NATURALLY TOTALLY ORDERED SEMIGROUPS

M. SATYANARAYANA
NATURALLY TOTALLY ORDERED SEMIGROUPS

M. SATYANARAYANA

Naturally totally ordered semigroups which are o-Archimedean are completely characterized by Hölder and Clifford. The purpose of this note is to provide a complete characterization and thus a construction of a class of one-sided naturally totally ordered semigroups, which are not o-Archimedean.

A totally ordered (t.o.) semigroup S is positively ordered if $ab \geq a$ and $ab \geq b$ for all a, b in S. A positively totally ordered semigroup S is said to be right (left) naturally totally ordered (n.t.o.) if $a < b$ implies that $b = ax$ ($b = ya$) for some $x, y \in S$. A right and left n.t.o. semigroup is a n.t.o. semigroup, as defined in [1; 154]. Clifford and Hölder completely characterized order Archimedean (o-Archimedean) n.t.o. semigroups. In [4] the study of one-sided n.t.o. semigroups has been initiated. It is observed that right n.t.o. semigroups which are o-Archimedean are n.t.o. Hence their structure is known. In this paper we provide a construction of a class of right n.t.o. semigroups which are not o-Archimedean. This is obtained by using the ideas in the proof of Tamura's theorem [3; 55]. We refer the reader to [1] for all the undefined terms mentioned in this paper. An element x in S is called o-Archimedean if, for every $y \in S$, there exists an integer n such that $x^n \geq y$. An ideal P in S is called completely prime if, for all a, b in S, $ab \in P$, implies that either $a \in P$ or $b \in P$. An ideal Q in S is called prime if, for all right (two-sided) ideals A and B in S, $AB \subseteq P$ implies that either $A \subseteq P$ or $B \subseteq P$. Clearly every completely prime ideal is prime. We denote the intersection of all prime ideals by P^*. An element in a semigroup S is said to be central if it commutes with every element in S.

Lemma 1. Let every right ideal in a semigroup S contain an ideal. If $a \in P^*$, then for every $x \in S$, there exists a positive integer m such that $a^m \in xS$.

Proof. Suppose no power of a is in xS. Since xS contains an ideal, say T, no power of a is in T. Then the collection P of all ideals containing T and not containing any power of a is nonempty. So by Zorn's lemma, there exists an ideal P, which is a maximal element in P. Now we claim that P is a prime ideal, which establishes the conclusion. Suppose there exist ideals B and C such
that $BC \subseteq P$, without B and C being contained in P. By maximality of P, there exist natural numbers m and n such that $a^m \in P \cup B$ and $a^n \in P \cup C$, so that $a^{m+n} \in P$, which is not true.

Lemma 2. Let S be a semigroup in which every right ideal contains an ideal. Suppose P^* contains a central cancellable element a such that $\bigcap_{n=1}^{\infty} a^nS = \emptyset$ and $a \in aS$. If N is the additive semigroup of nonnegative integers; G is a group and $I: G \times G \to N$ be a function satisfying:

(i) $I(\alpha, \beta) + I(\alpha \beta, \gamma) = I(\alpha, \beta \gamma) + I(\beta, \gamma)$, where α, β, γ are the elements in G.

(ii) $I(\varepsilon, \varepsilon) = 1$, where ε is the identity of G (these two conditions also imply $I(\alpha, \varepsilon) = I(\varepsilon, \alpha) = 1$ for every $\alpha \in G$) then S isomorphic with the semigroup $N \times G$, where the multiplication in $N \times G$ being defined by:

