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BRIAN PETERSON

Our objective is to make a series of reductions for the
problem of computing Ext in the category of pro-affine
algebraic groups over an algebraically closed field of char-
acteristic zero, exploiting the notions of unipotence, reduc-
tiveness, and group coverings. After examining some of
the properties of Ext in a more general categorical setting,
due to G. Hochschild, we discuss the multiplicative character
theory for our groups and obtain several consequences of
simple connectedness before proceeding to the main objective.

1. Preliminaries. Let G be a group, F a field, and ¢: G — F
an F-valued function on G. For each « in G, we define the left
and right translates of g by = by (x-9)%) = glyx) and (g-x)(y) =
glzy) for all ¥ in G, respectively. For all « and y in G, we have
(x-g)-y =2x-(g-y) so we denote this simply by z-g-y. We call ¢
a representative F-valued function if the funetions xz.g-y with
and ¥ ranging over G lie in a finite dimensional space of functions.
This condition may easily be shown to be equivalent to the asser-
tion that the functions xz-g¢ all lie in a finite dimensional space of
functions, or that the functions g-z do. The set Z(G) of all
representative F-valued functions on G has the structure of a Hopf
algebra over F. The F-algebra structure of <Z,(G) is the usual
one. The comultiplication 7:.cZ(G) — FH(GF) ® Z(G) sends any ¢
as above to the unique element >.f, X g; of FH(G) R F(G) for
which 3 fi®)g.(y) = g(xy) for all  and ¥ in G. The antipode
7. Fn(G) — BH(G) sends g to the function whose value at each 2 in
G is g(x™%), and the counit ¢: Z(G) — F' is evaluation at the identity
element of G.

The pair (G, A) is called a pro-affine algebraic group over F if
A is a Hopf subalgebra of <#Z,(G) which separates the points of G
and has the property that every F-algebra homomorphism 4 — F' is
the evaluation at some element of G. If A is finitely generated we
call (G, A) an affine algebraic group over F.

More generally, if X is a set and A is an F-algebra of F-valued
functions on X, we call the pair (X, 4) a pro-affine algebraic variety
over F' if A separates the points of X and every F'-algebra homo-
morphism A — F is the evaluation at some element of X. If A is
finitely generated, we call (X, 4) an affine algebraic variety over F.
This is one equivalent form of the usual notion.

If (X, 4) and (Y, B) are pro-affine algebraic varieties over F
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a function ¢: X — Y is called a polynomial map if, for each f in B,
the function fo¢ belongs to 4, in which case the map sending such
f to fop is an F-algebra homomorphism B— A which we will
denote by ¢'. If (G, A) and (H, B) are pro-affine algebraic groups
over F and ¢: G — H is both a polynomial map and a group homo-
morphism, we call ¢ a rational homomorphism. In this case, ¢’ is
a Hopf algebra homomorphism.

We assume from now on that F is algebraically closed, though
some of what we say is true more generally.

Since F' is algebraically closed, the functor sending (X, 4) to 4
and ¢ to ¢’ is easily seen to be a contravariant categorical equi-
valence from the category of pro-affine algebraic varieties over F'
to the category of commutative F-algebras which are reduced, i.e.,
contain no nonzero nilpotent elements. An inverse functor is the
one sending the commutative reduced F-algebra A to the pair
(£ (4), A) where £ (A) is the set of all F-algebra homomorphisms
A — F and elements of A are viewed as functions on Z(4) by
evaluation. If A is in fact a Hopf algebra, = (4) has a natural
group structure and the functors defined just as the above are easily
seen to establish a contravariant categorical equivalence between
the category of pro-affine algebraic groups over F' and that of com-
mutative reduced Hopf F-algebras.

We will use the notations (X, A4), (X, P(X)), and (£ (4), A) in-
terchangably for pro-affine algebraic groups and varieties.

We give to pro-affine algebraic groups and varieties (X, A) the
usual Zariski topology, so that a subset Z of X is closed (or algebraic)
if and only if Z is the full annihilator in X of the annihilator J in
A of Z. The closure of a subset of X will be called its algebraic
hull (in X). If Z is algebraic, then (Z, A/J) is a pro-affine algebraic
variety in the natural way.

If, in the above situation, (X, A) is a pro-affine algebraic group
and Z a closed subgroup, then J is a Hopf ideal, A/J a Hopf algebra,
and (Z, A/J) a pro-affine algebraic group. If, in addition, Z is
normal in X, then (X/Z, A?) is a pro-affine algebraic group, where
AZ denotes the Z-fixed part of A under left (equivalently right)
translations. The canonical map #: X — X/Z is a rational homomor-
phism with #’ the natural inclusion 4% — A. It is easily seen that
if p: X —Y is a polynomial map to a pro-affine algebraic variety Y
which is constant on cosets mod Z, the induced map p%: X/Z —>Y
with p?om = p is a polynomial map, and if o is a rational homo-
morphism to a pro-affine algebraic group Y, then o? is a rational
homomorphism.

If (X, A) and (Y, B) are pro-affine algebraic varieties (or groups)
over F, the map sending (g, ¥) to ¢ @+ gives a bijection Z(4) x
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Z(B)— Z(A® B), and the above contravariant categorical equi-
valences make it clear that (X X Y, A® B) is a product in the
category of pro-affine algebraic varieties (or groups) over F, as
tensor products are coproducts in any reasonable category of F-
algebras.

If (G, A) is a pro-affine algebraic group over F and H a sub-
group of G, H is called unipotent if the representation (by left
translations) of H on any finite dimensional left H-stable subspace
of A is unipotent. H is called reductive if its representation on A4
is semisimple. If H is algebraic and unipotent, it follows that all
of its rational representations are locally unipotent, and if H is
algebraic and reductive it follows that all of its rational representa-
tions are semisimple (cf. [7, Proposition 2.3]).

In [6] we see that there is a normal unipotent (algebraic) sub-
group of G, which we will denote G,, which contains all normal
unipotent subgroups of G. Any reductive subgroup of G intersects
G, trivially. It is shown that if F' is of characteristic zero (and
algebraically closed), there is a reductive algebraic subgroup K of
G such that G is the semidirect produet G,K, and any reductive
subgroup L of G has some conjugate aLz™' contained in K with 2
in the algebraic hull of the commutator subgroup [G,, G]. So if G
is abelian, there is a unique maximal (algebraic) reductive subgroup
G, of G and G = G, X G,.

A tool which is used in the proofs of most of these results is
Proposition 2.7 of [7], which we record here.

PrROJECTIVE LiMIT THEOREM. Let (V,, 05) be an inverse system
of compact T, topological spaces with continuous closed maps
05 Vs—V, when ¢ < 8. This means, of course, that for any «
and B, there is a ¥ with a £7 and B =7, that each p; is the
wdentity on V,, and that piop; = p; when a < B <7. Then the
inverse (projective) limit V of the system is nomempty. If, for
some a, all the maps P4 with B= @ are surjective, so is the cononical
map . V-V,

If (G, A) is a pro-affine algebraic group over F, every finitely
generated subalgebra of A is contained in a finitely generated Hopf
subalgebra, so A is the union of these latter. If S ranges over any
increasingly filtered family of these whose union is A, we have a
natural identification & (A) = lim & (S). Each (£(S), S§) is an affine

algebraic group over F, hence the name pro-affine algebraic group.
A similar (simpler) discussion applies to pro-affine algebraic varieties.
Since we assume F is algebraically closed, the projective limit theo-
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rem applies to inverse systems in the category of affine algebraic
groups over F, via the coset topology (ef. [7]).

A pro-affine algebraic group (G, A) over F is called connected
if A is an integral domain. Proposition 2.1 of [6] shows that in
general G contains a unique normal connected algebraic subgroup
G, such that G/G, is pro-finite, i.e., such that the restriction image
of G/G, to any finitely generated Hopf subalgebra of A is finite.
G, is called the identity component of G, and its annihilator in A4
consists of all elements a of A for which there is an o’ in A with
a’(1) # 0 and aa’ = 0.

2. Group coverings. Let (G, A) and (H, B) be connected pro-
affine algebraic groups over F. A surjective rational homomorphism
7. H— @G is called a covering if its kernel P is pro-finite, i.e., P,=(1),
and the induced rational homomorphism H/P — G is a rational iso-
morphism. If F' has characteristic 0, any bijective rational homo-
morphism is a rational isomorphism, so the latter condition is auto-
matically satisfied. It follows from the fact that P is a totally
disconnected normal algebraic subgroup of the connected group H
that P is central in H. Because 7 is surjective, the induced Hopf
algebra homomorphism 7’: A — B is injective.

In the case where F has characteristic 0, necessary and sufficient
conditions are given in [4] that, for a commutative integral domain
Hopf algebra B over F' containing the Hopf subalgebra A, the re-
striction map Z(B) — £ (A4) is a group covering, namely that B is
what is called a profinite extension of A. We refer the reader to
[4] for the details, including the definition of the space D,(T) of
Kahler differentials of an F-algebra T relative to an F-subalgebra
S, which we will take for granted in the proofs of Lemma 4.3 and
Theorem 4.4 below.

We remark that, again if F' has characteristic 0, the proof of
Theorem 4.2 of [4] shows that if the integral domain F-algebra B
is a profinite extension of the Hopf F-algebra A, then for any F'-
algebra homomorphism ¢’: B— F extending the counit ¢: A — F of
A, B has a unique structure of Hopf F-algebra having ¢’ as counit,
i.e., the identity element of < (B), which extends the Hopf algebra
structure of A.

A connected pro-affine algebraic group G over the algebraically
closed field F is called simply connected if every covering of G is
an isomorphism. If G and H are connected pro-affine algebraic
groups over F, a covering w: H— G is called a universal covering
if, for every covering 7: T'— G, there is a unique covering n': H— T
such that ton’ =xw. If m: H— G is a universal covering, it is easy
to see that H must be simply connected. Theorem 5.1 of [4] shows
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that every connected pro-affine algebraic group over F has a uni-
versal covering, which is unique up to unique isomorphism. Theo-
rem 5.2 of {4] shows that if G is a connected pro-affine algebraic
group over F and K a connected normal algebraic subgroup of G,
then if both K and G/K are simply connected so is G, and if G is
simply connected so is G/K, and so also is K if F' is of characteristic
0 (as well as algebraically closed).

To see that a unipotent pro-affine algebraic group over an alge-
braically closed field of characteristic 0 is simply connected, we
suppose that G is one and 7: H— G a covering. We have H = H,-H,
where H, is a maximal reductive subgroup of H. Since w(H,) is
reductive and G unipotent, w(H,) = (1). But H, hence H,, is con-
nected while the kernel of z is profinite. Hence H, = (1), so H is
unipotent. Thus the kernel of =, being both reductive and uni-
potent, is trivial.

It is well-known (c.f. [1]) that if G is a connected reductive
affine algebraic group over an algebraically closed field F' of char-
acteristic zero and C,(G) denotes the identity component of the center
of G and G’ =[G, G], then both C/(GF) and G’ are algebraic subgroups
of G and the multiplication map C/(G) X G — G is a covering, i.e.,
a surjective rational homomorphism with finite kernel. If (G, A) is
a connected reductive pro-affine algebraic group over such a field
F, let S range over the set of all finitely generated Hopf sub-
algebras of A. Let G denote the inverse limit of all the (Gy)"’s, so
that G’ is the algebraic hull of the commutator subgroup of G.
We have that the identity component C,(G) of the center of G is
equal to the inverse limit of the C/(Gg)’s. It follows that the
multiplication map C,(G) X G’ — G is a covering whose kernel is the
inverse limit of the kernels of the maps C/(Gy) x (Gy) — G5. We
record this as a lemma.

LEMMA 1.1. Let G be a connected reductive pro-affine algebraic
group over an algebraically closed field F of characteristic 0. Let
C(G) denote the identity component of the center of G and G the
algebraic hull of the commutator subgroup of G. Then the multi-
plication map C,(G) X G — G is a covering. If G is simply con-
nected this map is rational isomorphism.

3. Automorphism groups. Let F be an algebraically closed
field and (G, A) a pro-affine algebraic group over F. Let Aut(G)
denote the group of all rational automorphisms of G. For ¢ in
Aut (@) and a in A, we define the induced right translate a-¢ of a
by ¢ by a+¢ = acg.

Call a subgroup P of Aut(G) an algebraic subgroup of Aut (G
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if P has a structure (P, B) of pro-affine algebraic group over F
such that the map P X G — G sending each (¢, ) to ¢(x) is a poly-
nomial map. Theorem 2.1 of [2] says that a subgroup P of Aut(G)
for which A becomes a locally finite P-module by right translations
is contained in a unique minimal algebraic subgroup of Aut(G). If
P ig itself and algebraic subgroup of Aut(G), the same theorem
shows that there is a smallest Hopf subalgebra A(P) of <Z.(P)
making (P, A(P)) an algebraic subgroup of Aut(G), and that A(P)
is the smallest Hopf subalgebra of .<Z.(P) containing the funections
Ma with A in Homy (4, F') and a in A, where \ja(g) = Mag) for ¢
in P. If the characteristic of F' is 0 and the structure (P, B) makes
P an algebraic subgroup of Aut (G), then necessarilly B = A(P).

