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The commutative semigroups whose lattice of congruences
forms a Boolean lattice are determined. They are (i) the
null semigroups of order two or less, (ii) the discrete trees,
(iii) the groups which are a direct sum of prime order cyclic
groups in which no two factors have the same order, (iv)
the semigroups which are a one element inflation of a dis-
crete tree, (v) the semigroups which are a free product of
a discrete tree with zero and a semigroup of type (iii) amal-
gamated over the trivial semigroup, and (vi) the semigroups
which are a one element inflation of a semigroup of type

(v).

1. Introduction. In this paper a semilattice will be considered
to be an upper semilattice (i.e., for z,y&€S we have 2 < y if and
only if zy = y). We say that semilattice S is a (discrete) tree if
for all 2, ye€ S with z < y the interval [z, y] ={zeS:2 <2 vy} is
a (finite) chain. For any semigroup S we will let L(S) denote the
lattice of congruences of S. If T is a subsemigroup of semigroup
S and there exists a function f: S — T satisfying: (i) the restriction
of f to T is the identity mapping and (ii) for xz, yc€S we have
2y = f(x)f(y), then S is said to be an inflation of 7. We shall say
that S is a one element inflation of 7 if S is an inflation of T and
[S\T] = 1. Terms which are not defined may be found in [3], [9],
[12}, [13] or in [1].

We now present some results which are needed for our proofs.

THEOREM 1. (Hamilton [T]) Let S be a semilattice. L(S) is a
Boolean lattice if and only if S is a discrete tree.

Let S be a semigroup and let S = U,..r S. be the greatest semi-
lattice decomposition of S. If ¢ < B in [" and for all ac S, and be
S; we have ab=1"ba =b then we say that S, and S; are l-composed.
If S, and S; are l-composed for all o, Bel with a < 8 then we
say that S is l-composed.

THEOREM 2. (Hamilton [8]) If S is a commutative seperative
semigroup with L(S) a modular lattice them S is l-composed.

If a semigroup S is isomorphic to a subdirect product of semi-
groups T and U we shall write: S ~ T X U. If a semigroup S is
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isomorphic (equal) to a subdirect product of a collection, {A4,};.;, we
shall write S = II'.'SE[ A,(S = H;'gel Ai)'

THEOREM 3. (Tanaka [15], [2]) Let A be an algebra such that
L(A) is a distributive lattice. Then L(A) is a Boolean lattice if
and only tf A is isomorphic to some A* where:

(1) A*=15., A, where the A, are congruence simple algebras
and

(ii) any two elements of A* are equal on all but finitely many
factors A,.

We wish to emphasize the difference between simple and con-
gruence simple. A semigroup is said to be simple if it has no
proper ideals. A semigroup is said to be congruence simple if ¢,
the diagonal relation and @, the universal relation, are the only
congruences on S.

We shall write G = >};.; G; to indicate that a group G is the
direct sum of groups {G};cs.

THEOREM 4. (Burris [2]) Let G be a group. L(G) ts a Boolean
lattice of and only iof G = >,;.; G, where the G, are simple groups
and the factor Z, does mot occur twice for any prime p.

COROLLARY 5. Let G be an Abelian group. L(G) is a Boolean
lattice if and only of G = >,,.» Z,, where P is a set of primes.

PROPOSITION 6. (Birkhoff [1]) The partition lattice on a set S
1s distributive if and only if |S| < 2.

COROLLARY 7. Let N be a null semigroup. L(N) is distridbu-
tive if and only if N is a null semigroup of order less than or
equal to two if and only if L(N) 4s a Boolean lattice.

THEOREM 8. (Fountain and Lockley [5]) Let S be a semigroup
and o a congruence on S. If L(S) is a Boolean (modular, distri-
butive) lattice, them L(S/o) is a Boolean (modular, distributive)
lattice.

