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PRIMITIVE EXTENSIONS OF ARONSZAJN SPACES

THOMAS M. PHILLIPS

The concept of a primitive representative of a primitive
sequence is used to describe an internal property of a space
which permits the construction of a model for a completion
of an arbitrary completable Aronszajn space. It is shown
that all the members of countable collection of completions
of a given space contain a copy of a single completion of
this form.

1* Introduction* A regular To space having a base of countable
order is called an Aronszajn space while a regular To space having
a λ-base (or equivalently a monotonically complete base of countable
order) is called a complete Aronszajn space. Using the terminology
in §2.2, it can be shown that a regular To space is a (complete)
Aronszajn space if and only if it has a (complete) Aronszajn sequence
or equivalently a (complete) primitive Aronszajn sequence. An Aro-
nszajn space S which is homeomorphic to a dense subspace of complete
Aronszajn space X is said to be completable and X is called a com-
pletion of S. (When convenient to do so, the words "homeomorphic
to" are ignored in the usage of this definition.) The first example
of a noncompletable Aronszajn space was given in [7; Theorem 8].
More recently, additional examples have been found as corollaries
to other investigation. In particular, every Aronszajn space which
does not contain a dense metrizable subspace (hence every nonseparable
Aronszajn space in which there do not exist uncountably many
mutually exclusive open sets) is noncompletable. Thus the spaces in
[7; Theorem 1] and [8; Theorem 1] are also noncompletable Aronszajn
spaces. The space X constructed in [5; Theorem 3] and the space
A in [4] are other examples of particular interest since the former
is separable and the latter is metacompact.

In this paper the so-called "primitive concepts" of Wicke and
Worrell are used to describe an internal property of a space which
permits the construction of a model for a completion of an arbitrary
completable Aronszajn space. This work was motivated by the efforts
of Alzoobaee [1], Green [2], Reed [6], and Whipple [9] to establish
sufficient (and in some instances, necessary) conditions under which
a Moore space has a completion or a semicompletion.

2* Preliminaries* It is assumed that the reader is familiar
with the theory of primitive sequences and the related terminology
found in [11]. The definitions presented in [11] will not be duplicated
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here. The following additional terminology and notation will be used
throughout this paper.

NOTATION 2.1. N denotes the set of positive integers and (S, τ)
denotes a regular To space. If G is a sequence of collections of
subsets of a set X, then D(G) denotes the set of all decreasing
representatives of G. If G is a primitive sequence of M in X, then
P(G) denotes the set of all primitive representatives of G. If K is
a well-ordered collection of sets and u is a subset of some element
of K, then K(u) denotes the first element in K which contains u. If
u = {P}, then K(P) denotes Kin).

Terminology 2.2. (1) Suppose / is a sequence of subsets of a
space X. If $ is a point of X every neighborhood of which contains
a term of /, then / is said to converge to x. A sequence h of subsets
of X is coarser than / (or / is finer than h) provided every term
of h contains a term of /. If / is finer than h and coarser than h,
then / and h are said to be equivalent. If U Q X and for each
n9 fndU Φ 0 , then / is said to intersect U.

(2) If Γλ and Γ2 are collections of sequences of sets, then Γx

is said to be finer than Γ2 (or Γ2 is coarser than ΓJ if each element
of Γx is finer than some element of Γ2. If /\ is finer than Γ2 and
coarser than Γ2, then /\ and Γ2 are said to be equivalent.

( 3 ) If G is a sequence of collections of sets and Γ(G) is a collection
of representatives of G, then a set ?7 is said to be Γ{G)-embedded
in a set V if F contains a term of every element of Γ(G) which
intersects U.

(4) An Aronszajn sequence of S is a decreasing sequence G of
bases for S such that if geD(G) and P6f|?=il/»» then # converges
to P. If each element of D(G) converges in S, then G is said to be
complete.