Proposition 2.2 of [2] says that if (P, A(P)) is an algebraic sub-
group of Aut (@) as above, and if H is an algebraic P-stable sub-
group of G, then the canonical restriction map P— Aut(H) is a
rational homomorphism onto an algebraic subgroup (P, A(P,)) of
Aut (H). If H is normal in G, the canonical map P— Aut (G/H) is
a rational homomorphism onto an algebraic subgroup (Psy, A(Psy))
of Aut (G/H).

Proposition 2.3 of [2] says that if P is an algebraic subgroup
of Aut(G) as above, then every finitely generated Hopf subalgebra
of A is contained in a finitely generated P-stable Hopf subalgebra
of A. If B is a finitely generated P-stable Hopf subalgebra of A,
the canonical map P — Aut (G;) is a rational homomorphism onto an
affine algebraic subgroup of Aut (Gj).

It is implicit in [2] that if ¢: G — Aut (H) is a homomorphism,
where G and H are pro-affine algebraic groups over F, then ¢ is a
rational homomorphism onto an algebraic subgroup of Aut(H) if
and only if the map sending (g, i) to é(g){h} is a polynomial map
G x H— H.

4. Two remarks on pro-affine varieties. For each pro-affine
algebraic variety (X, A) over F, we have the diagonal map d: X —
X x X where d(x) = (x, ) for  in X. The image d(X) of d is
easily seen to be an algebraic subset of X x X whose annihilator
in A® A is the ideal generated by all elements a ® 1 — 1 X a¢ with
a in A. The map X — d(X) induced by d is a polynomial isomor-
phism whose inverse is the restriction to d(X) of either natural
projection X x X — X. So the diagonal map is a closed morphism
onto a closed subset of X x X, i.e., X is separated in the usual
algebraic geometric sence. It follows that for any two polynomial
maps fi, fo: X —Y, the set of all elements x of X with f,(x) = f,(x)
is an algebraic subset of X.

The following lemma will be useful in §2. Suppose (X, 4) is a
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pro-affine algebraic variety over F and that Z is an algebraic subset
of X with annihilator I in A. Let X ][ X denote the disjoint union
of two copies of X and let X ][, X denote the set of equivalence
classes in X [[ X where two elements are equivalent if and only if
they represent the same element of Z in the respective copies of
X. Let f, and f, denote the two maps X — X ][, X induced by the
two inclusions X — X J[ X of X into the first, respectively second,
copy of X.

LemMmA 1.2. X I, X possesses a structure of pro-affine algebraic
variety over F such that f, and f, are polynomial map and
(X1, X, 1., f.) has the wuniversal property that for any triple
(Y, 9., 9,) where Y is a pro-affine algebraic variety over F and g, and
g, are two polynomial maps X — Y whose restrictions to Z coincide,
there is a unique polynomial map k: X1, X — Y such that kof, = g,
and kof, = g,. Also, clearly, Z coincides with the set of elements
z of X for which f(x) = fi(%).

Proof. Consider the F-algebra AP A. Let A@,; A denote the
F-subalgebra of A@ A consisting of all elements (a,, a,) with a, +
I=a,+ 1. Both AP A and AP, A are clearly reduced. Two F-
algebra homomorphisms A @ A — F are equal if and only if their
kernels coincide, and the same is true for A@,; A. The kernel of
any F-algebra homomorphism A& A — F contains either (1, 0) or
(0,1) since it contains their product. So if 7z, and =, are the
canonical projections AP A — A, then any F-algebra homomorphism
AP A— F factors through either 7, or w,. We therefore have a
natural identification of X J] X with the set of all F-algebra homo-
morphisms A A — F.

Because F' is algebraically closed, any F'-algebra homomorphism
AP, A— F extends to one AP A — F, but not always uniquely.
If m and m' are the kernels of two distinct homomorphisms 4 — F,
then neither (m P A) N (AP, A) nor (AP m) N (AP, A) is equal to
either (m" QAN (AP; A) or (ADm)N(AP; A) because, for ex-
ample, if a belongs to m but not m', then (e, a) is in both of the
former and neither of the latter. Now if (m@PANAP;A4) =
(AP m)N (AP, A), then for every a in I we have (a, 0) e (AP m)N
(A, A) so also (a,00e(mP AN (AD; A) and acm. Thus I< m.
Clearly if IS m then m@PANAD A =ADmN AR, A).
Thus an F-algebra homomorphism A @; A — F has either one or
two extensions to A A according as its kernel does not or does
contain I@ I. If its kernel does contain I I, it is of the form
m @; m and the kernels of the two extensions to AP A are mP A
and A@ m. This shows that via the identification of X [[ X
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with Hom,, (A @ A, F'), the restriction map Hom, (ADPA, F)—
Hom,, (A€D; A, F') identifies X [[, X with Hom,, (A; 4, F). Via
this identification, the maps f, and f, correspond to the restric-
tions to A@;A of 7, and 7, so both f, and f, are polynomial
maps.

The universal property of (X I, X, f,, f.) is now easy to deduce.
Since we will not use it, we omit the argument. The last assertion
is clear.

5. Functorial properties of Ext. The results of this section are
valid in the setting described in §2 of [3]. We remind the reader
that & is a category of spaces (sets with possibly some additional
structure), .&, the category of groups in .&” (i.e., objects of . with
group structures suth that multiplication and inversion are .$-
morphisms), and % is a full subcategory of .&4. Several assump-
tions are made on .&¥ and Z, for example, that both admit (finite)
products and that & admits semidirect products (ef. [3]). The above
provides all that is needed to verify that all of the assumptions
are satisfied when .&” is the category of pro-affine algebraic varieties
over an algebraically closed field F of characteristic zero and ¥ is
either .&4 or the category of affine algebraic groups over F.

We recall that for objects G of & and A of &4 A is called a
G-space if there is given a homomorphism 7v:G — Aut. (4) such
that the induced map G X A — A is an .“-morphism. If A belongs
to & and Y(G)C Aut,(A), A is called a G-group. We recall also
that it is assumed that every bijective Z-morphism is a Z-isomor-
phism.

A subset B of an object A of .97 is called closed in A if for
every a in A and not in B, there are .“-morphisms f and g from
A to some object C of & with f(b) = ¢(b) for all b in B but f(a) #
g(a). The discussion of §5 shows that in the category of pro-affine
algebraic groups over F' as above, this notion of closure is equivalent
with Zariski closure. In general, enough assumptions are made on .&*
that this gives its objects T, topologies such that all .¢”-morphisms
are continuous.

Although it is not necessary, we avoid technical difficulties by
assuming that if K is a closed normal subgroup of an object G of
%, then for any .5”-morphism G — A (A an object of .&¥) which is’
constant on cosets mod K, the induced map G/K — A is an S“-mor-
phism. It follows that if K acts trivially on a Z-space A, then 4
is a G/K-space. Also, one easily sees that a G-stable subspace of a
G-space is also a G-space. We have seen above that these conditions
are satisfied in the categories of pro-affine algebraic groups over a
field F' as above.
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Group extensions. If A and H are objects of G an extension
of A by H consists of a surjective &-morphism ¢: £ — H and a Z-
isomorphism a: A — FE of A onto the kernel of ¢. It follows that
the induced bijective Z-morphism FE/a(A) — H is a Z-isomorphism
(which would otherwise have been part of our definition), Such an
extension will be denoted by [A4, E, H].., or [A, E, H], when we
wish to suppress « in the notation. We will generally regard a as
an identification of A with a(4) making the abbreviated notation
natural, as well as more controllable. Two extensions [4, E,, H],
and [4, E,, H),, will be called equivalent if there is a Z-morphism
M E, — E, such that Ma) = a for each a in A and o,°\ = 0,, Which
makes N ¢ Z-isomorphism.

For an object A of &, we will write Aut (4) for Aut, (4) and
Inn (4) for the normal subgroup of Aut (A) consisting of all inner
automorphisms of A. We shall write O(4) for Aut (4)/Inn (4).

Let [A, E, H], be a group extension in &. It follows that the
map A — A sending a to eae™' is a Z-automorphism for each e¢c E.
So we have a homomorphism E — Aut (4) which is easily seen to
make A into an E-group. The kernel of the induced homomorphism
E — O(A) contains A, so this induces a homomorphism 7: H — O(A).
We say that the extension [4, F, H], induces 7. One easily sees
that equivalent extensions of A by H induce the same homomor-
phism 7, so we may speak of the homomorphism 7 induced by an
equivalence class of extensions of A by H. We denote by Ext (H, 4, 1)
the set of all equivalence classes of extensions of A by H inducing
7n: H— O(A), which may be empty for a particular homomorphism 7.

If A happens to be abelian, then Inn (A4) is trivial, so n: H—
Aut (A). More generally, let [A, E, H], be a group extension in &
inducing %: H — O(A). Let C denote the center of A. One easily
sees that C is a closed normal subgroup of A. Clearly C is stable
under every element of Aut(A) and, in fact, restriction gives a
homomorphism Aut (4) — Aut (C) which is trivial on Inn (4), hence
induces a homomorphism O(A4)— Aut (C). The induced E-group
structure on C is the composite B — Aut (4)— Aut(C) and this is
trivial on A, so induces an H-group structure 7, H — Aut (C). This

is easily seen to coincide with the composite H 2, O(4) — Aut (C).

Next we describe the Baer composite, which gives to Ext (H, C, n,)
the structure of abelian group and also gives an action of this group
on the set Ext (H, 4, 7). We will then prove the analogue of the
familiar result in the category of abstract groups that this action
is faithful and (simply) transitive.

Suppose [A, E, H], and [B, F, H]., are two extensions in 2,
inducing 7: H — O(A) and p: H — O(B), respectively. Let C(4) and
C(B) denote the respective centers. Suppose that C is a object of
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% which is a closed subgroup of both C(4) and C(B) and that the
induced actions 7,: H — Aut (C(4)) and p,: H — Aut (C(B)) both stabi-
lize C and induce the same action of H on C making C an H-group.

Let C° denote the set of all elements (¢, ¢™) of A X B with
ceC. Then C° is a central subgroup of A X B which is easily seen
to be closed. Write D for (4 x B)/C’. Because we assume that »
and g induce the same action on C, they canonically induce a homo-
morphism y: H-— O(D). Namely, if ¢ and + represent n(h) and p(h)
in Aut (4) and Aut (B), respectively, the element ¢ X +» of Aut (A X B)
stabilizes C° (and so does its inverse) and so induces an element of
Aut (D). A routine check shows that the class v(h) in O(D) of this
element depends only on 7(h) and «(h), and that this indeed defines
a homomorphism y: H— O(D). The map C— D sending ¢ to (¢, 1)C°* =
(1, ¢)C° is an injective Z-morphism onto a closed central subgroup
of D, so identifies C with a closed central subgroup of D on which
v is easily seen to induce the same action as 7 and p.

Now denote by (E X F),. the set of all elements (e, f) of E X F
for which o(e) = z(f). Then (E x F),. is easily seen to be a closed
subgroup of E x F. The homomorphism #': (£ X F),.-> H sending
(e, /) to ole) = t(f) is easily seen to be a surjective Z-morphism.
The kernel of 7’ coincides with A x B. Our assumption that 7 and
¢ induce the same action on C implies that C° is a (closed) normal
subgroup of (£ X F'),.. Let G = (& x F),./C° and let w: G— H be
the % -morphism induced by 7#’. The kernel of 7 coincides with
D = (A X B)/C® and we have an extension [D, G, H]. in & which
one easily sees to induce yv. We call [D, G, H], the Baer composite
of {A, E, H], and B, F, H]., and we denote [D, G, H]. by [4, E, H}, B
[B, F, H]..

Next, a routine verification shows that the class of [D, G, H].
in Ext (H, D, v) depends only on the classes of [4, F, H],and [B, F, H].
in Ext(H, A, ) and Ext (H, B, tt), respectively, so that the Baer
composite yields a map Ext (H, A, ) x Ext (H, B, ) — Ext (H, D, v).
Finally, one verifies that this composition is associative, i.e., if
(4, E, H],, represent elements of Ext (H, 4,, 7,) for © = 1, 2, 3 where
C is closed central subgroup of each A, and each 7, induces the
same action of H on C, then the class of

[A, E, H],, B[4, E,, H],, B [4, E;, H],,

does not depend on how one inserts parentheses. The verification
that the recipe

((eu GZ)CO, ea)Co — (61, (627 es)CO)CO

does produce the required equivalence is a straightforward series of
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applications of the assumptions on #.