2. Preliminary results. We shall call a semigroup S a Boolean
semigroup if L(S) forms a Boolean lattice.

LEMMA 9. Let S be a Boolean semigroup. Ewvery cancellative
congruence o on S is a cancellative simple congruence, that is, S/o
%8 a cancellative simple semigroup.
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Proof. Let o be a cancellative congruence on S. Suppose that
S/o has a proper ideal I. Suppose that |I] =1 then S/o has a zero
and so as S/o is cancellative we have that S/o is trivial and so ¢
would be the group congruence . If |I]|s+1 then p;, the Rees
congruence with respect to the ideal I, has complement 7z e L(S/o)
as L(S/o) will be a Boolean lattice by Theorem 8. As tNp;=¢ on
S/o we see that the restriction of 7 to I, 7|;, is the diagonal relation
on I. Suppose that zzy and that acl. axray and so ax = ay as
ax, ay € I. As S/o is a cancellative semigroup it follows that z =y
and so 7 is the diagonal relation on S/6. 7 clearly is not the com-
plement of p;. Hence S/o has no proper ideals and ¢ is a cancellative
simple congruence on S.

It is easy to verify that a cancellative simple semigroup with
nonempty center is a group (see [11]). Combining this remark with
Lemma 9 we obtain:

LEMMA 10. Let S be a Boolean semigroup with nonempty center
then every cancellative congruence on S 18 a group congruence on
S. In particular for every commutative semigroup, cancellative
CONGruences are group COngruences.

LeEMmMA 11. Let S be a Boolean semigroup with nonempty center.
S has a smallest group congruence. In particular, every com-
mutative Boolean semigroup has a smallest group congruence.

Proof. This follows from Lemma 10, as every semigroup has
a smallest cancellative congruence.

REMARK 12. The commutative semigroups which are congruence
simple are exactly those which are isomorphic to Z, for some prime
», a null semigroup of order two, a semilattice of order two or a

trivial semigroup.

PROPOSITION 13. Let S be a commutative semigroup. L(S) is
a Boolean lattice if and only <f L(S) is distributive and S =~
TXsNXsG where T is a discrete tree, N is a null semigroup of
order less than or equal to two and G = >,.»r Z, for some set of
primes P.

Proof. Let S be a commutative Boolean semigroup. It follows
from Remark 12 and Theorem 8 that S = (IIS.; S/o) X (II5. , S/\) X5
(U5 8/7) where X is the set of semilattice congruences on S, 4 is
the set of null congruences on S, and I" is the set of group con-
gruences on S. Note: we are actually including more than ‘‘con-
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gruence simple’’ congruences in this subdirect decomposition. The
intersection of semilattice congruences is a semilattice congruence.
The intersection of null congruences is a null congruence. By
Lemma 11, the intersection of group congruences is a group con-
gruence. Thus S= T X N XsG where T is a semilattice, N is a
null semigroup and G is an Abelian group. By Theorem 8, L(T),
L(N), and L(G) are all Boolean lattices. It follows from Corollary
7 that |N| = 2. It follows from Theorem 1 that T is a discrete
tree. It follows from Corollary 5 that G = >),., Z, for some set of
primes P.

Conversely, let us assume that S~ TX; N XsG where T is a
discrete tree, N is a null semigroup with |N|£2 and G = >,.» Z,
for some set of primes P and L(S) is a distributive lattice. In
order to apply Theorem 3 we need to show that 7', N, and G satisfy
the conditions (i) and (ii) of Theorem 3. As T is a discrete tree it
follows from Theorem 1 that L(T) is a Boolean lattice. By Theo-
rem 3 we have that T satisfies conditions (i) and (ii) of Theorem 3..
As N is a null semigroup of order less than or equal to two, N
clearly satisfies conditions (i) and (ii) of Theorem 3. G = 3>,,.r Z,
also clearly satisfies the conditions (i) and (ii) of Theorem 3. It
follows that S satisfies the conditions (i) and (ii) of Theorem 3 and
so by Theorem 3 we have that L(S) is a Boolean lattice.

Let E be a semigroup and let {4,: 7€ I} be a collection of semi-
groups and suppose that for each ¢ € I there exists A, a monomorphism
of E into A,. A free product of {4,:7¢ I} with amalgamated sub-
semigroup E is a semigroup B possessing a system of monomor-
phisms {o,>i € I where o, maps A; into B satisfying:

(i) o\ = o\; for all 4,5¢el,

(i) [User0:(4))]=B (where [ X] denotes the semigroup generated
by X, and

(iii). if C is a semigroup and for each v¢l, ¢,€ HOM (4, C) is
given so that gin,=¢in; for all ¢, j€ I, then there exists ¢ e HOM(B,
O) satisfying ¢, = ¢o0, for all 1€ L.