(5) A primitive Aronszajn sequence of S is a primitive closu-
rewise sequence If of S such that if weP( W) and P e ΠSU w»,
then n? converges to P. If each element of P(W) converges in S,
then W is said to be complete. W is called completing if for each
w 6 P( VΓ) and neN, there is a & 6 N such that wfc is P( TF)-embedded
in wn. A complete primitive Aronszajn sequence of S is clearly
completing.

LEMMA 2.3. // W and V are primitive sequences of a subset M
of a set Xj then D(W) and P(W) are equivalent and if Wn(P) £
Vn(P) for each PeM, then P(W) is finer than P(V).

Proof. These results follow from the definitions and the results
in [10].
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LEMMA 2.4. If S is a subspace of a regular space X and G
(resp. B) is a sequence of bases for X (resp. S), then there is a
primitive closurewise sequence W of S such that Wn Q Bn, P( W) is
finer than D(G)9 and for each w e \JZ=iWn, there is an open set U(w)
in X such that U(w) Π S = w and if PeS and n e N, then

U(Wn+1(P))* Q

Proof. By the proof of [10; Lemma 2.1], there is a primitive
closurewise sequence H of S in X such that Hn £ Gn. For each n,
let Bn be well-ordered. Let V1 = {beB^b is contained in some set
in JffJ be well-ordered so that x ^ y in V1 if and only if (1)
H&XH^y) or (2) H,(x) = Hx(y) and x£y in B,. Then W, =
{Vί(P)\PeS} covers S and WX(P) = V,(P) for each PeS. Let PeS.
Clearly H,{P) ^ H^W^P)). Suppose Ht{P) < H^W^P)). There is a
set b in B, such that Peb and δ S fli(P). Thus fee VΛ and JEΓ̂ ft) =
HIP) < HάWάP)); hence V (P) ^ fe < W,{P). This is a contradiction.
Thus fli(P) = jgr^ίΓ^P)) and TF (P) £ JΓΛP). For each weWi, let
U(w) be an open set in X such that U(w) f) S = w.

If A C S , then Ax denotes the closure of A in X and A denotes
the closure of A in S. Let V2 = {fe 6 B2 \ b is contained in some set
in H2 and some set in W1 and there is an open set u in X such that
u~x £ U( Wλ{b)) and i6 Π S = fe} be well-ordered so that a? ̂  y in F2 if
and only if

(1) H2(x)<H2(y); or
(2) £Γt(flc) = H2(y) and TΓ^) < ^(y) ; or
(3) H2(x) = ίΓ£(y) and TΓ̂ ά) - Wλ(y) and x ^ y in £2.

Then W2 - {F2(P)|PeS} covers S and W2{P) = F2(P) for each P e S .
Let PeS. There exists a set fe in B2 and an open set u in X such
that P e 6 = % n S , r J g C7( Wx(P))f and 6 S ^ ( P ) Π H%(P). Since

= WΊ(6), fe is in F2. An argument like the one in the preceding
paragraph will show that H2(P) = ff,(Wξ(F)); hence W2(P) Q H2(P).
Clearly TF,(P) ̂  ^ ( ΐf2(P)). If WX(P) <Wι{W2{P))i then £Γ2(fe) = H2(P) =
H2(W2(P)) and ^(6) - W£P)< Wι(WΛ(P)) imply that F2(P) ^ 6 <
W2(P) which is a contradiction. So Wt(P) = Wt{W2{P)) and (TF2(P)) £

By definition of V2t there is an open set U{W2{P)) in X such
that C/(TF2(P))X QUiWάWάP))) = ^ ( ^ ( P ) ) and C7(TF2(P)) n S = TF2(P).

This process may be continued to construct a primitive closurewise
sequence W of S such that TF% £ Bn, WJJP) £ fl»(P), and the desired
property for U(w) holds. As in Lemma 2.3, P{W) is finer than

LEMMA 2.5. // i ί is an open primitive sequence of S and for
each ne N, Gn = (Gi);=1 is a primitive Aronszajn sequence of S such
that if U is a neighborhood of PeS and ne N, there is a neighbor-
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hood of P which is P(Gn)-embedded in U, then there is a complet-
ing primitive Aronszajn sequence W of S such that P{ W) is
finer than P(H) and for each n, P(W) is finer than P{Gn) and
if m^n, then Wm+ι(P) is P{Gn)- embedded in Wm{P) for each
PeS.