$$(m, \alpha)(n, \beta) = (m + n + I(\alpha, \beta), \alpha \beta).$$

Proof. Essentially the proof is similar to Tamura’s proof [3; 56] except for some minor changes. We sketch now the important facts. Set $T_n = a^nS \setminus a^{n+1}S$, $n = 1, 2, \cdots$ and $T_0 = S \setminus aS$. Since a is a central element, every element in S can be written uniquely as a^nz, $z \in aS$. Define a relation σ on S by: $x \sigma y$ iff $a^mz = a^n(y)$ for some $m, n \geq 0$. Since a is central, σ is a congruence. Denote the classes of σ by S_α, where $\alpha \in G$. G is a semigroup by defining that the product $\alpha \beta$ in G is the index of the class containing xy, where $x \in S_\alpha$ and $y \in S_\beta$. All positive powers of a constitute a single σ-class. For, if $x \sigma a$ and if x is not a power of a, then $x = a^mz$, $z \in aS$. Now $a^p(a^mz) = a^q(a)$ for some $p, q \geq 0$. If $p + m \leq q$, then $z = a^{q-p-m+1}$ since a is cancellable and so x is a power of a, which is not true. If $p + m > q$, then $a \in aS$, which is again not true. Denote the class containing of all positive powers of a by S_ε. Then ε is the identity of G. We observe that G is a group. For, let $\alpha \in G$. If $x \in S_\varepsilon$, they by Lemma 1, $a^m = xy$ for some natural number m and for some y in S. So $a \sigma xy$ and thus if S_β is the σ-class containing y, then $S_\beta = S_\alpha S_\beta$, and $\varepsilon = \alpha \beta$. By the same reason $\varepsilon = \beta \gamma$ for some $\gamma \in S$. Thus $\varepsilon = \alpha \beta = \beta \alpha$ and hence G is a group. The rest of the proof is similar to that given in the above reference.

The following lemma is of independent interest. This proves the converse of Lemma 2 under some additional hypotheses. The two lemmas do provide structure theorem when the semigroup contains proper prime ideals, which is not the case with Tamura’s theorem and cancellative condition is obtained as a consequence. This supplements Nordhal’s result [2].
Lemma 3. Let \(T = N \times G \) be the semigroup as described in Lemma 2, and let \(I \) satisfy the additional property that there exists an \(\alpha \in G \) such that \(I(\alpha^n, \alpha) = 0 \) for all \(n \). Then every right ideal in \(T \) contains an ideal and \(P^* \), which is the intersection of all prime ideals in \(T \), contains a central cancellable element a such that \(\bigcap_{n=1}^{\infty} a^nT = \emptyset \) and \(a \in aT \).

Proof. As noted in [3; 55] the multiplication defined in Lemma 2 is associative. By direct verification one can show that \((0, \varepsilon)\) is a central cancellable element; \(\bigcap_{n=1}^{\infty} (0, \varepsilon)^nT = \emptyset \) and \((0, \varepsilon) \in (0, \varepsilon)T \). For the rest of the proof we need the following result:

(*) for any \((n, \beta) \in N \times G\), there exists an \(m \) such that \((0, \varepsilon)^m \in (n, \beta)T \).

This is true because we can choose positive integers \(m \) and \(k \) such that \(m > n + I(\beta, \beta^{-1}) \) and \(k = m - 1 - n - I(\beta, \beta^{-1}) \) and hence \((0, \varepsilon)^m = (n, \beta)(k, \beta^{-1}) \).

Now let \(A \) be a right ideal. By (*) \((0, \varepsilon)^m = (m - 1, \varepsilon) \in A \) for some positive integer \(m \). Clearly \((0, \varepsilon)^m = (m - 1, \varepsilon) \) is central. Thus \(A \) contains a two-sided ideal \(T(m - 1, \varepsilon)T \).

We claim now that \(T \) has proper prime ideals. By hypothesis there exists an \(\alpha \) such that \(I(\alpha^n, \alpha) = 0 \) for all \(n \). It can be verified easily \((0, \alpha)^n \in (1, \alpha)T \) for every \(n \). But \((1, \alpha)T \) contains an ideal \(Q \) from above. So \((0, \alpha)^n \in Q \) for every \(n \). Then by Zorn's lemma the nonempty collection of ideals containing \(Q \) and not containing any power of \((0, \alpha)\) has a maximal element \(P \). We prove now that \(P \) is a prime ideal. For, let \(A \) and \(B \) be ideals such that \(AB \subseteq P \), \(A \not\subseteq P \), and \(B \not\subseteq P \). Then by maximality of \(P \) there exist integers \(m \) and \(n \) such that \((0, \alpha)^m \in P \cup A \) and \((0, \alpha)^n \in P \cup B \), so that \((0, \alpha)^{m+n} \in P \), which is not true.

Finally we shall show that \((0, \varepsilon)\) belongs to every prime ideal. Let \(P \) be a prime ideal and \(x \in P \). By (*) there exists an integer \(m \) such that \((0, \varepsilon)^m \in xS \subseteq P \). Since \((0, \varepsilon)\) is central, \((0, \varepsilon)^{m+1}S(0, \varepsilon)S^1 \subseteq (0, \varepsilon)^{m+1} \subseteq P \). So \((0, \varepsilon)^{m+1} \subseteq P \). Continuing in this manner we have \((0, \varepsilon) \in P \).

