
(The degree of a reducible relation is defined by first reducing it to
an equivalent reduced relation.)
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Thus
AB*A = B*A°B*
ABAB?AB? = AB*A°B*

both have degree 3.
The following assertions have transparent proofs.

3.02. LEMMA. If m =0, there is no relation of degree 1 or 2 in
S,

3.08. LEMMA. If a relation has degree 3, it can be written
A*BYA* = B"A*B?,
with x, Y, 2, 7, 8, t all positive.

The next theorem gives a complete account of the values of
m #= 0 for which S,, admits a relation of degree 3.

3.04. THEOREM. Let S, admit a relation of degree 3:
A°BYA* = BTA*B!.
Then
(3.05) m: =7 (r —y™) — tlrey)t.

Furthermore 1f r, x, ¥, t are arbitrary positive integers such that
s = ayt™ and z = xrt™ are integers, then for m* given by (3.05) the
stated relation of degree 3 holds.

Note that both positive and negative values of m® arise, and
that —2 < m? < 1. These bounds are exact. Infact,ift=ax=r=1,
and y — o thenm?—1. Also,if t =y=1,f{ =7r— oo, limm® = —2,

Proof of 3.04. Calculation shows that the relation
A*BYA* = B"A°B¢
holds if and only if (3.06)-(3.09) all hold.

(3.06) rs = Yz,
(3.07) st =2ay,
(3.08) s =2 + 2 + mxyz,
(3.09) y=1r-+t+ mrst.

From (8.06)-(3.07) follows rx = tz. From (3.06)-(3.08) it follows that
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st = ot + re + m2stre; this is (3.09) which is therefore redundant.
It is now apparent that the solutions of (8.06)-(3.09) can be para-
metrized by taking 7, x, ¥ arbitrary positive integers, subject to ¢|zy,
t|re, setting s = xy/ft, z = rx/t and solving (3.08) for m*. But (3.05)
is a paraphrase of (3.08).

3.10. COROLLARY. The values Av=1/2, x = —1 are limits of non-
free values.

The relations of degree 4 are described in the next theorem.

3.11. THEOREM. Any relation of degree 4 in S, must have the
form

(3.12) B*A*BYA? = A'BTA*B?,
with w, x, ¥, 2, q, 7, 8, t all positive.

Proof. A priori, the relation B*A*BYA? = A*B" would be con-
ceivable. Detailed examination of this possibility shows, however, that
such a relation is not possible unless ¢ = 0. Similarly, the relation
B*A* = A'B"A*Bt does not arise.

There are many values of m that satisfy (3.12), but do not satisfy
(3.05).
Other nonfree values of m are given in §5.

4. Semigroups with torsion. There are values of m such that
S, contains elements of finite order. It may be conjectured that
every value of m with this property is a pure imaginary unmber.
In fact, the pure imaginary numbers m with this property are denes
on the line segment joining —2¢ and 2¢.

4.1. THEOREM. The nonfree values of N are dense on [—2, 0].

Recall that v = m?/2.

Proof. Note CD = [1 + 2\, 2; )\, 1].  This matrix has finite order
if (and only if) its trace is 2 cos kx/l for some integers &k, I. But this

is easily arranged: » = —2 sin® kr/(21).

4.2. THEOREM. Let w = w(C, D) have length 2 or 3, and have
finite order. Then N is real and negative.

The proof is straightforward, so is omitted.
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4.3. THEOREM. Let w = w(C, D) have length 4, and have finite
order. Then )\ is real and negative.

Proof. Calculation shows that
tr D*C*D?*C* = 2 4 2M(xy + yz + zu -+ 2u) -+ doyzur? .

The condition that this is equal to 2 cos kx/l leads to a quadratic in
A It must be proved that the discriminant of this quadratic is
nonnegative. This fact is seen to follow from the arithmetic-geometric
mean inequality applied to the four numbers ay, yz, xu, 2u.

4.4. THEOREM. Let n be a nonzero integer. Then S, has torsion
for the following values of m:

(1) m=1i/n (2) m=1vV"2id/n (3) m=1v"8i/n.

Proof. (1) Let U = A*B™ = [—2, 3m; mn?, 1].
Then U has order 3.

(2) Let U= AB™ =[—1, m; mn? 1].

Then U has order 4.

(8) Let U= A"™B = [—2, mn? m, 1].

Then U has order 3.

4.5. THEOREM. If m is real then S, s torsion free.

Proof. We may assume m > 0. If a nontrivial word W in S,
has finite order, the proper values of W are roots of unity and are
reciprocals (since det W = 1). Hence trace W =z + Z < 2, since z
is a root of unity. An easy inductive argument shows, however,
that every entry of W is nonnegative, and that each diagonal entry
is at least 1., Thus trace W = 2, a contradiction.