Proof. Let τ be well-ordered and let V1 — {u e τ \ u is contained
in some set in G\ and some set in i ϊ j be well-ordered so that x <; y
in Vλ if and only if

(1) G\{x)<G\{y)\ or
( 2) G\(x) = G\(y) and Hx{x) < HMl or
(3) G\(x) = G\(y) and Hx(x) = Hx{y) and x ^ y in τ.

An argument similar to that in the proof of Lemma 2.4 will show
that W1 = {Vi(P)|P6iS} covers S and if P e S , then G\{P) = GJ(TFί(P))
and Htf) = H^W^P)) so that W,(P) Q G[(P) n flί(P).

Suppose k e N and Wlf , Wk are well-ordered open covers of
S such that if n <; k, then

(IJ if w 6 W%, there is a point P such that w = T

and if k > 1 and w^fc — 1, then
(I8) TFW+1(P) is P(G*)-embedded in Wn{P) for i = 1, . , n.
Let Vk+1 = {ueτ\u is contained in some set in each of Hk+1, G)c+1,

• , G\%\ and there is a set v in Wfc such that u is PίG^-embedded
in v for i = 1, , fc} be well-ordered so that a? ̂  y in F f c + 1 if and
only if

( Γ) there is an integer i ^ k + 1 such that G{+ι(x) Φ G\+ι(y) and
if j is the least such integer, then Gί+1(x) < G{+ι(y)\ or

(2') Gi+i(a) = GUM for ΐ = 1, •••,& + 1 and
(a) Jfffc+1(a?) < Hk+1{y); or
(b) Hk+1(x) = Hk+ι(y) and the first set u in Wfc in which a; is

P(Gί)-eπibedded for i = 1, •••, fc strictly precedes the first set v in
Wfc in which y is P(GO-embedded for i = 1, , k; or

(c) Hk+ί(x) — Hk+1(y) and ^ = v and x ^ y in r.
Then TΓjb+i = {Vh+ι(P) | P e S} covers S and TF*+1(P) = V4+1(P) for each P e S .
Thus (JJ holds for w = & + l. Let P e S . It again follows as in the proof
of Lemma 2.4 that Hk+ι(P) = Hk+ι(Wk+1(P)) and Gjc+1(P) - Gl+1(Wk+1(P))
for i = 1, , Jk + 1. Thus (I2) holds for n = k + 1. There is a set
w in Vk+1 such that PeuQ Hk+ί(P) Π Π^i 1 G*+i(P) a n d ^ is P(G*)-
embedded in Wk(P) for i = 1, ••-,&. Let it; be the first set in Wk

in which Wk+1(P) is P(GO-embedded for i = 1, , k. Then TΓ^P) ^
w. Note that Gί+1(w) - Gi+i(P) = Gi+1( FΓ4+ι(P)) for i = 1, . . , k + 1
and -fffc+1(^) = Hk+1(P) = ίίfc+1(TΓfc+1(P)). Also note that the first set
in Wk in which t6 is P(Gί)-embedded for i — 1, , k is not preceded
by Tf4(P). Thus if Wk{P) < w, then Vk+ί(P) ^u<Wk+1(P) which is
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a contradiction. So Wk(P) = w. Hence Wk+ί(P) is
in Wk(P) for i = 1, , k and (73) holds for n = k.

It follows that there is a sequence W of well-ordered open covers
of S such that (iiHIs) hold for all n. By (J,), W»+ι(P) £ fl^(P) which,
along with (IJ, implies that TF is a primitive closurewise sequence
of S. By Lemma 2.3, P(W) is finer than P(H) since Wn(P) S fl" (P)
by (J2). Similarly it can be shown that Wn(P) £ G£(P) for i ^ w
implies that P(W) is finer than P(G*) for each i e iSΓ. The fact that
P(W) is finer than PiG1) implies that W is a primitive Aronszajn
sequence of S and, along with (I3), that WΛ+1(P) is P( W)-embedded
in Wn{P). Thus TΓ is completing.