Let S be a semigroup with identity, ¢, and let T be a semi-
group with zero, 0. Let E = {1} be the trivial semigroup. Let \;:
E — S be given by MQ) = ¢ and let A\,: E— T be given by »\,(1)=0.
Let B=SU.T be the set union of S and T except that 0 and e
are identified. Define a product in B by:

xogy if x, ye S, where oy is the operation in S
xopy if x, ye T, where o, is the operation in T
xif xe8S, yeT

yif xeT, yeS.

xoBy =
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We define 0,: S — B and 0,: T — B by 0,(s) = s and 0g,(t) =t for all
seS, teT. Note that o,(e) = 0,(0). It is easy to see that the
semigroup B is the free product of S and T amalgamated over {1},
so as to identify ¢é and 0.

ProPOSITION 14. Let S be a semigroup with identity, e, and
let T be a semigroup with zero, 0. Let B be the free product of S
and T amalgamated over the trivial semigroup {1}. Then we have
L(B) = L(S) x L(T).

Proof. Let pe L(B). We define ¢: L(B)—L(S) X L(T) by ¢(0) =
(0ls, plz). We define the inverse map «: L(S) X L(T)— L(B) by
(0, T) = 0 where:

x, ye S and xoy ,

z,ye T and 27y,

zeS,y€T and xoe, Oty or

xeT,yeS and 270, eocy (recall ¢ = 0 in B).

xpy if

Let p e L(B) and suppose xoy where x€ S and ye€ T. We see that
x = xepye = 90 = 0 = ¢ and so xpe. Also we see that 0p x oy and
so 0py. Conversely, if x€S and ye T with xpe and 0py, then we
have zpy by the transitivity of p. Thus p is determined by its
restrictions to S and 7. We see that 4 is the inverse of ¢ and so
L(B) =~ L(S) x L(T). '

3. The general case. Let S be a commutative Boolean semi-
group. By Proposition 13, we have that S =~ T X3 N XsG where T
is a discrete tree, N is a null semigroup with |[N|£2 and G =
2 Z, for some set of primes P. In what follows we shall consider
S to be a subsemigroup of the direct product T x N X G. Let
7: T X NX G— T x Gbe the projection homomorphism. U = 7(S)
is the greatest separative homomorphic image of S. U is a subsemi-
group of the direct product 7 X G which is a subdirect product of
T and G. For each aecT we let U, = {(e, g) ela] X G:(a, g) € U}.
We see that U= U,.r U, is a semilattice decomposition of U which
is in fact the greatest semilattice decomposition of U, U is a com-
mutative separative Boolean semigroup. It follows from Theorem
2 that U is 1l-composed. Suppose «, e T with a < B8 and that
(@, 9), (B,h)e U. Then as U is l-composed we see that: (B, h) =
(e, 9)(B, h) = (aB, gh) = (B, gh). Hence gh = h and as G is a group
we have that g = ¢, the identity of G. We can conclude that if G
is not trivial that T has a zero, 0, with U, = {(0, 9); g€ G} = G and
U, is trivial for all other BeT. If G is trivial then U=~ T is a
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discrete tree. If G is not trivial, U is isomorphic to the free pro-
duct of G and T amalgamated over the trivial semigroup {1} so as
to identify 0e T and ee G. By Proposition 15, L(U) = L(G)x L(T).
By Theorem 1, L(T) is a Boolean lattice. By Corollary 5, L(G) is
a Boolean lattice and so L(U) is a Boolean lattice. We have shown:

THEOREM 15. Let U be a commutative separative Semigroup.
L(U) %s Boolean if and only if

(i) U 1s a discrete tree or

(ii) U s a free product of G=3,., %, (P a nonempty set
of primes) and T, a discrete tree with zero, amalgamated over the
trivial semigroup.