We specialize first to the case where A is abelian, so 7: H —
Aut (4). Taking C = A, we have a Z-isomorphism (A X A)/A°— A
induced by the multiplication in A. Viewing this isomorphism as
an identification, the Baer composite gives a map Ext (H, 4, ) X
Ext(H, A, n) — Ext (H, 4,7). We have just remarked that this
operation is associative, and it is easily seen to be commutative.
To see that the class of the semidirect product (A-H), is an identity
element, one shows that if [A4, E, H], represents an element of
Ext (H, A, 1), then the recipe ((a, k), ¢)A° — ae gives an equivalence
[4, (A-H),, Hl B [A, E, H],— [A, E, H],. Next, if [A4, E, H], repre-
sents an element of Ext (H, A, 7), a representative for the inverse
of this element is given as follows: Let a: A — A be the map sending
each @ in A to a™%. Since A is abelian this is a Z-isomorphism.
We see immediately that the extension [A4, F, H],, induces 7. Writing
[A, F, Hl. =[A, F, H], B [A, E, H],,, we see that F = (E X E),,/A°
where A° is the set of all elements (a, a) with ¢ in A. The recipe
(e,, e,)A’>(e.e5?, 0(e,)) is easily seen to give an equivalence [A, F', H}. —
[4,(A-H),, H]. Thus the class of [4, E, H],, is inverse to the class
of [A, E, H],. So the Baer composite makes Ext (H, 4, %) into an
abelian group when A is abelian.

More generally, let [A4, E, H], be an extension of 4 by H in &
inducing 7: H — O(A4) and let C denote the center of A. We view
the Z-isomorphism (C x A)/C°— A induced by the restriction to
C x A of the multiplication in A as an identification. Its inverse
is the map sending each a in A to (1, @¢)C°. The Baer composite
then gives a function Ext (H, C, 9,) X Ext (H, A, n) - Ext (H, 4, p).
An equivalence [C, (C- H),, Hl B[4, E, H],— [A, E, H], can be con-
structed in & from the recipe ((c, h), e)C°+ ce. This and the as-
sociativity of the Baer composite imply that the above function gives
an action of the abelian group Ext (H, C,7,) on the set Ext (H, 4, 7).

PropPOSITION 2.1. If Ext (H, A, ) is nonempty, the above action
of Ext (H, C, n,) on Ext (H, A, ) is faithful and (simply) transitive.

Proof. First we show that if [C, F, H]. and [A, E, H], represent
elements of Ext(H, C,7,) and Ext(H, 4, ), respectively, and if
[C, F, H]. 8 [A, E, H], is equivalent to [4, E, H],, then [C, F, H]. is
equivalent to [C, (C- H),,, H]. This implies that the action is faithful.

Write [4, G, H], for [C, F, H]. 8 [A, E, H], and suppose a: G — E
is an equivalence isomorphism. The map B:(F X E).,— E given
by B(f, e) = ex{(f, e)C°}* is an .S-morphism. Now 0oB(f,e) =
a(e)aa{(f, e)C} ' =a(e)p{(f, e)C} *=a(e)a(e)'=1{for all (f, e) € (FX E).,,,
so B(f, e)e A for all (f, e)c(FxE)., Also, whenever (f, ¢)c(FXE),.,



200 BRIAN PETERSON

and ac A, we have e 'ae = a{(l, ¢'ae)C%} = a{(f, e)'(1, a)(f, €)C%} =
a{(f, e)C°)*act{(f, €)C°} which implies that a7B(f, e)a = B(f, ¢). Thus
B(f, e)eC, and B may be viewed as an S“-morphism (F X E).,— C.
Now we define an .”-morphism 7: (F X E).,— F by 7(f, ¢) = B(f, e)f.
If (f, e) and (f3, e,) are elements of (F' X E).,, then

V(S e)V(for &) = ea{(fy, e)C}Vie:0{(fys €)C) s
= e,a{(f,, e)C) (SN ecd(fy €)C} ) iSo
= e,a{(f}, e)C} N (0((fy, e)CNet{(f2y €)C)}iSe
= e.e,0{(f e)C} (S, e)CY S, = V(i €

so ¥ is a Z-morphism. If ceC and acAd, then 7(c ac™) =
ac'e{(1, a)C°}'*C =1, so the closed normal subgroup (1, A)C° of
(F' X E)., is contained in the kernel of v. Hence 7 induces a Z-
morphism 8: H— F such that 60((f, e)C°) = Y(f, e), i.e., dz(f) = 7(f, ).
Thus zdz(f) = z(V(f, e)) = ©(f). Since r is surjective, this shows
that 70 is the identity map on H. Now the map F'— (C- H),, given
by f— (foz(f)™Y =(f)) is an .S“-morphism and also homomorphism,
so it is a Z-morphism. This is easily seen to give an equivalence
[C, F, H]. —[C, (C- H),, H]. As remarked above, this shows that
the Baer action is faithful.

Now we turn to showing that the action is transitive. For
this let [A, E,, H],, and [A, E,, H], represent two elements of
Ext (H, A, 7). We must produce an extension [C, F, H]. inducing 7,
and an equivalence isomorphism between [C, F, H]. & [4, E,, H],
and [4, E,, H],,.

Let D denote the set of all pairs (e, ¢,) in E, X E, for which
o.(e) = o,(e;,) and eae;’ = e,ae;' for all ac A. The set D’ of all pairs
(e, ¢,) in E, X E, satisfying the second condition is closed, being the
intersection of the inverse images of 1 under the .$“morphisms
E, X E,— A sending (e, e,) to eaer'e,a”le;* for the various ac A.
So D= D'N(E, X E,),, is closed in E, x E,, and it is clearly a
subgroup. Let A4, denote the set of all elements (a, a) with a ¢ A.
Then A, is a closed subgroup of A x A, which is a closed subgroup
of F, x K, so A, is closed in E, X E, and so also in D. Also, A4, is
a normal subgroup of D. Write F' for D/A,. The map ¢— (¢, 14,
is a Z-isomorphism of C onto a closed normal subgroup of F. Let
7: FF— H be the Z-morphism induced by the restriction to D of the
Z-morphism (E, X E,),,,, — H sending (e, ¢;) to og,(e,) = g,(e,). We
claim that 7 is surjective. For this, let he H. Choose (e, e, €
(B, X H,),,,.,, With o,(e)) = 0,(¢,) = h. Then the conjugations by e,
and ¢, on A differ by an inner automorphism of A, say eae;' =
e.aaa; ‘e for all a € A, with a, some element of A. Replacing e, by
e,a,, we have (e, ¢,) € D and 7((e, ¢,)A4,) = h, showing that 7 is surjec-



EXTENSIONS OF PRO-AFFINE ALGEBRAIC GROUPS 201

tive. If (e, ¢,) € D and o,(¢;) = 1, then ¢, € A so also ¢, € A and ¢;%, € C.
But then (e, ¢,)A4,€C. So C is equal to the kernel of z and we have
an extension [C, F, H]., which is casily seen to induce 7,.

Finally, we obtain an equivalence isomorphism [C, F, H]. B
[4, E, H], — [A, E, H],, as follows: The .”-morphism (D x E\);,, —
E,, where \(e, ¢,) = o0,(e,) = 0,(e,) for (e, ¢,) € D, given by (e, ¢, &,)—
e.e'e, is easily seen to be a homomorphism, i.e., a &-morphism (we
note that e'e, € A because o,(¢,) = 0,(¢,)). It is constant on the cosets
mod the closed normal subgroup A, X 1 of (D x E\);,. It therefore
induces a Z-morphism (D x E,);,/(A,x1)— E,, i.e., (D/A,X E\).,,,— E,.
The kernel of this map contains C° so it induces a “-morphism
(F' x K., /C"— E, which is easily seen to give the desired equi-
valence. This completes the proof of the proposition.

Next we wish to admit some of the results of [3] which have
to do with the functorial properties of Ext. We will exhibit the
results we need and those definitions which are not obvious, and
omit the proofs.

First, suppose that G, 4, B, and C are objects of 27, with A, B,
and C abelian. Suppose that the homomorphisms 7: G — Aut. (4),
¢ G— Aut, (B),and v: G — Aut, (C) make A, B, and C into G-groups.
Suppose further that

fed 3

1—A—B—(C—1

is a short exact sequence of <-morphisms and that we have

giaa)} = a®(g)al})
and

Y(g{BD)} = Bg) b))

for all @ in 4, b in B, and ¢ in G. In this situation we shall say
that 1—+-A4—->B—-C—1 is an exact sequence of G-groups (which
happen to be abelian). It was shown in [3] that we have an exact
sequence of homomorphisms

HYG, A) —> HYG, B) —> H'G, C)
— S Ext(G, A) — Ext (G, B)— Ext (G, )

(where we suppress 7, ¢, and v in the notation). The H’s are the
(obvious) groups of equivalence classes of those 1-cocycles which are
also .&“-morphisms.

To define the map H¥G, C) — Ext (G, A), suppose that f:G—C
is a l-cocycle and also an .¢“-morphism. Dencte by E; the set of
all elements (b, g) of the semidirect product (B-G), for which B(b) =
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f(g). Then E; is a closed subgroup of (B-@G).. The restriction «
to E; of the canonical &-morphism (B-:G).— G is surjective, and
its kernel coincides with the image of A under the injective &-
morphism A — (B-G), sending each a in A to (a(a), 1). This gives
an extension [4, E,, G]. which, in fact, induces 7. After several
verifications, one sees that this defines a homomorphism HYG, C) —
Ext (G, A).

To define the maps Ext (G, 4) — Ext (G, B) and Ext (G, B) —
Ext (G, C), suppose, more generally, that M and N are two abelian
G-groups, say via homomorphisms 6:G — Aut, (M) and & G—
Aut, (N). Suppose that A»: M — N is a morphism of G-groups. If
[M, E, G]. is an extension inducing 4, denote by M° the set of all
elements (\(m), m™!) of the semidirect product (N- E).. where m e M.
Then M° is a closed normal subgroup of (N-FE).., and we denote
(N-E)../]M® by E,, We denote by =x, the surjective Z-morphism
E,— G for which 7,((n, e)M,) = w(e) for every » in N and ¢ in E.
The map 7+ (n, 1)M° is then a Z-isomorphism of N onto the kernel
of m; and this gives an extension [N, E,, G],, called the kernel shift
of [M, E, G]. with respect to N. One easily verifies that [N, E,, G].,
induces ¢ and that this gives a homomorphism Ext (G, M, 6) —
Ext (G, N, ).

We summarize the assertions, for later reference, in a proposition.

PROPOSITION 2.2.1. Giwven a short exact sequence

1 A B Cc 1

of morphisms of abelian G-groups, the sequence

HYG, A)— HYG, B)— H'(G, C)
— Ext (G, A) — Ext (G, B)— Ext (G, C)

described above 1s exact.
Proof. See [3].

Next we examine the variance of Ext in its other argument.
Suppose that G and V are objects of &, V abelian, and that »: G —
Aut, (V) makes V into a G-group (we shall not need the more
general treatment given in [3] for arbitrary V, not necessarily
abelian). Let K be a closed normal subgroup of G. Denote by V¥
the set of all elements of V which are left fixed by each 7n(k) with
ke K. Then V¥ is a closed subgroup of V, being the intersection
of inverse images of 1 under the .S“-morphisms V — V sending v to
n(k){v}v™ for the various k in K. It was shown in [3] that we
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have an exact sequence of homomorphisms

(0) — HYG/K, V*) — HYG, V) — H(K, V)*
— Ext (G/K, V¥)— Ext« (G, V) — H(G/K, H(K, V)) .

Again we suppress in the notation the actions of K, G, and G/K on
various groups, it being understood that all of these arise naturally
from the action of G on V. If we denote by ZYK, V) the abelian
group of all l-cocycle .&”-morphisms K — V, then G operates on
Z\K, V) by (g-f)k) = n(g){f(97'kg)} = g-f(¢g7'kg). This action sta-
bilizes the group BYK, V) of 1l-coboundary .S”-morphisms K — V, so
induces an action of G on H¥K, V), and H'K, V)¢ denotes the fixed
part of H'K, V) with respect to this action.

The first two maps HY(G/K, V¥) > HYG, V) — HYK, V)¢ are just
the usual inflation and restriction.