Lemma 4. Let \(S \) be a positively t.o. semigroup. Then the set \(A \) of all \(\alpha \)-Archimedean elements is a completely prime ideal. If \(S \) is right n.t.o., then \(A \) is included in every completely prime ideal if \(A \neq S \).

Proof. It is easy to check that \(A \) is an ideal. To prove that \(A \) is a completely prime ideal, assume \(ab \in A \) with \(a \) and \(b \in A \). We may set \(a \leq b \). Then \(ab \leq b^2 \) and \(b^m < z \) for some \(z \) and for every
m. This implies \((ab)^n \leq b^n < z\) for every \(n\), which is not true. Suppose now that \(P\) is a completely prime ideal in a right n.t.o. semigroup \(S\). Let \(x \in A\) and \(y \in P\). Then there exists an \(n\) such that \(x^n \geq y\). If \(y = x^n\), \(x \in P\) since \(P\) is completely prime. If \(y < x^n\), then \(x^n \in yS \subseteq P\), so that \(x \in P\), as before.

Lemma 5. Let \(S\) be a right n.t.o. semigroup. Then every right ideal is an ideal and every prime ideal is completely prime.

Proof. Let \(A\) be a right ideal. If \(a \in A\) and \(s \in S\), then \(a \leq sa\) by positive order. If \(a = sa\), then \(sa \in A\). If \(a < sa\), by right n.t.o. condition, for some \(t\) we have \(sa = at\) and so \(sa \in A\). Thus \(A\) is an ideal. Suppose now that \(P\) is a prime ideal and \(ab \in P\). From the above,

\[(aS^i)(bS^i) \subseteq abS^i \cup abS \cup aSbS \subseteq abS^i \subseteq abS \cup abS^i \subseteq P,
\]

which implies \(a\) or \(b\) belongs to \(P\).

Theorem. Let \(N\) be the set of all nonnegative integers and \(G\) be a group. Suppose \(I\) is a function from \(G \times G \to \{0, 1\}\) satisfying the following properties:

(i) \(I(\alpha, \beta) + I(\alpha\beta, \gamma) = I(\alpha, \beta\gamma) + I(\beta, \gamma)\) for every \(\alpha, \beta, \gamma\) in \(G\).

(ii) \(I(\varepsilon, \varepsilon) = 1\), \(\varepsilon\) being the identity of \(G\).

(iii) There exists a nonperiodic element \(\alpha \in G\) such that for all but a finite number of \(n\), \(I(\alpha^n, \alpha) = 0\).

(iv) \(I(\alpha, \alpha^{-1}) = 0\) for every \(\alpha \neq \varepsilon\) in \(G\).

(v) For \(\alpha \neq \beta\), \(\alpha \neq \varepsilon\), \(\beta \neq \varepsilon\) one of \(I(\beta, \beta^{-1}\alpha)\) and \(I(\alpha, \alpha^{-1}\beta)\) is zero and the other is 1.

(vi) If \((\beta, \beta^{-1}\alpha) = 0\), then for every \(\gamma\) we have only the following possibilities:

(a) \(I(\beta, \gamma) = 0\) and \(I(\alpha, \gamma) = 1\).

(b) \(I(\beta, \gamma) = I(\alpha, \gamma) = I(\beta\gamma, (\beta\gamma)^{-1}\alpha\gamma) = 0\).

(c) \(I(\beta, \gamma) = 1 = I(\alpha, \gamma)\) and \(I(\beta\gamma, (\beta\gamma)^{-1}\alpha\gamma) = 0\).

(vii) If \(I(\beta, \beta^{-1}\alpha) = 0\), then for every \(\gamma\) we have only the following possibilities:

(a) \(I(\gamma, \beta) = 0\) and \(I(\gamma, \alpha) = 1\).

(b) \(I(\gamma, \beta) = I(\gamma, \alpha) = I(\gamma\beta, (\gamma\beta)^{-1}\gamma\alpha) = 0\).

(c) \(I(\gamma, \beta) = 1 = I(\gamma, \alpha)\) and \(I(\gamma\beta, (\gamma\beta)^{-1}\gamma\alpha) = 0\).

(viii) If \(I(\beta, \gamma) = 1\) and \(I(\alpha, \gamma) = 0\), then \(I(\beta\gamma, (\beta\gamma)^{-1}\alpha\gamma) = 0\).

(ix) If \(I(\gamma, \beta) = 1\) and \(I(\gamma, \alpha) = 0\), then \(I(\gamma\beta, (\gamma\beta)^{-1}\gamma\alpha) = 0\).