We return to the general case where S is our commutative
Boolean semigroup and S is a subsemigroup of T x N x G. We
now consider the projection A: T X N X G— T x N. A semigroup
is called group free if all of its subgroups are trivial. It is easy
to see that the intersection of group free congruences is a group
free congruence and so every semigroup has a greatest group free
homomerphic image. V = h(S) is the greatest group free homomor-
phic image of S. For each ve T we let V,={(7,z)e{7}xN: (7, )€
V}. V= Uwxer V. is the greatest semilattice decomposition of V.
Each V, is either trivial or a null semigroup of order 2. Let ae T.
We denote the zero of V,, («,0) by 0,. If V, is not trivial we
denote the other element, (@, a), by a..

LEMMA 16. Let V be a group free, commutative Boolean semi-
group and let V= U,.r V. be the greatest semilattice decomposition
of V. If a,BeT and a < B then V, and V, are not both mon-
trivial.

Proof. We can see that V is an inflation of T X {0} = T. For
each e T, V,=1{0, a,} or V,=1{0,}). Suppose &, BT with a < B
and V,={0,, a,} and V; = {04 a;}. We shall see that this assump-
tion leads to a contradiction. Let us first show that V,U V; is a
homomorphic image of V and so L(V,U V,) is a Boolean lattice by
Theorem 8. Let Ve=U,<. V;,. We define f: V- V,UV, as
follows:

(i) if ze V4\{a,} then f(x) = 0,

(ii) flas) =

(iii) if xe V\(V*U {a,}) then f(x) = 0, and

(iv) flap) = a,.

We note that {0,} is an ideal of V* and that {a,} V*= V*{a.}={0.}
and so the restriction of f to V* is a homomorphism. We note
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that V\V*=1 is a prime ideal with {a,}V = V{a,} = I and so
VA(V=U {a;}) is an ideal of V. The function f is thus a homomor-
phism and f(V)= V,U V,; is a Boolean semigroup. Let us define
the relations o, o,, and 0, on f(V) as follows:

z, Yy € {0, 0,} or
x, Y € {ae a5},
z, ¥y €{0,, a,} or
x=19, and

xoy if {

ro,y if i

" {x Y € {04 a,} or
20y 1
IO X, Y € {Oﬂ’ aﬁ} .

g, 0,, and p, are clearly congruences on f(V)and o N po,=0 N p,=
¢,, oV p,=0V p,=®. So L(V,U V,) contains N;, the nonmodular
lattice of order 5, which is a contradiction to the fact that L(V, U
Vs) is a Boolean lattice. Thus V, and V; are not both nontrivial.

LeEMMA 17. Let V be a commutative, group-free, Boolean semi-
group and let V = Uqer V. be the greatest semilattice decomposition
of V. If a, BeT are incomparable elements of T then V, and V,
are not both nontrivial.

Proof. Suppose by way of contradiction that there exist incom-
parable elements o, 8eT with V, = {0, a,} and V, = {0, a;}. By
Lemma 16, V, = {0,} is trivial. We shall see that V,U V,U V,,
is a homomorphic image of V and so L(V,U V,U V,) is a Boolean
lattice by Theorem 8. We define f: V— V,U VU V,;s as follows:

(i) if xe V*\{a.} then f(x) = 0,,

(ii) f(aa) = Qq,

(iii) if xe VA{a,} then f(x) = 0,

(iv) flas) = a;, and

(v) if e V\(V*U V?) then f(x) = 0.

It follows that f is a homomorphism as V\(V*U V¥) is an ideal
of V, {0,} is an ideal of V*, {0,} is an ideal of V* and as V%a.} =
{0.} is an ideal of V=, {0,} is an ideal of V* and as V*a,} = {0.}
and V¥#as} = {0,).

We define relations 0, 0,, and ¢ on f(V)= V,U V,U V, as
follows:

z, Y € {a'ay aﬁ} or

xoy if
v r, YE {Om Oﬁ: Oaﬂ}
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x: y € {Oar atx} or
xoy if {x, y €{0; a;} or

rT =Yy
. {w y €{04 a;} or
2y if
rT=19y.

It is immediate that these three relations are all congruence
relations and that op, = 00, = ¢ and o, = 00, = . We see that N,
the nonmodular lattice, is a sublattice of I(V,U V, U V,;) contradie-
ting the fact L(V,U V, U V,,) is modular, in fact a Boolean lattice.
It follows that V, and V; cannot both be nontrivial.