In [4, p. 747] it is shown that if m is rational and not the reciprocal
of an integer then G, (and hence S,) is torsion free. In the same
vein we have:

4.6. THEOREM. If m = pi/q, p and q integers, p # 0, q = 0,
p# %1, (p,q) =1, then G, (and hence S,) is torsion free.

Proof. Assume G, has a nontrivial element of finite order. Then
it has an element U of prime order . If w =2, then U = —1I; if
7 > 2, U has trace w + @ where w is a primitive wth root of unity.
It is easily seen by induction that U is of the form:

= <1 + film®)  mfy(m?) >
mfy(m?) L + fm’)



FREE SEMIGROUPS OF 2 X 2 MATRICES 65

where the f; are polynomials with integer coefficients and f, and f,
are without constant term. Thus U has trace 2 + fi(m?) + fu(m?) =
2 + h(m?) where h is a polynomial with integer coefficients and without
constant term.

Case 1. © =2. Then U = —I, whence 1 + fi(m?) = —1, that is
film®) + 2 = 0. This implies that p?|2, a contradiction.

Case 2. 7w = 3. Then U has trace w + @* = —1 = 2 + h(m?), that
is k(m®) + 3 = 0. This implies that »*|3, a contradiction.

Case 3. w>3. Since U has trace ® + o = 2 + h(m?), ® + ©**
must be rational. But this contradicts the fact that the minimal
polynomial of @ over the rationals is 1 +« + 2* + --- + 2*%,

It is possible for S, to be torsion free but not free. When m =
2t/3, S,, is torsion free by 4.6 but is not free (see 5.1le).

5. More nonfree values of m. We now examine certain relations
of degree 4 in S,,. A computation shows that A*BYA*B* = B A*BVA*
if and only if the following condition holds:

(5.1) Yz = wx + xy + wz + mPryzw .

Thus for a given m we seek solutions of (5.1) in positive integers
x, Y, 2, w.

5.2. THEOREM. Let n be an integer. Then S, is not free for the
Sollowing values of m:
@ m=1/n, |n|>1,
o) m=2/n, |n|>2,
() m=4/n, |n|>4,
d m=1i/n, [nlz1,
(e) m = 2in, |n|z2,
(£) m = 4i/n, |n|=4.

Proof. Since S, is free if and only if S_, is free, we may
assume that % is positive.

(@) If n>2 then x=1,z=nw=n—2n,9y=m+ Lw is a
solution of (5.1). If n = 2thenx =1,y =6,z =2, w =1, is a solution
of (5.1).

(b) We may assume 7 is odd.

Case 1. n=1mod4. Then n=1+4u and v >0. If u=1
then n =5 and =1,y =50, 2 = 11, w = 5 is a solution of (5.1). If
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u>1lthenx =u—1,y = nu, 2z =mn, w =2 + 3u is a solution of (5.1).

Case 2. n =8mod4. Then n =3+ 4u. If w =0 then » =3
and r=1,9y=38,2 =06, w =1 is a solution of (5.1). If u = 0 then
w>0and £ =u,y =n%2=2ul + u), w=mn is a solution of (5.1).

(¢) Wemay assume # is odd. It follows that either n* = 1 mod 16
or n* = 9mod 16.

Case 1. m*=1mod16. Then x= (n*—1)/16, y = 2n?, z = x(1+2n%),
w = 1 is a solution of (5.1).

Case 2. n*=9mod16. Then z =1, w=(n*—9)/16, y = »*1 + w),
2z = 2w + 1 is a solution of (5.1).

(d 2=1Ly=1+mn,2=mn,w=mn is a solution of (5.1).
(e) We may assume n > 2.

Case 1. n=1mod3. Then x=(n—-1)/3,y=n, z=n, w=n(n—21)
is a solution of (5.1).

Case 2. n=2mod3. Then x=(n—2)/3, y=mn, z2=n, w=n(l+x)
is a solution of (5.1).

Case 3. n=0mod3. Then x =mn,y =n,2=2n/3, w = n/3 is a
solution of (5.1).

(f) We may assume 7 is odd.

Case 1. m*=1mod16. Then w = (n* — 1)/16, x = 8w, ¥y = n’w,
2z =1 is a solution of (5.1).

Case 2. n* =9 mod16. Let u = (n* — 9)/16. Then x = un?, y =
2u +1,z=u+ 1, w=1 is a solution of (5.1) and the theorem is
proved.