Define multiplication in \(N \times G\) by:

\[(m, \alpha)(n, \beta) = (m + n + I(\alpha, \beta), \alpha\beta).\]
Define order in $N \times G$ by: if $m \geq 1$, $(m, \alpha) > (0, \beta)$; $(0, \varepsilon) > (0, \beta)$ if $\beta \neq \varepsilon$; for $\alpha \neq \beta$, $\alpha \neq \varepsilon$, $\beta \neq \varepsilon$, $(0, \alpha) > (0, \beta)$ if $I(\beta, \beta^{-1}\alpha) = 0$; if $m > n$, $(m, \alpha) > (n, \beta)$; $(m, \alpha) > (m, \beta)$ if $I(\beta, \beta^{-1}\alpha) = 0$. Then $N \times G$ is a right n.t.o. semigroup not containing 1 and is non-o-Archimedean but contains a central cancellable o-Archimedean element. Conversely every such semigroup can be constructed in this way.

Proof. By direct verification one can establish that $N \times G$ is a right n.t.o. semigroup not containing 1. By (iii), there exists an α such that all but a finite number, say m of $I(\alpha^i, \alpha)$ are zero. Then for any n $(0, \alpha)^n = (t, \alpha^n)$ and $t < m + 1$ since α is not periodic and hence $(0, \alpha)^n < (m + 1, \varepsilon)$. Therefore $N \times G$ is not o-Archimedean. It is easy to verify that $(0, \varepsilon)$ is a central o-Archimedean element.

Conversely let S be a right n.t.o. semigroup containing a central cancellable o-Archimedean element a. Then by Lemmas 4 and 5, P^* contains a. $a \not\in aS$, since otherwise we have for some s, $a = as = as^2$, so that $s = s^2$ by cancellative condition of a. Now if $y \in S$, $ya = ysa = ysa$, which implies $y = ys$. But $(as)y = ay$. So $(sy)a = ya$ and $sy = y$. Thus s is an identity, which is a contradiction. Hence $a \not\in aS$. Also $\bigcap_{n=1}^\infty a^nS = \emptyset$. For if $y \in \bigcap_{n=1}^\infty a^nS$, $y = a^n s_n$ and so $y \geq a^n$. Since a is o-Archimedean, we have $a^n = y$. Now $a^n \in \bigcap_{n=1}^\infty a^nS$ implies $a^n = a^{n+1}$ by positive order and hence $a = a^2$ by cancellation, which is again untrue as before. Combining Lemmas 2, 4, and 5, we have that S is isomorphic with $N \times G$, with the I-function satisfying the first two properties stated in the theorem. If $\alpha \neq \varepsilon$ and if $(0, \alpha)$ is in $(0, \varepsilon)S$, then we must have $(0, \alpha) = (0, \varepsilon)(0, \alpha)$, which implies $I(\varepsilon, \alpha) = 0$, which contradicts the consequence of the properties (i) and (ii), as noted in Lemma 2. Since S is right n.t.o. we must have then $(0, \varepsilon)$ is in $(0, \alpha)S$, which implies $(0, \varepsilon) = (0, \alpha)$ $(0, \alpha^{-1})$ and so $I(\alpha, \alpha^{-1}) = 0$. Now set $\gamma = \beta^{-1}$ in (i). Then if $\beta \neq \varepsilon$,

$$I(\alpha, \beta) + I(\alpha\beta, \beta^{-1}) = I(\alpha, \varepsilon) + I(\beta, \beta^{-1}) = 1 + 0.$$

Thus $I(\alpha, \beta) = 0$ or 1 and hence $I(\alpha, \beta) = 0$ or 1 for every $\beta \in G$. Therefore I maps $G \times G$ into $\{0, 1\}$.

To prove (iii), observe that S contains non-o-Archimedean elements. Therefore there exist (m, α) and (n, β) in $N \times G$ such that $(m, \alpha)^r < (n, \beta)$ for every natural number r. If $m \neq 0$ and $n \neq 0$, then there exists an k such that $km > n$. Then

$$(m, \alpha)^{k+1} = ((k + 1)m + I(\alpha, \alpha) + \cdots + I(\alpha^{k+1}, \alpha), \alpha^{k+1})$$