THEOREM 18. V 4s a group-free, commutative, Boolean semi-
group if and only if V is either o discrete tree or is a one element
wnflation of a discrete tree.

Proof. Let V be a group-free, commutative, Boolean semigroup
and let V = U..,r V. be the greatest semilattice decomposition of V.
By Lemmas 16 and 17 it follows that V, is nontrivial for at most
one acT. Hence V is either a discrete tree or a one element
inflation of a discrete tree as V is a subsemigroup of T X N.

Conversely, if V is a discrete tree we know that L(V) is a
Boolean lattice by Theorem 1. We thus assume that V is a one
element inflation of a discrete tree T (identifying T and T x {0}).
Then V = User V. where for some acT, V,= {0, a,} and V, is
trivial for all Be T\{a}. We note that for all ze V, xa, = 20, by
the definition of an inflation. We shall now show that L(V)~L(T) x
L(V,). Let ¢: L(V)— L(T) x L(V,) be given by ¢(0) = (0lz, 0lv,)-
Recall that we are identifying T with Tx{0}. ¢ is clearly an order
preserving map.

Let pe (V) and suppose zpa, for some ze V\{a,}. We find
that a,0x = 2?0a% = 0,. Thus xpa, implies that xe0, and 0,0a,. Con-
versely, if 00, and 0,0a, we have xpoa,. We see that p is determi-
ned by its restrictions to T and V,. We can now define the inverse
to &, ¥, A L(T) X L(V,) — L(V) by 0o, t) = 0 where

2,y T and xoy, or
" z,ye V, and xzy, or
20y i
oy zeT,y = a, and 200, , 0,za,, Or

x=a, yeT and x270,, 0,0y .

4 is clearly a lattice homomorphism which is the inverse of ¢ and
so (V)= L(T) x L(V,). As T is a discrete tree, L(T) is a Boolean
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lattice by Theorem 1. L(V,) =~ {;, w} and so is a Boolean lattice.
L(V) is a direct product of Boolean lattices and so is a Boolean
lattice.

We return again to our general case: S is a commutative,
Boolean semigroup which we can identify as a subsemigroup of
some T x N X G.

TTHEOREM 19. S s a commutative, Boolean semigroup if and
only ©f S 18 one of the following:

(i) a null semigroup of order two or less,

(ii) a discrete tree,

(iii) 4somorphic to 3,,.p Z, for some set of primes P,

(iv) a one element inflation of a discrete tree,

(v) a free product of a discrete tree with zero and a group
isomorphic to >,.r Z,, P a nonempty set of primes, amalgamated
over the trivial semigroup so as to identify the identity of the
group and the zero of the discrete tree.

(vi) a one element inflation of a semigroup of type (v).

Proof. Let S be a commutative, Boolean semigroup. We
assume as before that S is a subsemigroup of 7 x N x G. In the
case that N is trivial it follows from Theorem 15 that S is of type
(ii) or of type (v). In the case that G is trivial it follows from
Theorem 18 that S is of type (ii) or of type (iv).

Let us consider the case when N and G are both nontrivial. We
know that G = 3., Z,, where P is a nonempty set of primes. By
Theorem 15, T is a discrete tree with zero. Let k: T X N x G—T,
T.TXNXG—>TXxGand h: T Xx N X G— T x N be the projection
homomorphisms. For each ac T we let S,=k™ (@)NS. S=User S
is the greatest semilattice decomposition of S. Let 0€T be the
zero of 7. It follows from Theorem 15 that =(S,) ={0} x G = G
and 7(S;) is trivial for all 8¢ T\{0}. By Theorem 18, there exists
a e T such that i(S,) = {(a, 0), (@, a)} and A(S;) is trivial for all Be
T\{a}. Thus we see that S, is trivial for all ve T\{e, 0}. We con-
sider two cases:

Case (i). We assume « == 0. In this case it is easy to see that
S is a one element inflation of S\{(«, a)}, which is a semigroup of
type (v). S is thus a semigroup of type (vi).