3* Primitive extensions of Aronszajn spaces*

DEFINITION 3.1. Suppose S has a primitive Aronszajn sequence
W and for each x e P(TF), let [x] — {y e P(W)\x and y are equivalent}.
For each U e τ, let i7* = {[#] | U contains a term of x}. Then {f7* | U e τ)
is a base for a topology r* on S* and S is homeomorphic to a dense
subspace of S*. The space (S*, τ*) will be denoted by S$(W) and
will be called the primitive extension of S by W.

THEOREM 3.2. If W is a primitive Aronszajn sequence of S,
then S*(W) is a TQ space having a complete primitive base [12].
Hence if Sp(W) is regular, then it is a complete Aronszajn space.

Proof. For each n, let Wt = {w* | w e Wn] be well-ordered so
that U < V in WZ if and only if the first element u of Wn such that
u* —U strictly precedes the first element v of Wn such that v* = V.
Then W* = TFf, TF2*, has the property in the definition of a complete
primitive base given in [12]. The second conclusion follows from
[12; Theorem 3].

THEOREM 3.3. If W is a primitive Aronszajn sequence of S,
then Sp(W) is a complete Aronszajn space if and only if W is
completing.

Proof. The property in the definition of a completing primitive
Aronszajn sequence of S is easily shown to be a necessary and sufficient
condition for S*(W) to be regular. The result then follows.

THEOREM 3.4. S is a computable Aronszajn space if and only
if S has a completing primitive Aronszajn sequence.

Proof. Suppose S is a completable Aronszajn space and let X
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be a complete Aronszajn space containing S. Let B (resp. G) be a
(complete) Aronszajn sequence of S (resp. X) and let W be as in
Lemma 2.4. Since Wn C 2?%, it follows that T^ is a primitive Aronszajn
sequence of S. Let PeS and ne N and suppose w eP(W) intersects
Wn+1(P). Let # be an element of D(G) which is coarser than w. Since
G is complete, g converges to some point Q e X and Q e T^

£ U(Wn(P)). So U(Wn(P)) contains a term of 0 and hence
Wn(P) contains a term of w. Thus Wn+1(P) is P(ΐF)-embedded in
*PΓn(P) and W is completing.

The converse follows from Theorem 3.3.

COROLLARY 3.5. S is a completable Aronszajn space if and only
if there is an Aronszajn sequence B of S such that if Pe S, then every
neighborhood of P contains a D(B)-embedded neighborhood of P.

Proof. Suppose S is a completable Aronszajn space and let W
be a completing primitive Aronszajn sequence of S. For each n, let
B«, = Ui^nWi. Then B = Blf B2, is a decreasing sequence of bases
for S and by [10; Lemma 2.2], D(B) is finer than P(W). This latter
property implies that B is an Aronszajn sequence of S. Let PeS
and let U be a neighborhood of P. There are integers n and fc such
that Wk{P) is P(WO-embedded in Wn(P) and TΓ»(P) £J7. Since D(B)
is finer than P(T7), Wk(P) is J9(B)-embedded in [7.

Conversely if B is a sequence as described in the corollary and
G is a primitive closurewise sequence of S such that Gn £ !?„, then
G has the property of Gn in Lemma 2.5 and by that lemma, S has
a completing primitive Aronszajn sequence.

REMARK 3.6. By Theorems 3.3 and 3.4, if S is a completable
Aronszajn space, then S has a completion of the form S%W) for some
completing primitive Aronszajn sequence W of S. The example given
below shows that not all completions of S need be of this form.
However, by Theorem 3.8, every completion of S contains a completion
of this form.

EXAMPLE 3.7. There exists a completable Aronszajn space S and
a completion X of S such that X is not homeomorphic to Sp(W)
for any primitive Aronszajn sequence W of S.