To define the map HYK, V)¢ — Ext (G/K, VX) which is called
the transgression, let fe ZYK, V). Write V.K for (V-K),x, and
denote by K, the set of all elements (f(k), k) of V-K where ke K.
Denote by N; the normalizer of K; in V.G = (V-G),. Then both
K; and N; are closed subgroups of V-G@. Now one can show that
the restriction to N, of the canonical Z-morphism V-G — G is
surjective if and only if the class of f in HYK, V) is G-fixed.
Assuming it is, this surjection induces a surjective Z-morphism
07: N¢/K; — G/K. The Z-isomorphism V¥ — V.G sending each v in
VE to (v, 1) is easily seen to take values in Ny, so it induces a Z-
morphism V¥ — N;/K;. One jverifies that this is injective and that
it identifies V¥ with the kernel of 4, so that we have an extension
[ V¥, N¢/K;, G/K];,, which induces the same G/K-group structure on
VX as is naturally induced by 7. After many verifications, one sees
that this defines a homomorphism HYK, V)% — Ext (G/K, V).

To define the map Ext (G/K, V¥*) — Ext, (G, V), whose range is
the set of equivalence classes of extensions of V by G inducing 7
which are K-split, let [V%, E, G/K], be an extension inducing that
action which is naturally induced by . We lift this to the exten-
sion [ V%, E', G]., where E’ is the fiber product E X, .G, 7: G — G/K
the canonical map, and 7’(e, g) = g for all (¢, g) in E’. Then we
apply the kernel shift with respect to the morphism V% —V of G-
groups, obtaining the extension [V, E”, G]... where E” is the quotient
of (V-E"),. by the closed normal subgroup (V¥*)’ consisting of all
elements (v, v™') where v € V%. The verifications here are very easy,
and show that this defines a homomorphism Ext (G/K, V*)—Ext (G, V)
which actually takes values in Ext. (G, V).

Finally, to define the map Extx (G, V) — HYG/K, H(K, V)), and
describe what its range is, let [V, E, G]. be an extension inducing
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7 and suppose that it is K-split, i.e., that there is a Z-morphism
A K — E such that w(Mk)) = k for every k in K. Then, using X\,
we may identify the inverse image of K in E with V-K so that
w(v, k) =k for ve V, ke K. Since this is a closed normal subgroup
of F, we have an E-group structure 7: EF— Aut.(V-K) on V-K
by conjugations within £. We also have a G-group structure p:
G — Aut, (V, K) where p(9){(v, k)} = (7(9){v}, gkg™") for ve V, ke K,
and ge€G. We define a funection f:FE — Aut, (V-K) by f(e) =
Y(e) o p(mw(e™?)) for e in E. Then in fact f(e) belongs to the subgroup
A of Aute (V-K) consisting of all Z-automorphisms which induce
the identity automorphism on both V and (V-K)/V. We denote by
V* the subgroup of A consisting of all conjugations on V-K by
elements of V, and then A/V* is naturally isomorphic with the
group HY K, V). If A is made into an (abstract) E-module by
¢ = o(m(e))opopo(m(e™)) for ec K, e A, then f: E— A is in fact
a l-cocycle. The action of F on A/V*, induced by that of E on A,
factors through G via 7, and this coincides with the usual action
of G on HY(K, V). This, in turn, factors through G/K via 7. Now
one puts ge) = f(e)V* so g: E— A/V# = HYK, V), and then ¢ is a
1-cocycle. This, in turn, factors through G/K, inducing a l-cocycle
h: G/K— HYK, V). The map Exty (G, V)— HYG/K, H(K, V)) sends
the class of [H, FE, G]. to the class of h. One must beware that,
although HYK, V) consists of equivalence classes of 1l-cocycle .&7-
morphisms, it does not in general carry a structure of object of &7
and HYG/K, H'(K, V)) consists of equivalence classes of arbitrary
1-cocycles G/K — H'(K, V). We summarize this for later reference
in a proposition.

ProprosITION 2.2.2. Let V, G, and K be objects of & where K
18 a closed mormal subgroup of G and V is an abelian G-group.
Then we have an exact sequence of abelian group homomorphisms.

(0)— HYG/K, V¥*)— HYG, V)— HYK, V)*
— Bxt (G/K, V) — Extz (G, V) — HYG/K, H(K, V))
where the group HY(K, V) consists of equivalence classes of 1-cocycle

F-morphisms while H'(G/K, H\(K, V)) consists of equivalence classes
of arbitrary l-cocycles.

Proof. See [3].
Next we examine how (parts of) the exact sequences of Proposi-

tions 2.2.1 and 2.2.2 fit together with the situation of Proposition 2.1.
First suppose that A, B, and G are objects of & and that
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a: A B is a Z-morphism. Suppose that 7: G — 0(4) and p: G-
O(B) are homomorphisms. Let A, and B, denote the centers of A
and B, respectively, and suppose that a(d)< B. Let 7:G—
Aut (4,) and p,;: G — Aut (B,) be induced by » and p¢ and suppose
that these make A, and B, into G-groups. Suppose also that the
restriction of @ to A, is a morphism of G-groups so that it yields a
homomorphism Ext (G, 4,) — Ext (G, B,) of abelian groups.

Now suppose that [A4, F, G]. is an extension inducing 7. This
gives rise to an E-group structure 7: £ — Aut., (A) on A by conjuga-
tions within E. Suppose we are given an E-group structure o: ¥ —
Aut. (B) such that

o(e){a(a)} = a(v(e){a}) for e in E, a in A
o(a){b} = a(a)ba(a)™ for ¢ in A, b in B

and such that ¢ induces the homomorphism p¢: G — O(B). Then we
may construct an extension [B, M, G], inducing g and making a
commutative diagram

as follows: Let A° denote the subset of (B-FK), consisting of all
elements (a(a), a™*) with ¢ in A. Then A° is a closed normal sub-
group of (B-E);,, and we put M = (B-D),/A’. The Z-morphism
(B- K); — G sending each (b, ¢) to w(e) induces a surjective Z-mor-
phism o: M — G. The Z-morphism B — M sending each b in B to
(b, 1A° is a Z-isomorphism of B onto the kernel of . This gives
an extension [B, M, G] which is easily seen to induce #. We define
M E—- M by Me) = (1, e)A° for ec E, and then )\ is a Z-morphism
making the above diagram commute. We call [B, M, G], the kernel
shift of {A, E, G]. along « and with respect to 4.

Suppose [A4, E, G]., @, and ¢ are as above, and [B, M, G], is the
kernel shift as above. We wish to show that for any extension of
A, by G inducing 7,, we may operate with this extension on [4, F, G].
and take a kernel shift or we may take kernel shifts of both [4, E, G].
and this extension of A, by G and then operate, and thereby obtain
equivalent extensions of B by G.

Let [4,, P, G]. be an extension inducing n,. We write [4, E', G].. =
[4, P,G). B[4, E, G]., where ' = (PXK). ./A! and 7'((p, e)A)) = 7(e)
for all p in P, ¢ in E, and the map A— E’ sends each a¢ in 4 to
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(1, a)A). Define 7': B’ Aut. (4) by 7' ((p, e)A}) = 7(e), which is a de-
finition because A, is contained in the kernel of 7v. Then one easily
sees that 7' makes A into an E’'-group. Next define ¢': £’ — Aut. (B)
by &' ((p, 6)AY) = d(e), also a definition because A, is contained in the
kernel of 6. One easily sees that we have

o'(eHa(a)} = a(Y(e)a}) for ¢ in E', o’ in A
0"(a){b} = a(a)bala)™ for a in A, b in B

and that ¢’ induces p: G — O(B), while 7' induces 7: G — O(4). So
we may consider the kernel shift of {4, E’, G].. along @ with respect
to ¢’. Let us denote this by [B, M’, G],.

On the other hand, we may take the kernel shift of [A4,, P, G].
along a,: A, — B,.  Let us denote this by [B, @, G],, where @ =
(By* P)uye/ A}y -+« ete.

PROPOSITION 2.3. In the motation introduced above, the two ex-
tensions [B, @, Gl., B [B, M, G}, and [B, M, G],, are equivalent.

Proof. For notational convenience, we will write X X, ,Y rather
than (X X Y)., for a fiber product of X and Y with respect to
maps £ and o of X and Y, respectively, into some third space, both
here and subsequently. We must produce an equivalence Z-isomor-
phism

[(B,* P)uyel All Xeyo [(B - E)[A°) Bl — (B - (P X.,- E[A))y[A° .

Using the assumptions on & in a straightforward manner, this map
may be constructed by the recipe ((b,, p)A, (b, €)A")B!— (b,b, (p, €) AN A°
where b, e B, pe P, be B, and ec K.

Now suppose A and G are objects of < and 7: G — O(4) is a
homomorphism. Let C denote the center of A and %,: G — Aut (C)
the homomorphism induced by 7. Suppose that 7,(G) < Aut. (C)
and that v, makes C into a G-group. Let H be an object of & and
w: H— G a Z-morphism (not necessarily injective or surjective).
Then we have a group homomorphism Ext (G, C, ,) — Ext (H, C, n,w)
and a set map Ext(G, 4, n)— Ext(H, 4, nw), although the set
Ext (G, A, ) may be empty.

Suppose [4, E, G]. is an extension inducing 7. Denote £ X. ,H
by E“ and put w“(e, h)=~h for all (e, h) € E“, so the map Ext (G, 4, n)—
Ext (H, 4, nw) sends the class of [A, E, G]. to that of [4, E“, H]...

Now suppose [C, M, G], is an extension inducing 7,. Put M =
MX,.,H and o“(m, h) = h for all (m, h) e M“, so the homomorphism
Ext (G, C, n,) — Ext (H, C, n,») sends the class of [C, M, G], to that
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of [C, M*, H],,-

Next put E, = (M X, .E)/C® and n,((m, ¢)C°) = o(m) = n(e) for
(m, €)C°c E, (well-defined because C is contained in the kernel of
both ¢ and 7). Then we have [A, K, G]., = [C, M, G], B [4, E, G]..
Put E¢ = E, X.,.H and =n?(e, h) = h for all (e, h)e EY. Then the
map Ext (G, 4, 7) — Ext (H, A, nw) sends the class of [A, E,, G]., to
that of [A, E?, H]: ..

PROPOSITION 2.4. In the motation introduced above, the two ex-
tenstons [C, M*, H],. B [A, E°, H].o and [A, E?, H]., are equivalent.

Proof. We need an equivalence Z-isomorphism
(M XKoo H) Xoo,z0 (B Xeyo H) oo = (M X, B)/C°) X0 H

which is obtainable from the recipe ((m, h,), (e, h,))C°— ((m, €)C°, h.h,)
where me M, ec K, h, h,€ H. '

PROPOSITION 2.5. Suppose A and G are objects of &, A 1is
abelian, and the homomorphism 7:G — Aut, (A) makes A into a
G-group. Suppose A has closed subgroups A, and A, both of which
are stable under (@) and such that A is equal to the direct product
A, X A,. Then we have an isomorphism Ext (G, A, n)=Ext (G, 4,, 5,) X
Ext (G, A,, 1,), where 1,;: G — Aut, (4,) ts the homomorphism induced
by 7 and taking restrictions, for 1 =1, 2.

Proof. By Proposition 2.2.1, the short exact sequeuces

7

1 A A P4 1

Le— AP A A1
of abelian G-groups give rise to exact sequences

Ext (G, 4, 7,) —— Ext (G, 4, 7) —— Ext (G, 4,, 7,)
Ext (G, A, 7)) <2— Ext (G, A, 7) —— Ext (G, 4, 7,) .

One easily sees that Boa and Yo6 are equal to the identity maps
on Ext (G, 4,, »,) and Ext (G, A,, 7,), respectively. For example, if
[4,, E,, G]., induces 7,, then G-« sends its class to that of the ex-
tension [Au (AL ° ((A ° Ex)vnl/Ag))vlr:/Aor G]n' where 7 (A * El)ﬂrl/Ag —G
sends (a, ¢,)A} to w(e,). An equivalence Z-isomorphism of this to
the extension [4,, E,, G]., is obtainable from the recipe (a,, (@, €,)A)A"—

api(a)e,.
It follows that a and 6 are injective and that £ and v are sur-
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jectiue. Now one sees immediately that the homomorphism

Ext (G, 4, 7,) ¥ Bxt (G, 4, 1) % Ext (G, 4, 7)

is an isomorphism.

6. Character groups of pro-affine algebraic groups. Throughout
this section we will assume that the field F' is algebraically closed,
but we do not specify its characteristic. If (G, P(G)) is a pro-affine
algebraic group over F, we denote by G the group of all rational
homomorphisms G — F'* under valuewise multiplication. If (H, P(H))
is another pro-affine algebraic group over F' and a: G — H a rational
homomorphism, the map &: H — G defined by @(¢) = goa for g H
is a homomorphism. These definitions make ~ a functor from the
category of pro-affine algebraic groups over F to the category of
abelian groups.

An element of G is, in particular, a polynomial function G — F,
i.e., an element of P(G). If 7: P(G)— P(G) P(G) denotes the co-
multiplication in P(G), then G is precisely the set of group-like
elements of P(@), i.e., the set of all nonzero elements ¢ of P(G) for
which 7(¢) =9 ®¢. If a:G— H is as above, then & is just the
restriction to H of the Hopf algebra homomorphism «': P(H) — P(G)
induced by a.