Case (ii). We assume that « = 0. We have that S, is a sub-
semigroup of {0} X N X G and S; is trivial for all 8¢ T'\{0}. Let a
be the nonzero element and 0, be the zero of the null semigroup
N. We note that if 8+ 0, that S; ={(5,0,¢)}. The set I =T x
{0y} % {e} U ({0} X {04} X G) is a proper ideal of S. Let p, be the
Rees congruence on S with respect to the ideal I. S/po; =~ ({0} x
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{a} x G)N SU {0} is a null semigroup of order two as S/o; is a
Boolean null semigroup and so [({0} X {a} x G)N S| =1. Thus S, =
{0} x NxG)NS is a one element null extension of {0} x {0,} X G.
Utilizing the fact: SC T X N x G we see that S is a one element
inflation of S\{x} where {x} = ({0} X {a} X G) N S. S\{z} is a semi-
group of type (v) and so S is a semigroup of type (vi).

Conversely, let us assume that S is a semigroup of type (i), (ii),
(iii), (iv), (v) or (vi). We shall show that L(S) is a Boolean lattice.
By Theorem 18, semigroups of type (i), (ii), and (iv) are Boolean.
By Theorem 15, semigroups of type (iii) and (v) are Boolean. We
can thus assume that S is a semigroup of type (vi). There thus
exists €S such that S\{zx} is isomorphic to the free product of a
discrete tree T with zero, 0, and a group G, isomorphic to >,,.» Z,
for some nonempty set of primes P, amalgamated so as to identify
the identity of G, ¢, and the zero of 7. We shall identify S\{x}
with G U T where 0e T is identified with eeG and if acT, geG
we have ag =ga=g¢g. S = Us,S; where G S,, €S, for some
acT and S, = {7} if v¢{a, 0}. We consider two cases:

Case (i). We assume that ¢ #0 and so S,={x, @} and S, =
G. We shall see that L(S) =~ L(T) x I(S,) x L(S,). We define a
map ¢: L(S) — L(T) x L(S,) x L(S.) by ¢(0) = (0lr, Olsp 0s,)- Let
peL(S). As |S. =2, pls,=¢ or pls, = w. Suppose that xzob for
some beS\S,. If beT, then a = 2%0b* = box. If be@G, then as G
is periodic, there exists » such that ” = b and so xpb = b"pzx" = «.
Hence if |5, =¢, we have that the o class of =, [z], = {2} and if
pls, = @, then [z], = [a],. Suppose that ueS, yeS\S, and that
u0y. As uecS, there exists m such that u™ = e, as S, is the perio-
dic group G. If ye T, then y is idempotent and so ¢ = u™pPy™=ypu
and so upe and ¢ = 0py. If y = x, then we have that [x], # {«} and
so [z], = [@],, implying that zpa and so by transitivity of o, woc.
As a is an idempotent we have by the previous argument that
upe and 0 = e¢p and so noting that xpoa we have that upe and 0 =
epx. We see that o is the transitive closure of o|, U |5, U 0ls,. We
define r: L(T) X L(S,) X L(S) — L(S) by (g, t, )=p where p is the
transitive closure of (o0 U¢)U(z U¢) U@ U¢ts). The product on S
insures that o will be a compatible relation and so a congruence
relation. It is clear that ¢ and + are order preserving maps which
are inverse and so L(S) =~ L(T) x L(S,) x L(S,). T is a discrete
tree and so by Theorem 1, L(T) is a Boolean lattice. S, = 3,,.r Z,
and so by Corollary 5, L(S,) is a Boolean lattice. As S, is a null
semigroup of order two, L(S,) is a Boolean lattice. L(S) is isomor-
phic to the direct product of Boolean lattices and so is a Boolean
lattice itself.