Proof. Let Q (the space of all rational numbers), R (the space
of all real numbers) and N have their usual topologies and let S =
N x Q have the product topology. Let ΰ b e a collection of increasing
sequences of positive integers which is maximal with respect to the
property that if x and y are distinct elements of B, then {n\xn — yn}
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is at most finite. B is uncountable. Let X — B U (N x R) be topo-
logized so that N x R has the product topology and for each x e B,
basic open sets about x are of the form U(x; n) = {x} U {(xk, f)\k7>n
and teR} for each neN. X is a complete Aronszajn space having
S as a dense subspace. If W is a primitive Aronszajn sequence of
S, then TPΛ is countable for each n; hence { ^ l ^ e U ^ i W J is a
countable base for S£(TF). Since X is not metrizable, X cannot be
homeomorphic to Sp(W).

THEOREM 3.8. If S is a completable Aronszajn space and X is
a completion of S, then there is a completing primitive Aronszajn
sequence W of S such that Sp( W) is homeomorphic to a subspace of X.

Proof. We will assume that S is a subspace of X. Let B (resp. (?)
be a (complete) Aronszajn sequence of S (resp. X) and let W be as
in Lemma 2.4. As in the proof of Theorem 3.4, W is a completing
primitive Aronszajn sequence of S. Since every element of P(W)
converges in X, the mapping φ from S%(W) into X given by 0([#]).=
lim x is well-defined.

Suppose x and y are elements of P(W) which converge to the
same point P in X. Let neN. Using the notation of Lemma 2.4,
we have that Peyξ+ι QU(yn+ί)

x QU(yn). So U(yn)f hence yn, contains
a term of x. Thus x is finer than y and similarly y is finer than x.
Hence x and # are equivalent and φ is an injection.

Let w e P( W) and let U and V be open sets in X such that
9([w]) € F and Fx £ ί7. There is an w such that wn S F. If [z] e w£,
then Zj £ wΛ for some j hence ^([2]) 6 gf £ wf £ F x £ U. So 9 is
continuous at [w].

Suppose ueτ and [x] e w*. For some n, xnζZu and (̂[cc]) = limx 6
Sί+i SC/fe+ 1)

xSC7fe). If yeP(W) and ^([y]) - l im^e U(xΛ), then
J7(a;J, hence ajn, contains a term of t/. Thus [y] e x* Q u* and it
follows that φ(u*) is open in φ(S}(W)). So φ is a homeomorphism.

COROLLARY 3.9. If S is a completable Aronszajn space and
X19 X2, are completions of S, then there is a completing primitive
Aronszajn sequence W of S such that Sp(W) is homeomorphic to a
subspace of Xn for each n.

Proof. By Theorem 3.8, there is a completing primitive Aronszajn
sequence Gn of S such that S%(Gn) is homeomorphic to a subspace of
Xn. By Lemma 2.5, there is a completing primitive Aronszajn sequence
W of S such that for each n, P(W) is finer than P(Gn) and for
m ^ n9 Wm+1(P) is P((?w)-embedded in WJP) for each P e S .

Let neN and let φ be the mapping from Sp(W) into SP(Gn) such
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that if w eP( W), then ψ([w]) = [g] where g is any element of P(Gn)
which is coarser than w. Since wm+ί is P(Gw)-embedded in wm for
m ^ n, it follows that w and # are equivalent. Hence φ is well-defined
and injective. It is easy to verify that φ is a homeomorphism of
S%{W) into SF(Gn) and hence into Xn.

COROLLARY 3.10. // P is a hereditary topological property in
the class of Aronszajn spaces and S is a completable Aronszajn
space some completion of which has property P, then every completion
of S contains a completion of S having property P.

Question 3.11. For what topological properties P is it true that
if S is a completable Aronszajn space having property P, then S
has a completion having property PI

THEOREM 3.12. If S is a completable Aronszajn space having
either a point-countable base or a σ-disjoint base, then S has a
completion having such a base.