Because the group F'* is reductive and abelian, the kernel of
any rational homomorphism G — F'* contains the subgroup G,G’ of
G which is generated by the unipotent radical G, of G and the
algebraic hull G' of the commutator subgroup of G. G,G' is a
normal algebraic subgroup of G and the canonical map G — G/G,G'
is universal, in the obvious sence, among rational homomorphisms
from G into reductive abelian pro-affine algebraic groups over F.

So we see that G is isomorphic with G//GTG’. It is therefore natural
to consider the restriction of = to the full subcategory of all reduc-
tive abelian pro-affine algebraic groups over F.. We will see that this
restriction is a contravariant categorical equivalence onto the category
of all abelian groups without p-torsion, where p is the characteristic
of F. If p =0, " is an equivalence onto the category of all abelian
groups.

Suppose (G, P(G)) is a reductive abelian pro-affine algebraic group
over F. Let F[@] denote the group algebra of G over F. It con-
tains G as an F-basis, and multiplication is defined in the obvious
way in terms of the group multiplication in G. We make F[@]
into a Hopf algebra defining the comultiplication 7, antipode %, and
counit ¢ by
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YL fid) = > fz¢z X ¢;
NS figs) = 2 Fi97
(X i) = > fie

The map F[@] — P(G) obtained by extending the inclusion G — P(G)
by F-linearity is easily seen to be a Hopf algebra homomorphism.
It is well-known that distinet homomorphisms from a group to the
multiplicative group of a field are independent functions over that
field, so the above map is injective.

To see that the above map is an isomorphism, we observe that,
since P(G) is a rational module for the reductive abelian group G,
Schur’s lemma implies that P(G) is a sum of l-dimensional G-sub-
modules. If Fu is a 1-dimensional G-submodule spanned by u, it is
easy to verify that (1/u(e))u belongs to G, where e denotes the
identity element of G. This proves the following proposition.

PROPOSITION 3.1. Let (G, P(@)) be a reductive abelian pro-affine
algebraic group over F. Then the natural Hopf algebra homomor-
phism F[G]— P(G) is an isomorphism.

Let p denote the characteristic of F, and let (G, P(G)) be as in
the above proposition. Then if p = 0, the abelian group G has no
p-torsion. To see this we simply observe than if gzse@, then ¢* =1
if and only if the image of ¢ is contained in the group of nth roots
of unity in F* and the only (p™th root of unity in F* is 1 for
every positive integer m. This shows that ~ is a functor from the
category of reductive abelian pro-affine algebraic groups over F to
the category of abelian groups without p-torsion.

Now we proceed to define a functor inverse to ~, which we will
denote by ~. Let X be any abelian group without p-torsion, or just
any abelian group if » = 0. Let F[X] denote the group algebra of
X over F. We wish to show that F[X] is reduced, i.e., that it
contains no nonzero nilpotent elements.

If p=#0, let » = 3 fix, be a nilpotent element of F[X], where
f,eF and z,€X. Then A\** =0 for some positive integer k. Now
A= S f72?* and the x?° are distinct because the homomorphism
X — X sending each 2 to 2?* is injective since X has no p-torsion.
So we must have that each f?* = 0, and hence each f, = 0, i.e., A = 0.

If p =0, again let » = >, fiz, be a nilpotent element of F[X].
If X’ is the subgroup of X generated by the x,’s, we have a natural
inclusion F'-algebra homomorphism F[X'] — F[X] and e F[X']. So
we may assume that X is finitely generated. Then X = A X B
where A is a finite abelian group and B is a product of finitely many
copies of the integers. So we have an F-algebra isomorphism
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F[X] = F[A]l @, F[B]. 1t is a classical result that F[A] is a simi-
simple F-algebra and hence isomorphic with a direct F-algebra sum
of finitely many copies of F, in fact |A|] copies. Thus F[X] is a
direct F'-algebra sum of finitely many copies of F[B]. Now F[B]
is isomorphic with the F-subalgebra F|zx, z%, ---, x,, ;'] of the
rational function field F(«,, ---, x,), so it is an integral domain.
This shows that F[X] is reduced.

Now make F[X] into a Hopf algebra, defining the comultiplica-
tion 7, antipode 7, and counit ¢ by

YL fa) = 2 f @
77(212901) = > fai!
(3L fiw) = 20 fi

If 4. F[X]— F is any F-algebra homomorphism, its restriction to
X is a group homomorphism X — F'*. Conversely, given any group
homomorphism X — F'*, its extension to F[X] by F-linearity is an
F-algebra homomorphism F[X]— F. This correspondence gives a
bijection from the set < (F[X]) of all F-algebra homomorphisms
F[X]— F to the set Hom (X, F'*). One easily checks that this
bijection is a group homomorphism, where < (F[X]) carries the
group structure coming from the Hopf algebra structure of F[X]
and Hom (X, F'*) carries that of valuewise multiplication. We denote
Hom (X, F'*) by X. Then by Theorem 2.1 of [6] and the above
identification, we have that ()v(, F[X]) is the structure of a pro-
affine algebraic group over F which is clearly abelian. If ze X,
o e X, then viewing « as an element of F[X], one easily checks that
we have o-x = o(x)x. So F[X] is the sum of 1-dimensional stable
submodules for the action of X by left translations, and hence
(X', F[X]) is a reductive abelian pro-affine algebraic group over F.
Suppose p: X — Y is a homomorphism of abelian groups without
p-torsion. Then p gives rise, uniquely, to an F-algebra homomor-
phism F[X]— F[Y] which is easily seen to be a homomorphism of
Hopf algebras. One can check directly that under the above identifi-
cations, the induced homomorphlsm Z(F[Y]) — £ (F[X]) corresponds
to the natural homomorphism Y- X sending a homomorphlsm Y- F*
to its composition with p. We denote this homomorphism Y- X by
0. Now one easily checks that this makes ~ a functor from the
category of abelian groups without p-torsion to the category of
reductive abelian pro-affine algebraic groups over F.
With Proposition 3.1, one can see immediately that the functor
is naturally equivalent to the identity functor on the category
of reductive abelian pro-affine algebraic groups over F.

v oA~
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To see that ~°” is naturally equivalent to the identity functor
on the category of abelian groups without p-torsion, one merely has
to check that for an abelian group X without p-torsion, the elements
of X are the only group-like elements of the Hopf algebra F[X].
But an element 7, fix, of F[X] is group-like if and only if it is
nonzero and >, fix, Q@ x, = 3¢, fifie, Qx;. It is easily seen that
this requires that all the f,’s are zero except one, which must equal
1, So we have the following theorem.

THEOREM 3.2. The functor =~ 1is a contravariant categorical
equivalence from the category of reductive abelian pro-affine algebraic
groups over F to the category of abelian groups without p-torsion,
where p is the characteristic of F. The functor ~ is a two sided
inverse to =

One easily sees that a reductive abelian pro-affine algebraic
group (G, P(@)) over F is affine (i.e., P(G) is finitely generated as
an F-algebra) if and only if the abelian group G is finitely generated.
So our contravariant categorical equivalence carries the full sub-
category of reductive abelian affine algebraic groups over F' onto
the full subcategory of finitely generated abelian groups without
p-torsion.

Also, one easily sees that a pro-affine group (G, P(G)) as above
is connected if and only if G is torsion free, and that G is totally
disconnected, i.e., pro-finite, if and only if G is a torsion group.
So if (G, P(G)) is as above and G, denotes the identity component
of (G, then the exact sequence

1 G, G G/G, 1

corresponds, via =, to the exact sequence

A A P
1 G, G G/G, 1

N\ ~ N
and the map G/G, — G is easily seen to map G/G, isomorphically onto
the torsion subgroup of G.

7. Applications. We may use the character theory to provide
three counterexamples. We will see that there exists an extension [4,
B, C]. of (connected) pro-affine algebraic groups over F for which there
is no polynomial map 7:C— B with 7o7 equal to the identity on C.
We will see that the identity component of a reductive abelian pro-
affine algebraic group over F need not be a direct factor, i.e., have
an algebraic group complement. Finally, we will see that there is an
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extension [A4, B, C]. of (connected) pro-affine algebraic groups over
F' such that there exists an abstract homomorphism 7:C — B with
woY = 15, but there is no rational homomorphism, in fact no poly-
nomial map, M: C— B with wo7 = 4.

We begin with a lemma.

LEMMA 3.3. Let X be a torsion-free abelian group, and K any
field. Then the units of the group algebra K[X] are precisely the
elements of the form kx, where ke K* and x e X.

Proof. If > kx, is a unit in K[X] with inverse >’ l;5;, we may
replace K[X] with its K-subalgebra K[X'] where X’ is the subgroup
of X generated by the x,’s and the y,’s. So we may assume that
X is finitely generated, hence a free abelian group of finite rank.

Now we have K[X]= K|z, 2%, -+, ©,, ;'] Where the z,/s are
algebraically independent over K. Let w be a unit of K[X] ane »
its inverse. We may write w = a/s and v = b/t where a and b are
in K[x,, ---,z,] and s and ¢ are monomials in z, ---, z, (with non-
negative exponents). Then ab = st and it follows immediately from
unique factorization in Kz, ---, x,] that a is ¢ K-multiple of a
monomial in «,, ---, x,, which gives the required form of u.

Now we can prove the following proposition.
PROPOSITION 3.4. Let

T

*: 1 A B C 1

be a short exact sequence of rational homomorphisms of reductive
abelian pro-affine algebraic groups over F with C connected. Sup-
pose there exists a polynomial map o: C— B such that woo equals
the identity map on C. Then there exists a rational homomorphism
v: C— B such that oY equals the identity map on C.

Proof. Write Z=A, Y=B, and X = G. Then * induces, via
~, an exact sequence

. le—Ze— Yt xe—1

and the Hopf algebra sequence associated to * is the sequence

1 ——F[Z] — F[Y] <~ F[X]—1

induced by *.
Let ¢": F[Y]— F[X] be the F-algebra homomorphism induced
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by 0. For yeVY, o¢/(y) is a unit in F[X]. Since C is connected, X
is torsion-free, and we have o¢'(y) = My)9(y) with My)e F* and
9(y) € X. Because ¢’ is an algebra homomorphism, we have

X(yu Y)Y, Ys) = 0’(?/1?/2) = 01(?/1)0’(?/2) = k’(yl))’(yZ)’?(yl)’?(yz) .

This implies, in particular, that ¥: Y — X is a homomorphism. Be-
cause Toog = 1,, we have ¢'on’ = 4,4, so that Y(@(x)) =« for all
xc€X. Now the rational homomorphism \: C — B induced by ¥ will
suffice, for we have wo7 = 1,.

Now if we find an extension

0 X Y Z—0

of torsion-free abelian groups which is not split, we will obtain, by
the above proposition, an extension

1— Z—Y—X—1

of connected abelian reductive pro-affine algebraic groups over F' for

which no rational cross-section X — Y exists. Such examples abound,
and one is given by

0 b3 T /X 0

where 7 is the direct product of a countably infinite number of
copies of the integers and X is the corresponding direct sum, viewed
as a subgroup of © in the natural way. This extension is not split
because, for example, the element (1!,2!,3!,--:)+ 3 of x/Y is
divisible by every positive integer and no nonzero element of 7 has
this property.

Next, if we find an abelian group X without p-torsion whose
torsion subgroup X, is not a direct summand, we will obtain a

reductive abelian pro-affine algebraic group X over F whose identity

component (X\/f(t) has no algebraic group complement. For this we
may take X to be the product [[,., Z/qgZ of one copy of each cyclic
group of order a prime ¢ not equal to ». Then X, is the corre-
sponding sum .., Z/gZ. Then X, is not a direct summand because
X/X, is divisible while X contains no nontrivial divisible subgroup.

The identity component G, of a reductive abelian pro-affine alge-
braic group G over F' is certainly a direct factor if either G, is
injective or G/G, projective in the category of reductive abelian
pro-affine algebraic groups over F. An object H of this category
is injective (projective) if and only if H is projective (injective) in
the category of abelian groups without p-torsion. It follows that



214 BRIAN PETERSON

the injectives H are the products I7,F'* of copies of the multiplica-
tive group of F (over arbitrary indexing sets) while the projectives
H are the products (IT,F*) x (II,H, where F* is the universal
covering group of F'* (whose Hopf algebra is F'[x'/": n € Z]) and each
H, is isomorphic to the additive group Z, of g-adic integers for
some prime q #* p.

A consequence of the following lemma is that any extension
[4, B, C]. of reductive abelian pro-affine algebraic groups over F
with A connected is abstractly split. Hence any such extension
which is not algebraically split provides our third counterexample.

LEMMA 3.5. Let D, form an inverse system of divisible abelian
groups with homomorphisms ¢, Dy — D, when o < 8. Suppose
that for each « and each positive integer m, D, contains only finitely
many elements of order m. Then the imverse limit D = lim D, is

a

divisible.