Case (ii). We assume that « =0 and so S, = G U {x} and S; =
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{8} if #+#0. We have shown in the proof of Theorem 15 that
L(S\{x}) = L(S)\{z}) X I(T) is a Boolean lattice. Let ¢ be the iden-
tity of G and let pe L(S). If [z], # {«}, then zpy for some y = z.
If ye S8, then xoy = yepxe and so [x], = [xe],. Suppose that ye T.
As 2% is an element of periodic group G, there exists » such that
2" = ¢ and so we have y = y"px" = e. We now see that xeoyy =
yox and so [z], = [xe],. Thus given a congruence relation on S\{z},
there are exactly two ways to extend to a congruence relation on
S. We can add {x} as a singleton class which poses no compatibility
difficulties as 2 behaves multiplicatively as though it were xe, an
element of G, or we could adjoin « to the class containing xze and
this poses no compatibility difficulties for the same reason. Thus
L(S) = L(S\{x}) X 2 = I(G) x L(T) x 2, where 2 is the two element
Boolean lattice. IL(S) is isomorphic to a direct product of Boolean
lattices and so is itself a Boolean lattice.

COROLLARY 20. S %5 a commutative Boolean semigroup if and
only 1f S=TXsNXsG, where T is a discrete tree, N s a null
semigroup of order two or less, G = >,.p Z, for some set of primes
P, L(S) is a modular lattice and every null homomorphic image of
S s of order two or less.

Proof. If one examines the proofs in §3, he will see that the
relevant half of Theorem 15 is based upon the semigroup being
1-composed which followed from modularity. The relevant half of
Theorem 18 rests upon Lemmas 16 and 17 whose proofs required
only modularity. The relevant half of Theorem 19 essentially rests
upon Theorem 15 and Theorem 18 except where we noted that a
certain null homomorphic image had order two. We thus have that
these conditions are sufficient. The necessity of these conditions
follows from Proposition 13.

ADDENDUM

LEMMA 21. Let T be a discrete tree. Then L(T) is isomorphic
to P(A), the set of all subsets of the set of atoms of L(T).

Proof. It is known (see p. 171 of [9]) that a Boolean lattice B
is isomorphic to P(A) if and only if B is atomic and complete. The
lattice of congruences of any algebra is complete. Let x, y € T such
that = covers y (i.e., * > y and there is no z satisfying x > z > ¥).
We define the congruence o,, by:
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a, be{x, y} or
ao, b if . The set of atoms of L(T) is the set
iz =y

{o,,,x covers y;x, y€ T}. It is clear that every congruence containg
an atom and so L(T) is atomic. L(T) is thus isomorphic to P(A).

LEMMA 22. P(A) x P(B) = P(A U B), for any two disjoint sets
A and B.

Proof. The maps are given by (C,D)—CUD and E— (EN
A, E N B).

LEMMA 23. If S=3>,,.p %, for some nonempty set of primes
P, then L(S) =~ P(P).

Proof. The atoms of L(S) are the congruences induced by Z,
for some pe P.

LeMMA 24, Let S be a one element inflation of a discrete tree
T. Then L(S) s isomorphic to P(A) for some set A.

Proof. We have shown that L(S)~ L(T) x 2 in the proof of
Theorem 18. Hence by Lemmas 21 and 22 we see that L(S) is
isomorphic to P(A) for some set A.

LEMMA 25. Let S be a type (v) semigroup of Theorem 19. Then
L(S) is isomorphic to P(A) for some set A.

Proof. We have shown in the proof of Theorem 15 that L(S)=
L(G) x I(T), where G is a Boolean group and T is a discrete tree
with zero. It follows now by Lemmas 21, 22, and 24 that L(S) is
isomorphic to P(A) for some set A.

LEMMA 26. Let S be a type (vi) semigroun of Theorem 19.
Then L(S) is isomorphic to P(A) for some set A.

Proof. It is shown in the proof of Theorem 19 that L(S) =
L(T) x L(@G) x 2, where T is a discrete tree with zero, G is a
Boolean group and 2 is the two element Boolean lattice. It follows
now by Lemmas 21, 22, and 23 that L(S) is isomorphic to P(4) for
some set A.

THEOREM 27. Let S be a commutative semigroup. Then L(S)
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18 a Boolean lattice if and only +f L(S) =~ P(A) for some set A.

Proof. This follows from Theorem 19 and Lemmas 21, 23, 24,
25, and 26.

The authors would like to express their deep appreciation to
the referee for his many helpful suggestions. The authors would
also like to thank Professor Boris Schein for pointing out that
Zitomirski [16] has characterized inverse semigroups whose lattice
of congruences is Boolean.
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