Proof. Let A be a base for S. There is an Aronszajn sequence
B of S such that Bn £ A for each n. As in the proof of Theorem
3.4, there is a completing primitive Aronszajn sequence W of S such
that Wn £ Bn for each n. Then {w* | w e \JZ=iWn} is a base for S^W)
which is easily shown to be point-countable or σ-disjoint according
as A is point-countable or ^-disjoint.

THEOREM 3.13. If S is a locally connected completable Aronszajn
space, then S has a locally connected completion.

Proof. Let A be a base for S consisting of connected sets and
let W be as in the proof of Theorem 3.12. Let θ be the natural
embedding of S into Sp(W). For each we\J™=1Wn, θ(w) is a dense
connected subset of w* so w* is connected. Hence { ^ I W G U ^ I ^ }

is a base for Sp(W) consisting of connected sets.

THEOREM 3.14. If S is a completable Aronszajn space and φ is
a continuous mapping of S into a complete Aronszajn space X,
then φ has a continuous extension to a completion of S.

Proof. The techniques in [10] can be used to show that there
is an Aronszajn sequence Z of φ(S) such that every element of D(Z)
converges in X. For each n, let φ~ι{Z^) = {φ~\z)\zeZn}. Then
(φ~\Zn)X=1 is an open monotonically contracting sequence of S and
by [10; Lemma 2.1] there is a primitive sequence H of S such that
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Hn £ φ~ι(Zn) for each n. Let G be a completing primitive Aronszajn
sequence of S. By Lemma 2.5, there is a completing primitive
Aronszajn sequence W of S such that P(W) is finer than P(H). If
weP(IF) and heP(H) is coarser than w, then φ(h)eD(Z) and (̂fe),
hence φ(w), converges in X. So the mapping ψ from Sp(TΓ) into X
defined by ψ([w]) = lim 0(w) is continuous and if θ is the natural
embedding of S into S$(W), then ψ(0(aθ) = 0(&) for each xeS. The
result follows.

4* Moore spaces* A regular To developable space is called a
Moore space. Every Moore space is an Aronszajn space and a Moore
space which is a complete Aronszajn space is said to be semicomplete.
Using the terminology in §4.1, a regular To space is a (semicomplete)
Moore space if and only if it has a (semicomplete) decreasing develop-
ment or equivalently a (semicomplete) primitive development. The
term "complete" in the context of Moore spaces is reserved for spaces
satisfying Moore's Axiom 1 [3]. The space described in [7; Theorem
9] is a semicomplete Moore space which is not complete. A Moore
space which is homeomorphic to a dense subspace of a semicomplete
Moore space is called semicompletable. All of the examples of non-
completable Aronszajn spaces cited in the introduction are nonsemi-
completable Moore spaces.

DEFINITION 4.1. If G is a sequence of collections of sets and
Γ{G) is a collection of representatives of G, then a set U is said to
be uniformly Γ{G)-embedded in V if for each g e Γ(G) which intersects
U, there is an neN such that V contains every set in Gn which is
intersected by g. A sequence G of open covers of a space X having
the property that if g is a representative of G and x e ΠSU Q-m then
g converges to x is called a development of X and X is said to be
developable. A development G of X is called semicomplete if each
element of D(G) converges in X. A {semicomplete) primitive develop-
ment of X is a (semicomplete) development of X which is a primitive
closurewise sequence of X. A primitive development W of X is said
to be semicompleting if for each w eP( W) and neN, there is a
keN such that wk is uniformly P(TF)-embedded in wn.

THEOREM 4.2. If W is a semicompleting primitive development
of S, then S*(W) is a semicomplete Moore space.

REMARK 4.3. Results and questions analogous to those in para-
graphs 3.4 through 3.14 of the previous section can be obtained for
semicompletable Moore spaces by the proper translation of terminology.
The term "Aronszajn sequence" without the adjective "primitive"
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must be replaced by the term "decreasing development." In some
instances, the proofs require obvious modifications.
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