Proof. Let 2 = (x,)eD and let m be a positive integer. Say
that each D, has n, elements of order m. For each «, let 4, =
{y.€ D,|yz = x,}. Then A, has n, elements. Put B, = Nsza Ga.s(As)-
We claim that each B, is nonempty. Suppose some B, = 4. There
exist indices B, -+, B,, = @ with ¥y, ¢ ¢.,(4,,) where y,, ---,y,, are
the elements of 4,. Choose 8= 8, ---, B,,. Then ¢,,(4;) = ¢, which
is absurd. So B, # 4.

Now, by the projective limit theorem of [7], lim B, is nonempty.
If yelim B,, then y™ = . ‘

a

Theorem 7 on page 18 of [9] asserts that if the torsion subgroup
of an abelian group is of bounded order, i.e., if the orders of its
elements are bounded, then it is a direct summand. An abelian
group X (without p-torsion) is of bounded order if and only if X is
of bounded order. This gives the following proposition.

PROPOSITION 3.6. Let G be a reductive abelian pro-affine alge-
braic group over F with identity component G,. If G/G, is of
bounded order, then G, has an algebraic group complement in G.
In particular, this holds if G is affine.

8. Simply connected groups. Throughout this chapter, F will
be a fixed algebraically closed field of characteristic 0, and all pro-
affine algebraic groups and varieties are defined over F. We will ex-
hibit the universal properties which simply connected groups possess,
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and then investigate the question of the existence of cross-sections.

PROPOSITION 4.1. Let A, B, and H be connected pro-affine alge-
braic groups with H simply conmected. Suppose w: A— B is a
group covering and 7: H— B is a rational homomorphism. Then
there exists a wunique rational homomorphism p: H— A such that

71'01![:77,

Proof. Let 7 and « denote the restrictions to the fiber product
H X, . A of the projections of H X A to the first and second factor,
respectively, so both v: HX,.A— H and a: H X,.A— A are ra-
tional homomorphisms. 7 is surjective because 7« is surjective and
the kernel of v is the subgroup 1 X K of H x A where K is the
kernel of m. This group is pro-finite. Because H is connected, the
restriction 6 of v to the identity component G of H X, . A is surjec-
tive. The kernel of 6 is G N (1 X K) which is pro-finite, so 6:G— H
is a covering. Since H is simply connected, ¢ is an isomorphism,
so we may put ¢ = ao0~'. Then p satisfies the requirements of the
proposition.

THEOREM 4.2. Let A, B, and H be connected pro-affine algebraic
groups (over F) with H simply connected. Suppose w: A— B is a
group covering and 7: H— B is a polynomial map. Then for each
h in H and a in A with n(h) = w(a), there is a unique polynomial
map t: H— A such that wopt =7 and ph) = a.

First we observe that it will suffice to show that there exists
some polynomial map p: H — A such that wop =17, If such a map
1t is given and ke H and a € A satisfy 7(h) = n(a), define p: H— A
by ¢/(h") = p(h)pe(h)'a for A’ in H. Then wop! =5 and (k) = a.
If ropp =mop =9 and p(h) = t/'(h) = a, then the map H — A sending
each A’ in H to ph")/(h')™* is a polynomial map from H to the
kernel of 7. But the image of a connected pro-affine algebraic group
(or variety) under a polynomial map is easily seen to be connected
(i.e., its polynomial algebra is an integral domain). Since p(h)g/'(h)*=1,
this implies that g = p/.

We will first prove the result in the affine case. The proof will
proceed under slightly weaker assumptions to facilitate handling the
general case.

LEMMA 4.3. Let H, A, B, 7, and 7 be as in Theorem 4.2 and
assume that H, A, and B are all affine. Then there is a polynomial
map p: H— A such that wopu = 7.

Proof. To begin, we do not assume H is simply connected, but
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merely connected. Let C denote the set of elements (h, a) of H x 4
for which 7n(h) = w(a) and let 7 and « denote the restrictions to C
of the canonical projections of H x A onto the first and second
factor, respectively. Then, clearly, C is an algebraic subset of
H x A and 7 and « are polynomial maps. 7 is surjective because
7 is, and we have Toa = 7o,

Let the kernel K of 7@ operate on H x A by multiplication in
the second factor (note that K is central in A and C is stable under
this operation). Let us write k-(h, a) = (h, ka) for k in K and (h, a)
in H x A. ‘

' We will write P(V) for the polynomial algebra of any affine (or
pro-affine) algebraic variety V and &' for the map P(U)— P(V)
induced by a polynomial map a: V— U.

Let C,, ---, C, be the maximal irreducible closed subsets of C,
so C= ., C,. For each 4, the Zariski closure 7(C,) of ¥(C, is an
irreducible closed subset of H and H = J¢,7(C,). Since H is con-
nected, i.e., irreducible, we have H =7(C,) for some 1%, say H=7(C,).

For each 7, let v, and «; be the restrictions to C, of ¥ and «,
respectively. Then 7i: P(H)— P(C,) is injective because H = 7,(C).
P(H)R P(A) is generated over F' by P(H) and P(A4), and it follows
that P(C)) is generated over 7i(P(H)) by ai(P(A)). Also each element
of a;(P(A)) is integral over a(z'(P(B))) = 7.(%'(P(B))) < vi(P(H)).
Thus P(C,) is integral over 7Yy(P(H)). This shows that 7, is a finite
dominant morphism in the sense of [9]. It follows from the proposi-
tion on page 31 of that book that 7,(C,) = H and that 7, is a closed
map.

Next we show that P(C)) is an unramified extension of v;(P(H))
(cf. [3]). For this, let M be a P(C)-module and 0: P(C)— M a
derivation with do7; = 0. View M as a P(A)-module via a). Then
doay: P(A)— M is a derivation and doajon’ = 6o7;on’ = 0. Because
P(A) is an unramified extension of #'(P(B)), we have doa; = 0. So
0 vanishes on v;(P(H)) and on a;(P(4)). These generate P(C,), so we
have 6 = 0 and thus P(C) is an unramified extension of Y(P(H)).
We now have that for each element of C, sent by 7, to the identity
element of H, there is a unique structure of affine algebraic group
on C, having that element as the identity and such that 7, is a
group covering.

Finally, we assume that H is simply connected, so that 7, is
an isomorphism (choosing an identity element for C,). We put p =
a, 077" and then p satisfies the requirements of the lemma.

Continuing the discussion preceding the last paragraph of the
proof, we observe that K permutes the C,’s and since 7, is surjec-
tive it is clear that C = U,.x k- C.. So for each 4, there is a &, in



EXTENSIONS OF PRO-AFFINE ALGEBRAIC GROUPS 217

K with C;,=Fk;-C, and K permutes the C;’s transitively. Since 7,
is a group covering, all the fibers of v, (over the various points of
H) have the same cardinality ». Since, for each ¢, 7, coincides
with the map 7,08, where §,: C;, — C, sends each ¢, in C; to ki'-¢,
and 0, is a variety isomorphism, all the fibers of 7, have cardinality
n. It follows that the C,’s are mutually disjoint. Indeed, we have
ng = >0, |77 (h)| for every h in H. If the C;s are not mutually
disjoint, we have that ng = >0, |v7'(R)| > |77(h)] = | K| for some
h in H. Then we have that >, |7:*h)| > |7 %h)| for all » in H.
From this we see that Y(U,.;(C;N C;) = H, contradicting that
dim (U;.; (C; N Cy)) < dim (C) = dim (H).

We see also now that for each ¢ and each element of C, sent
by 7, to the identity element in H, there is a unique structure of
affine algebraic group on C; having that element as the identity
such that 7, is a group covering.

Proof of Theorem 4.2. We begin by choosing a, in A with
7(a,) = p(1). Given any finitely generated Hopf subalgebra R of
P(A), let S= (7')"(R) and let T be the smallest Hopf subalgebra
of P(H) containing 7'(S). Since 7’ is injective, we may view S as
the intersection of R with the Hopf subalgebra P(B) of P(A). The
proof of Proposition 3.1 of [3] shows that R is an integral unramified
extension of S, and a finitely generated S-module. So we may apply
the well-known Artin-Tate lemma. (¢f. Theorem 1.13 of [8]) to con-
clude that S is finitely generated as a F-algebra. Since the smallest
Hopf subalgebra of a Hopf algebra containing a given finitely gen-
erated subalgebra is finitely generated as an algebra, T is also
finitely generated. We have commutative diagrams

P(A) A
AN AN
! R z AR
P(H)\ _PpB) 2 H—"' B %5
T “—~*7‘—‘> S \H 7 By
Tp R

and 7, is a covering of affine algebraic groups.

Let (a,)r denote the image of a, in A,. Define C*C H, X A,
CE, YR, ¥R, aF, af as in the proof of Lemma 4.3, and fix notation so
that (1, (a)z) belongs to C:. We endow C? with the structure of
affine algebraic group having (1, (a,);) as identity such that 7Z is a
covering. Because H is simply connected, there is a unique (surjec-
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tive) rational homomorphism 7;: H— Cf making a commutative
diagram

Define g = 7o (af): R — P(H). Then we have
MroTr = Tpo)A) oy = Tpo (V) oW = 7 -

Now suppose R, and R, are two finitely generated Hopf sub-
algebras of P(A) with R, C R,. To make the notation more manag-
able, we will use 7, for 7+ =1,2, as a subscript or superscript
wherever analogy with the above would require using R,, S; or T,
as a subscript or superscript. We have a commutative diagram

2
2 !
¢ 4y
1
2 o A 1
1
v

1

H, B,

N

where o¢: C?— C} is defined as follows: Let 7: H, X A,— H, X A, be
the canonical map. Then & carries C® into C' and each component
of the former into some component of the latter. Since (1, (a),)=
A, (a),), & induces a map o:C?— Ci making the above diagram
commute.

We will now show that ¢ is a homomorphism. Define 4: C? X
C:— C} by 0z, y) = o(x)o(y)o(xy)™ . Then 7i(6(z, y¥)) = 1 for every
2 and ¥ in C2, so 6 is a polynomial map from C? X C} to the kernel
of 7. Since the former is irreducible and the latter finite, 6 is
constant. Because (1) = 1, we have 0(x, y) = 1 for every x and y
in C% so o is a homomorphism. So the unicity of 7, shows that
the following diagram commutes.
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2

and so, in -particular, does

a2
)

2),

P(C3)

B,

P(H)

(aly
P(Ch !

1 -

So the restriction of f; to R, coincides with g. Thus the g’s
together define an F-algebra homomorphism y¢': P(A) — P(H). Since
troTy = Ny for every R, we have ffon’ =7'. Let p: H— A be the
induced polynomial map. Then 7o = 7, and the theorem is proved.

Now we turn to the question of the existence of cross-sections.
Suppose [K, G, H]. is an extension of pro-affine algebraic groups
(over F').

A cross-section is a polynomial map o: H— G such that z7oo is
the identity map on H. We will show that if H is simply connected
a cross section-exists. We will obtain as a corollary the same result
when K is unipotent. So we assume [K, G, H]. is as above with H
simply connected. Let K, be a maximal reductive algebraic sub-
group of K and let G, be a maximal reductive algebraic subgroup
of G containing K,. Then H, = n(G,) is a maximal reductive alge-
braic subgroup of H and we have two extensions of pro-affine alge-
braic group [K,, G, H,]., and [K,, G,, H,]., where 7, and =, are the
obvious restrictions of w. Cross-sections for these two extensions
give a cross-section for [K, G, H]. in the obvious manner. So we
have reduced to the cases where all the groups are unipotent or
all are reductive, and we still have that H is simply connected in
either of the two cases, by virtue of Theorem 5.2 of [3].

If all the groups are reductive, G may not be connected but
the identity component G, of G is mapped onto H by = because
H is connected. So we may assume that G is connected (then so
is K because H is simply connected). Let C/(G), C,(H), G, and H’
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be as in Lemma 1.1, so that H = C(H) X H'. We have extensions
[K N C(®), G(G), C(H)]. and [KNG', G, H'].,, where we use the
symbol = by abuse of notation. So in the case where all the groups
are reductive we reduce further to the two cases where all are
abelian or both G and H are semisimple, i.e., inverse limits of
semisimple affine algebraic groups.

9. The reductive abelian case. Let H be a simply connected
reductive abelian pro-affine algebraic group over F. Then H is torsion-
free and by considering the diagrams

F*

n

H—?

where q}efl and the positive integer n denotes the nth power map,
we see that H is divisible. Now if [K, G, H], is an extension of
reductive abelian pro-affine algebraic groups with H simply con-
nected, then H is divisible so it is a direct summand of G and the
extension [K, G, H], is split by a rational homomorphism. In par-
ticular, a cross-section exists.