and hence $(m, \alpha)^{k+1} > (n, \beta)$, which is not true. If $m = 0$ and $n \neq 0$, then $(0, \alpha)^r < (n, \beta)$ for all r implies $I(\alpha, \alpha) + \cdots + I(\alpha^r, \alpha) \leq n$ for every natural number r. Therefore all but a finite number of
$I(\alpha^n, \alpha)$ are zero. If $m = n = 0$, then it is clear that $I(\alpha^n, \alpha) = 0$ for every i. The case $m \neq 0$ and $n = 0$ is inadmissible. α is not periodic since otherwise if $\alpha^n = \varepsilon$, then $(0, \alpha)^n = (N, \varepsilon)$ where $N = I(\alpha, \alpha) + \cdots + I(\alpha^n, \alpha)$ and $(0, \alpha)^n = ((N + 1) - 1, \varepsilon)$. Choose k such that $k(N + 1) - 1 > n$. Therefore

$$(0, \alpha)^k = (k(N + 1) - 1, \varepsilon) > (n, \varepsilon) > (n, \beta),$$

which is not true. It is routine to check that the remaining conditions are necessary for the admissibility of right n.t.o. structure on $N \times G$.

In commutative case, the I-function satisfies the property $I(\alpha, \beta) = I(\beta, \alpha)$, in addition to the above. The commutative example supporting the hypothesis of the theorem is $N \times G$, where G is an infinite cyclic group generated by x and the I-function is defined by: $I(x^n, x^m) = 0$ if $n, m > 0; I(x^n, x^{-m}) = 0$ if $0 < n \leq m$ and in all other cases the value of I-function is 1.

Since $N \times G$ is cancellative, the right n.t.o. semigroup containing central cancellable o-Archimedean elements, which is not o-Archimedean, is in fact cancellative. By condition (iii) of the theorem, the group G is necessarily nonperiodic and $N \times G$ is not finitely generated since by corollary of [4; 11] cancellative finitely generated right n.t.o. semigroups are infinite cyclic semigroups (possibly adjoined with 1) and hence o-Archimedean. More than this we do not know the structure of G. So the problem "what groups admit the I-function with the prescribed properties in the theorem" remains open. It may be remarked that a particular case of this theorem has been solved by Etterbeck in his thesis, written at the University of California, Davis.

References

Received May 2, 1977 and in revised form November 23, 1977.

Bowling Green State University
Bowling Green, OH 43403
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

C. W. CURTIS
University of Oregon
Eugene, OR 97403

C. C. MOORE
University of California
Berkeley, CA 94720

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. FINN AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Dan Amir, *Chebyshev centers and uniform convexity* 1
Lawrence Wasson Baggett, *Representations of the Mautner group. I* 7
George Benke, *Trigonometric approximation theory in compact totally
disconnected groups* ... 23
M. Bianchini, O. W. Paques and M. C. Zaine, *On the strong compact-ported
topology for spaces of holomorphic mappings* 33
Marilyn Breen, *Sets with \((d-2)\)-dimensional kernels* 51
J. L. Brenner and Allen Kenneth Charnow, *Free semigroups of \(2 \times 2\)
matrices* ... 57
David Bressoud, *A new family of partition identities* 71
David Fleming Dawson, *Summability of matrix transforms of stretchings
and subsequences* .. 75
Harold George Diamond and Paul Erdős, *A measure of the nonmonotonicity
of the Euler phi function* ... 83
Gary Doyle Faulkner and Ronald Wesley Shonkwiler, *Kernel dilation in
reproducing kernel Hilbert space and its application to moment
problems* .. 103
Jan Maksymilian Gronski, *Classification of closed sets of attainability in the
plane* ... 117
H. B. Hamilton and T. E. Nordahl, *Semigroups whose lattice of congruences
is Boolean* ... 131
Harvey Bayard Keynes and D. Newton, *Minimal \((G, \tau)\)-extensions* 145
Anthony To-Ming Lau, *The Fourier-Stieltjes algebra of a topological
semigroup with involution* .. 165
B. C. Oltikar and Luis Ribes, *On prosupersolvable groups* 183
Brian Lee Peterson, *Extensions of pro-affine algebraic groups* 189
Thomas M. Phillips, *Primitive extensions of Aronszajn spaces* 233
Mehdi Radjabalipour, *Equivalence of decomposable and \(2\)-decomposable
operators* .. 243
M. Satyanarayana, *Naturally totally ordered semigroups* 249
Fred Rex Sinal, *A homeomorphism classification of wildly imbedded
two-spheres in \(S^3\)* ... 255
Hugh C. Williams, *Some properties of a special set of recurring
sequences* .. 273