5.2, COROLLARY. [3, Theorem 3.1, p.243]. If bisany integer>2,
the group G, = gp <[, m; 0, 1], [1, 0; m, 1] > 4s mot free whenever
m = 4/b.

Proof. Note that G,, is not free if m = 4/3 [8]; then apply 5.2(c).
(This proof supersedes an extensive computer calculation in [3].)

Finally we remark that we have not been able to prove that S,,,
is not free (|»| > 8), although we presume that this is the case.
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5.3. THEOREM. In every meighborhood N of 1 there exists a real
number r and a sequence v, of reals such that S, 1is not free and
lim, .7, = 7.

Proof. Choose an integer y suchthat y >3, ye N. Setr=11—y".
Now if =1 and w = 1, (5.1) becomes:
(5.4) m*=1—(yz2)* — 2t —yt.

Hence if m satisfies (5.4) then S, is not free (for any z). For each
integer n >8set r, =11 — (ny)™ — n* — y~*. Then S, is not free
and lim,_, 7, = 7.

6. Roots of unity. In [11, p. 69] it is conjectured that G, is
not free if m is a primitive gth root of 1. The situation for semi-
groups is quite different.

THEOREM 6.1. If m is a primitive qth root of 1 and q # 3, 4
or 6 then S, s free.

Proof. Since any two primitive qth roots of 1 are conjugate,
it suffices to prove the theorem for any particular primitive gth root
of 1.

Case 1. Suppose q¢ = 8. Let m = cos (2n/q) + 2 sin (27/q). Then
A= m*2 = (1/2)[cos (47/q) + 4 sindxm/q]. Then |N] =1/2 and R(\) =
(1/2) cos (47/q) = 0 (since ¢ = 8). Hence by 2.4 K; (and hence S,) is
free.

Case 2. q <8 If ¢g=1or 2 then A = m?/2 = 1/2 and again by
2.4, K, (and hence S,,) is free. Now suppose ¢ =5. Let ® = cos(27/5) +
1 8in (27/5). Let m = w®. Then m is a primitive 5th root of 1. Let
A= m}2 = w/2. Then |\|=1/2, R(\) = (1/2)cos (27/5) = 0. Hence
by 2.4, K; and (hence S,,) is free. Now assume ¢ =7. Let w =
cos (2r/7) + 4 sin (2r/7). Let m = ®'. Then m is a primitive 7th
root of 1. Let » = m?/2 = ®/2. Then |\| = 1/2, and

R(\) = (1/2) cos 2r/T) = 0 .

Hence K, is free and the proof is complete.

We note that if ¢ = 4, m = 4, so that S, is not free by 5.2(d).
If ¢ = 3, m = cos (27/3) + ¢ sin (27/3), N = m?/2 = (—1/4)(1 + 1V 34) while
if ¢=6,m = cos(21/6) + ¢ sin (2n/6), N = m*2 = (—1/4)(1 — v/ 3).
The two values of A are conjugate; hence K; = K; and S,,= S,... Thus
it suffices to treat the case ¢ = 3. We have not been able to prove
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that S, is not free when m is a primitive cube root of 1. However,
we do have:

6.2. THEOREM. Let @=cos (2r/3)+1sin(2n/3). Then there exists
a sequence z, such that lim, ..z, = @ and S, is not free.

Proof. A computation shows that
A*BYA*B*A*B* = B*A*B*A*BYA*
if and only if am* 4+ bm* 4+ ¢ = 0 where

a = TYUVIW ,
b = xyuv + 2wxy + 2wUv + VW + WY — YUY ,
C=2Y + UV + 2W + v + UW + Tw — v — Yyu — Y .

If welet x=9y=2=w=1,u = v the above condition becomes
(6.3) wmt + (uw+ L+ w+2=0.

Thus if m is solution of (6.3) (for any positive integer u), then S,
is not free. Let » be an integer, n > 1. It is easily seen that
A4n((2 + 0¥ > (m + 1) Let r, =1V4n¥ (2 + n?) — (n + 1)*. Let 4, =
r.4. Then lim,_., [4,/(2n*)] = (V' 3/2)i. Choose z, so that 0= arg 2, <7
and 22 =[—(n + 1 — 4,]/2n*). Then n*z + (n + 1)%2 +n*+2=10
and hence S, is not free. Moreover lim, .25 = —(1 + 1/ 3)/2 = 0.
Hence lim,_,. 2, = ®.

We thank the referee, R. C. Lyndon, for a careful reading of
the manuseript, and for useful suggestions.
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