10. The unipotent case. If (G, A) is any pro-affine algebraic
group (over F' as above), the Lie algebra <(G) of G consists of all
differentiations 6: A—F, i.e., F-linear maps 6 for which d(fg)=0(f)e(g) +
e(f)o(g) for all f and ¢g in A where ¢: A — F' is the counit of A (or
the identity element of G). The bracket [d, ¢] of d and ¢ in ¥ (G)
is (0®e— @)oY where 7 is the comultiplication in A. For each
finitely generated Hopf subalgebra S of A, we have the restriction
map Z(G) — £(Gs), where Gy = £(S), and £ (G) is clearly equal
to the inverse limit of the <“(Gs)’s. The projective limit theorem
may be used to show that each restriction map £(G) — FL(Gy) is
surjective.

If 7:G— H is a rational homomorphism, the differential z: &< (G)—
& (H) is defined via the map 7’: B— A where B is the polynomial
algebra of H.

Suppose (G, A) is a unipotent pro-affine algebraic group. Let
ps: G— Gy, D02 Gr— Gy, Dyt L(G)— L (Gs) and .t L (Gr)— L (Gs)
denote the obvious restriction maps when S and T are finitely gen-
erated Hopf subalgebras of A with S T. Then p% and %, are
the differentials of »y and 25, respectively. By Theorem 10.1 of
[8] we have an isomorphism
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eXpgg: & (Gs) — G

of affine algebraic varieties where the polynomial algebra of &£ (Gy)
is generated as an F-algebra by the linear functions & (Gg) — F.
By Theorem 10.2 of [8], we have ps°exps, = €Xpy opyr. If we
give to & (G) the structure of pro-affine algebraic variety coming
from the representation &°(G) = lim &°(G), the above shows that

S
we have an isomorphism

expy: L (G) — G

of pro-affine algebraic varieties satisfying p;cexp; = expy ops for
all S as above. Let log, denote the inverse of exp,. We see that
A is generated as an F-algebra by functions of the form Mo p%olog,
where S is as above and M (Gy) — F is a linear funetion.

Now let [K, G, H]. be an extension of unipotent pro-affine alge-
braic groups. We have a commutative diagram

1— K — G - H —51

1ogKHepr loggHexpa IogHHepo

0—-—»%(K)——>$(G)—KO—>$(H)—+O.

We will choose a linear map o' & (H) — £ (G) such that n°-0° is
the identity map on < (H). Then we will put ¢ = expgoo°clog,
and woo will coincide with the identity map on H. However, some
care must be taken to insure that ¢°, hence also o, is a polynomial
map. Let A and B denote the polynomial algebras of G and H,
respectively. Then A is generated by elements of the form \op%olog,
where S is a finitely generated Hopf subalgebra of 4 and »: & (Gs)—F
a linear function. If, for each such function, there is a finitely
generated Hopf subalgebra T of B and a linear function p: & (Hy)— F
such that o p%oo® = ttoq}, where ¢}: & (H)— & (Hy) is the canonical
map, then it will follow that ¢ is a polynomial map.

If L is an inverse limit of finite dimensional vector spaces Lg,
denote by LF the space of all linear functions L — F which factor
through one of the canonical maps L — L,. L* may be viewed as
the direct limit of the spaces dual to the Lg’s. Let (L*)° denote the
full dual of Lf. It is easily seen that the natural map L — (I*)°
sending each element of L to the evaluation at that element is a
linear isomorphism.

In our situation, it is clear that < (H)*oxn® is contained in
ZL(G), so w° induces an injective linear map zn*: L (H)* — L (G).
Let o%: &P(G) — < (H)* be a linear map such that o*o7w* equals the
identity map on & (H)*. Let ¢% L (H)— < (G) be the map induced
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by o* via the identifications . Z(H) = (L (H)*® and £ (G) = (L (G)¥?°,
80 7T°00° = 14m. Then we have that < (G)*-0° is contained in
Z(H)*, which is precisely the condition cited above which shows
that ¢ = expso0°-log; is a polynomial map, and woo = 7.

The semisimple case. Let [K, G, H]. be an extension in which
G and H are connected and semisimple and H is simply connected.
We reduce further to the case where G is also simply connected.
Let p: G’ — G be a universal covering of G and let K’ be the kernel
of 7op. Then we have an extension [K', G', H].., where G’ and H
are both semisimple and simply connected. Following a cross-sec-
tion for this extension by the map p gives a cross-section for
[K, G, H].. So we may assume that G is simply connected. We
will show that G has a unique normal algebraic subgroup such that
the restriction of 7 to this subgroup is an isomorphism.

Let A and B denote the polynomial algebras of G and H, re-
spectively. If S is a finitely generated Hopf subalgebra of A, let
qs: G5 — G5 be the universal covering of Gy given in §3 of [4].
Then G is semisimple affine algebraic group whose polynomial alge-
bra we denote by S’. Since G is simply connected, there is a unique
rational homomorphism 7:G— G5 such that ¢go7r = pg, Wwhere
ps: G — G is the restriction homomorphism. It follows that » is
surjective, so we may view S’ as a Hopf subalgebra of A. Thus
A is equal to the union of its finitely generated Hopf subalgebras
S with the property that (Gg S) is simply connected. The same is
true of B.

Suppose SC A as above and that (Gs, S) is simply connected.
View the map #’: B— A as an identification, i.e., view B as a Hopf
subalgebra of A, and let T = BN S. Then T is finitely generated
and we have a commutative diagram

G H

| |

s

We wish to show that H, is simply connected. Suppose H; — H, is
a covering (which implies that H7 is an affine algebraic group).
Because Gy is simply connected, we get a commutative diagram
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and the map Gy— H:; is surjective. This gives a commutative
diagram

by which we may view the polynomial algebra 7' of H, as an in-
tegral unramified extension of 7 in S. We must show that 77 = T.
We will show that 7'B is a profinite extension of B in A. If V is
a finitely generated Hopf subalgebra of B containing T, then T'V
is clearly an integral extension of V. There is a natural surjection
D(TYQ@,;V— Dy(T'V) for which (i Q¢ + J)® v is sent to t;Q
t2w=2J, where D (T")=T" @, T'/J, and D, (T'V)=TV@, T'V/J,
are the spaces of Kaehler differentials. Since D, (T") = (0), we also
have D, (T'V) = (0). So T'V is an integral unramified extension of
V. By Theorem 4.3 of [3], this shows that T"B is a profinite ex-
tension of B. Now, because (H, B) is simply connected, we have
T"B= DB, ie., "cB. Thus "cBNS=T1T, soT =T and H, is
simply connected.

Let S and T be as above. Then &(Gy) is a finite dimensional
semisimple Lie algebra over F, so it has a unique ideal with the
property that the restriction of zn%: £ (Gs) — £ (H,) to this ideal is
an isomorphism. This ideal is semisimple, hence algebraic (cf.
Corollary 13.4 of [8]). Because H, is simply connected, there is a
unique rational homomorphism o4 H; — G5 whose differential o¢%
coincides with the inverse of the above isomorphism by Theorem 3.1
of [4]. Then o4(H;) is the unique normal algebraic subgroup of Gy
such that the restriction of 73 to o4(H;) is an isomorphism. In view
of the unicity, it is clear that limgo,(H,) is the unique normal alge-

braic subgroup of G such that the restriction of 7 to this subgroup
is an isomorphism, where S ranges over the finitely generated Hopf
subalgebras of A for which (Gg, S) is simply connected. This com-
pletes the proof of the following theorem.

THEOREM 4.4. Let [K, G, H]. be an extension of pro-affine alge-
braic groups over an algebraically closed field of characteristic 0
and suppose that H is simply connected. Then there exists a cross-
section, i.e., a polynomial map o: H— G such that woo equals the
identity map on H.

We saw that in the reductive abelian case, the extension was
split. After reducing the semisimple case to the case where G was
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also simply connected, we saw that in that case too the extension
was split. The nature of that latter reduction makes it clear that
the same is true without it.

If [K, G, H]. is an extension where H is reductive and simply
connected, we may choose K, and G, as above with K, C G, and then
7(G,) = H. Then, replacing G, with its identity component and K,
with its identity component, we get extensions [K,NC/(G,), C(G,),
C.,(H)]). and [K,NG,, G,, H]. as above and both are split. Since
C.(G,) is central in G,, the extension [K,, G,, H]. is split. Hence so
is [K, G, H].. So our proof of Theorem 4.4 also proved the following
theorem.

THEOREM 4.5. Let [K, G, H]. be an extension of pro-affine alge-
braic groups over an algebraically closed field of characteristic 0
and suppose that H is reductive and simply comnected. Then the
extension ts split.

Next suppose that [K, G, H], is an extension in which K is
unipotent. Then K is contained in the unipotent radical G, of G.
By the above theorem, since H, is simply connected, there is a cross-
section for the extension [K, G,, H,].,. If G, is a maximal reductive
algebraic subgroup of G, then the restriction of # to G, is an iso-
morphism onto a maximal reductive algebraic subgroup of H. The
inverse of this isomorphism together with the cross-section for
[K, G., H,]., gives a cross-section for [K, G, H].. This proves the
following corollary.

COROLLARY 4.6. Let [K, G, H]. be an extension of pro-affine
algebraic groups over an algebraically closed field of characteristic
0 and suppose that K 1is unipotent. Then there exists a cross-
section.

The existence of cross-sections makes possible a deseription of
group extensions in terms of rational cohomology. This is most
practical in the case of an abelian kernel. Let A and H be pro-
affine algebraic groups (over F') with A abelian and let 7: H—
Aut (4) be a homomorphism making 4 an H-group. We denote by
C"(H, A) the set of all rational n-cochains for H in A, i.e., the set
of all polynomial maps H X --- X H (n copies) — A, for each posi-
tive integer n and we put C%(H, A) = A. Then we have the usual
boundary operator o: C*(H, A) — C"*'(H, A) whose kernel we denote
by Z"(H, A) and whose image we denote by B (H, A). We have
B*(H, A)c Z~(H, A) for » = 1, as usual. Each B"(H, A), Z"(H, A),
and C*(H, A) is an abelian group under valuewise multiplication.
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Just as with abstract groups, we have an injective homomorphism
Z*H, A)/B*(H, A)— Ext (H, A, 7) .

The image of this homomorphism consists of the classes of extensions
of A by H inducing 7 for which there exists a cross-section. So
if H is simply connected or A is unipotent (i.e., an inverse limit of
finite dimensional vector groups) the above map is an isomorphism.

If, in the above situation, A is a finite dimentional vector group,
we have a natural identification

C*H, A) = A® P(H")
where P(H") = P(H)® --- ® P(H) (n copies).

11, Reductions of Ext. We will use the tools we have accumu-
lated to make several reductions for the problem of computing Ext
in the category of pro-affine algebraic groups over an algebraically
closed field F' of characteristic 0. Modulo the question of the ex-
istence of extensions, Proposition 2.1 reduces our problem to the
case of an abelian kernel. If A is an abelian pro-affine algebraic
group over F, the unipotent radical A, and maximal reductive alge-
braic subgroup A4, of A are both stable under all rational automor-
phisms of A. So by Proposition 2.5 we reduce to the cases in which
the kernel is abelian and reduective or abelian and unipotent.

With Proposition 2.3 of [5], it is easy to see that if A is a
reductive abelian pro-affine algebraic group over F, then any alge-
braic subgroup of Aut(A) is totally disconnected.

Suppose that A and H are pro-affine algebraic groups over F
with A abelian and reductive, and that 7: H — Aut (A) makes A into
an H-group. Since the unipotent radical H, of H is connected, H,
operates trivially on A. Thus H'H,, A) = Hom (H,, 4) = (0) and
A%s = A, Also, an easy application of the structure theory with
respect to unipotent and reductive subgroups shows that Ext (H,, 4A)=
(0), so Exty, (H, A) = Ext (H, A) (we suppress 7 in the notation).
So Proposition 2.2.2 shows that the inflation homomorphism is an
isomorphism Ext (H/H,, A) — Ext (H, A).

If we choose a maximal reductive algebraic subgroup H, of H,
we obtain a commutative diagram of isomorphisms

Ext (H/H,, A)— Ext (H, A)
AN /
N
Ext (H,, A)

where each map is a lifting homomorphism associated with one of
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the three natural maps H — H/H,, H.,— H, and H, — H/H,.

(We have not spelled out the definition of a lifting homomor-
phism, but it is just like the inflation homomorphism. If A4 is an
abelian H-group and o: G — H a rational homomorphism, the lifting
homomorphism sends the class of [4, E, H], to that of [4, E X.,.G, G],,
where 7' is the restriction to E X.,G of the projection of £ X G
onto the second factor. If ¢ is the inclusion of an algebraic sub-
group G of H, then E X.,G may be identified with 77 %(@&).)

Now let H and U be pro-affine algebraic groups over F' with U
unipotent and let »: H— O(U) be a homomorphism. Let C denote
the center of U and 7, H— Aut (C) the map induced by . Sup-
pose that Ext (H, U, ») is nonempty, which implies that 7, makes C
into an H-group.

Because Ext (H, U) is nonempty, by choosing a cross-section for
some extension of U by H inducing 7 we obtain a polynomial map
7':H— Aut (U) of H into an algebraic subgroup of Aut (U) such
that %’ followed by the canonical map Aut(U)— O(U) coincides
with 7. We may arrange that 7'(1) is the identity automorphism
on U.

If xeH and ¢ =1[U, E, H,].,. is an extension inducing the re-
striction 7, of 7 to H,, let x-& denote the extension [U, E, H,l.,.-,
where @, = a-7'(x)™* and 7,(e) = 2m(e)x* for ¢ in E. One can easily
verify that « - & induces 7, for each x in H and that 1-¢& =§&. For
x and y in H, the map %'(x) 7' (y) o7’ (xy)™" is an inner automorphism
of U, say 7'(x)o7'(y)on'(xy)~" = C; where C; is the conjugation by
the element # of U. If we use C; also to denote the conjugation
on E by the element a(#) of E, then one can easily verify that C;
gives an equivalence of extensions (xy)-&—x-(y-£&). So we have
an action of H on Ext (H,, U) such that each x in H sends the class
of each & as above to that of x-& We leave to the reader to verify
that this action does not depend on the choice of the polynomial
map 7’ lifting 7 as above.

If x belongs to H,, we may choose ¢ in E such that w(e) =
and ea(u)e™ = a(n'(x){u}) for each w in U. Then the map E— FE
sending each ¢, in F to eee™ gives an equivalence of extensions
x-&— & So the above action factors through H/H,.

Suppose that [U, E', H], . is an extension inducing 7. The
lifting map Ext (H, U) — Ext (H,, U) sends its class to that of & =
U, E, H,).,. where E = n"'(H,) and « and © are the obvious maps.
For  in H, we may choose ¢ in E’ such that #'(¢’) =« and
ea’(u)e)™ = a’®(x){u}) for each w in U. Then the map E—FE
sending each ¢ in E to €'e(¢’)™ gives an equivalence of extensions
x-&— & So the image of Ext (H, U) under the lifting map is con-
tained in the H-fixed part Ext (H,, U)¥ of Ext (H,, U).
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We specialize first to the case where U = A is abelian. The
following two propositions will show that if we assume further that
A is affine, then the lifting homomorphism is an isomorphism

Ext (H, 4, 7) —> Ext (H., 4, 7).

PROPOSITION 5.1. In the above sttuation with A a wunipotent
affine H-group, the image of the lifting homomorphism coincides
with Ext (H,, 4, 7.)".

Proof. We have a natural action of H on each C*(H,, A) =
AR P(H?) for which each x in H sends each a @M@ -+ Q@ N\, to
Na)a} @ @A) @ -+ @ (@-N,) where (x-M)(y) = Ma7'yz) for ) in
P(H) and y in H,. This action of H on C"(H, A) stabilizes
Z™"H,, A) and B*H,, A). Itis easy to verify that under the identi-
fication Ext (H,, A) = Z¥(H,, A)/B*(H,, A), the above two actions by
H coincide. Each C"(H,, A) is a rational representation module for
H, i.e., a sum of finite dimensional rational representation modules
in the usual sense.

Let H, be a maximal reductive algebraic subgroup of H. Because
H_ is reductive, it follows that all of its rational representations
are semisimple. So there is an H,-stable subspace S of Z*H,, A)
such that Z*H,, A) = B*H,, A) P S.

Now suppose that ¢ = [A, E, H,]... is an extension inducing 7,
whose class is H-fixed. This class determines a unique element f
of S and, because the class in H-fixed, we have x-f = f for every
2 in H,. Via f we may identify F with A x H, endowed with the
group structure given by (a;, %)@ %) = (@Y} (Y Yo)s Y.Ye)-
Then « sends each a in A to (af(1,1)™Y, 1) and & projects onto the
second factor. Put E' = A X H, x H, and define a composition in
E by

(@ Yy 2@y Yor %) = (@Y 3T (W 25277, Yu(@09:25 ), T,2,) -

One may verify that this makes F’ a pro-affine algebraic group over
F. The identity element is (f(1, 1)7%, 1, 1) and the inverse of (a, ¥, x)
is 'y HafA, Df(y, y )} 2 'y e, ). Define 't A — E' and
n': B — H by &(a) = (af(, 1), 1,1) and 7n'(a, ¥, ) = yx for a in A,
y in H,, and = in H,. Then both are rational homomorphisms and,
in fact, & =[A4, E', H], . is an extension inducing 7. The verifica-
tions are straightforward. One now easily sees that the class of &
is sent by the lifting homomorphism to that of £&. This completes
the proof.

This argument extends easily to the case where A is a product
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of finite dimensional H-groups. If A is any unipotent abelian pro-
affine H-group and if H, operates trivially on A4, then one can show
that A is H-isomorphic with a product of finite dimensional H-groups
so that we obtain the same result. But for now we must leave
open the question of whether this extends to an arbitrary unipotent
abelian pro-affine H-group.

PROPOSITION 5.2. Under the same assumptions as in Proposi-
tion 5.1, the lifting homomorphism is tnjective.

Proof. By Proposition 2.2.2 we have an exact sequence
Ext(H/H,, A") — Exty,, (H, A)— H'(H/H,, H(H,, A))

where Ext, (H, A) is the kernel of the lifting homomorphism. We
have that Ext (H/H,, A®») = (0) because H/H, is reductive and A%«
is unipotent. So it will suffice to show that the image of Ext, (H, A)
in H(H/H,, H(H,, A)) is trivial.

The action of H/H, on HY(H,, A) comes as follows: For any =z
in H and any l-cochain f: H,— A we define z-f: H,— A by (x-f)(y) =
n(x) (@ yx)}). This gives an action of H on C'(H,, A) which stabi-
lizes ZY(H,, A) and B*(H,, A), so induces an action of H on H'(H,, A)=
ZYH,, A)/B'(H,, A) which factors through H/H,. With the identi-
fication C'(H,, A) = A P(H,), this corresponds to the usual action
described in the proof of Proposition 5.1. This shows that H'(H,, A)
is a rational H/H,module. '

We call a rational 1-cocycle d: H/H, —» H'(H,, A) admissible if
its image lies in a finite dimensional subspace of H(H,, A). If dis
a l-coboundary, then it is clearly admissible. Let Z.\(H/H,, H (H,, A))
denote the group of admissible 1-cocycles and put HY(H/H,, H(H,, A))=
Z\WH/H,, H(H,, A))/B*(H/H,, H(H,, A)). It is well-known that for
any reductive affine (and hence pro-affine) algebraic group over F
and any finite dimensional rational representation module for that
group, H' of that group in that module is trivial. OQur H? is
defined so as to make that result easily extend. So we have
H\(H/H,, H(H,, A)) = (0).

We will now show that the image of Ext, (H, A) is contained
in Hy(H/H,, H'(H,, A)) which will complete the proof. Any exten-
sion of A by H inducing » which is H,-split may be represented by
a 2-cocycle fe Z* H, A) which satisfies f(y, z) = 1 for y and z in H,.
Given such an f, for  in H define g(x): H,— A by g)(y) =
flx, x7'yx)f(y, )™ for y in H,. One can verify that g(x) is a 1-
cocycle H, — A and that for y in H,, g(yx) and g(x) differ by a 1-
coboundary H, — A. So g defines a map H/H,— H'(H, A) which
may be shown to be a l-cocycle. Tracing through the definition of
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the map Ext, (H, A)— H'(H/H,, H'(H,, A)), one can verify that the
class of the extension represented by f is sent to the class of this
l-cocycle. The map (x, y) — g{x)(¥) is given by an element of AR
P(H,) ® P(H) and it is clear that as x ranges over H, the maps
g(x) span a finite dimensional space of functions H,— A. This shows
that the image of Ext, (H, A) is contained in H\(H/H,, H'(H,, A)).

Now let H and U be pro-affine algebraic groups over F with
U unipotent and let 7: H— O(U) be a homomorphism such that
Ext (H, U, n) is nonempty. This implies that the induced homomor-
phism 7,: H — Aut (C), where C is the center of U, makes C into
an H-group. We have faithful transitive actions of Ext(H, C) on
Ext (H, U) and Ext(H, C) on Ext(H,, U), where we omit the
various maps induced by 7 in the notation.

If » and ¢ are extensions representing elements of Ext(H,, C)
and Ext (H,, U), respectively, then one can verify that z- (A B 2&) =
x-NMBex-p It follows from the fact that the action of Ext (H,, C)
on Ext(H,, U) is faithful and transitive that if the class of g is
H-fixed, then Ext (H,, U)” is equal to the set of classes of N H p
where A ranges over a set of representatives for the elements of
Ext (H,, C)Z.

Now suppose that C is affine. Then the lifting homomorphism
Ent (H, C) — Ext (H,, C)¥ is an isomorphism. It follows immediately
from Proposition 2.4 that the lifting map Ext (H, U) — Ext (H,, U)#
is a bijection, so we have proved the following theorem.

THEOREM 5.3. In the wnotation introduced above, where U 1is
unipotent and the center C of U is affine, +f Ext(H, U) is non-
empty, then the lifting map Ext(H, U)— Ext (H,, U)? is a bijec-
tion. In particular, this holds +f U is a unipotent affine algebraic
group over F and Ext (H, U) is nonempty.

Let us return now to the reductive situation. If A and H are
reductive pro-affine algebraic groups over F and A is an abelian
H-group via the homomorphism %: H — Aut (A), then the identity
component H, of H is contained in the kernel of 7. The tools we
have at hand do not lend themselves to computing Ext (H, A) in
terms of Ext (H, A), Ext (H/H,, A), --- ete. Therefore, we assume
that H is connected, so that every extension of A by H is central.
Let w: L — H be a universal covering for H with kernel K. Then
K is a central subgroup, so from Proposition 2.2.2, with the help
of Theorem 4.5, we have an exact sequence

Hom (L, A) — Hom (K, A) — Ext (H, A) — (0) .
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Let Hom (L, A)x denote the image of Hom (L, A) in Hom (X, A), i.e.,
the group of all rational homomorphisms K — A which extend to
rational homomorphisms L-—A. We have the following proposition.

PROPOSITION 5.4. Let A and H be reductive pro-affine algebraic
groups over F with A abelian and H connected. Let w:L — H
be a universal covering of H with kernel K. Then Ext (H, A) =
Hom (K, A)/Hom (L, A)g.

Suppose in the above proposition that H is semisimple, i.e., that
C,(H) is trivial. Then L is semisimple as well, so Hom (L, A) = (0)
because A is abelian and L is equal to the algebraic hull of its
commutator subgroup. This gives the following corollary.

COROLLARY 5.5. If A and H are pro-affine algebraic groups
over F with A reductive and abelian and H semisimple, then
Ext (H, A) = Hom (K, A) where K is the fundamental group of H,
1.6., the kernel of a universal covering of H.

Now suppose, in Proposition 5.4, that A is equal to a product
11, F'* over some indexing set S of copies of F'*. Then A is injec-
tive in the category of reductive ablian pro-affine algebraic groups
over F. Now L =C(L)x L' as in Lemma 1.1, and we have
w(C(L)) = C(H) and ('Y= H'. Put D=C(H)NH and M=
Kn@ x L'), so M is the kernel of the restriction of w to L/, i.e.,
the fundamental group of H’. The restriction homomorphism
Hom (K, A) — Hom (M, A) is surjective because A is injective in the
category of reductive abelian groups. I/, hence also M, is contained
in the kernel of any rational homomorphism L — A, so Hom (L, A)x
is contained in the kernel of the restriction homomorphism
Hom (K, A) — Hom (M, A). '

Now let 4: K — A be a rational homomorphism whose restriction
to M is trivial. Put E = C(L)N w*(D). Via the projection of
C,(L) x L' onto the first factor, we obtain an isomorphism K/M — E.
So there exists a rational homomorphism ¢: £ — A such that (x, )=
#(x) for all (x, y) in K. Now ¢ extends to a rational homomorphism
é: C(L)— A by the fact that A is injective, as above. Define
¢ L =C(L)x L' - A by ¢, y) = @) for all (x,y) in C(L) x L'.
The restriction of ¢ to K coincides with +, so we have proved the
following proposition.

PROPOSITION 5.6. If A is a product [, F* of copies of F* and
H 1is a connected reductive pro-affine algebraic group over F, then
Ext (H, A) = Hom (M, A) where M is the fundamental group of H',
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the algebraic hull of the commutator subgroup of H. In particular,
this holds tf A is a connected reductive abelian affine algebraic
group over F.
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